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Counterfactual Image Generation using GAN for
Fairness

Koki Wataoka†1,a) Takashi Matsubara†2,b) Kuniaki Uehara†3,c)

Abstract: Computer vision systems have made significant improvements and been used in a variety of situa-
tions. For a practical use, we need to prevent the systems from making unfair decisions for certain individuals.
In this sense, the systems have to eliminate the difference between decision makings on the real world and
the counterfactual world where users would have different sensitive attributes (e.g., gender and race). In this
study, we propose a framework for counterfactual image generation named Causality with Unobserved Vari-
ables using Generative Adversarial Networks (CUV-GAN). CUV-GAN can generate counterfactual images
as the results of the intervention in the images’ attributes and improve the fairness of an image classifier by
being trained with generated images as data augmentation.

Keywords: generative adversarial networks, counterfactual fairness, causal inference, image manipulation

1. Introduction

Machine learning models have been used for a decision-

making in many situations such as credit scoring [10], recidi-

vism risk assessment [34], and recruitment [12]. When de-

ploying a model, we have to ensure that the model does not

discriminate against any individuals [13] [20] [23]. Hence,

many studies have proposed various definitions of fairness

in machine learning [3] [11] [17]. In this paper, we fo-

cus on a definition of fairness named counterfactual fair-

ness [4] [25] [38]. Counterfactual fairness captures an in-

tuition that a decision is fair towards an individual if it

is the same in both the actual world and the counterfac-

tual world where the individual belongs to a different demo-

graphic group.

Although you need counterfactual images to evaluate

counterfactual fairness of your image classifier, the method

of generating counterfactual images has not been studied

much. Image manipulation techniques [6] [19] [27][33] [35]

can edit attributes in images, but can not perform the in-

tervention, which changes an attribute and other attributes

according to the descendant nodes of the attribute by the

strength of the causal relationships. We show the example

of the difference between the manipulation and the inter-

vention in Fig. 1.
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Given the above, we propose a method of generating coun-

terfactual images, named “Causality with Unobserved Vari-

ables using Generative Adversarial Networks” (CUV-GAN).

CUV-GAN estimates structural equations for images and at-

tributes and performs the intervention in the attributes of

the images. We evaluate the quality of CUV-GAN in our

experiments using a self-making dataset that has structural

equations for the images and the attributes. In addition, we

use the generated counterfactual images as data augmenta-

tion and confirm that CUV-GAN is effective for improving

the fairness of classifiers.

2. Causality

2.1 Causal Model

Causal inference is a theoretical system for the elucidation

of causal relationships among variables or events. We define

a causal model according to Pearl [32].

Definition 1 (Causal Model). A causal model is a triple

(U, V, F ) of sets such that

• U is a set of latent background variables, which are

factors not caused by any variable in the set V of ob-

servable variables.

• F is a set of functions {f1, ..., fn}, one for each Vi ∈
V , such that Vi = fi(pai, Upai), pai ⊆ V \Vi and

Upai ⊆ U . Such equations are also known as struc-

tural equations.

The aim of causal inference is to infer the structural equa-

tions and the distribution of latent background variables

from observed variables.

Many studies [1] [24] [26] [36] [37] have investigated a ba-

sic causal model as follows: The causal relations of the ob-
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(a) Manipulation and intervention (b) Causal diagram

Fig. 1 Comparison of the manipulation and the intervention. The manipulation of the
smiling is to change only the smiling attribute in the image, and the intervention in
the smiling is to change the smiling and eyes attributes in the image. (a) The left
image is the original image. The upper right image is the result of the manipulation
of the smiling by [27]. The lower right image is the result of the intervention in
the smiling by our method. (b) The figure is a causal diagram of this example
illustrating that the smiling attribute affects the eyes attribute.

served variables are graphically represented by a directed

acyclic graph (DAG), that is, when the observed variables

are in the causal order, no later variable determines any ear-

lier variable in the DAG. Further, the functional relations of

the observed variables are linear. We thus deprive structural

equations of the basic causal model as follows:

y = By + e, (1)

where y ∈ Rdy denotes the observed variable, B ∈
Rdy×dy denotes the causal matrix collecting the connection

strengths bij between yi and yj , and e ∈ Rdy denotes the

exogenous variable, which is not considered as attributes but

affects y. Here, the elements of the exogenous variable are

assumed to be independent of each other. The basic causal

model (1) is known as a linear non-Gaussian acyclic model,

abbreviated as LiNGAM.

Furthermore, Hoyer et al. [18] extended the causal

model (1) and formulated a linear acyclic structural equa-

tion model with latent confounders, named “Latent variable

Linear Non-Gaussian Acyclic Model” (LvLiNGAM). Struc-

tural equations of LvLiNGAM is given by

y = B

[
f

y

]
+ e, (2)

where f ∈ Rdf denotes the latent confounder, which

can affect the multiple observed variables y, and B ∈
Rdy×(df+dy) denotes the causal matrix collecting the con-

nection strengths bij from fi or yi to yj .

2.2 Counterfactual Inference

After estimating the structural equations, you can infer

counterfactual quantities. Pearl [32] described counterfac-

tual inference to any causal model as three steps.

Definition 2 (Counterfactual Inference). Given the ev-

idence w, to compute the probability of X = x under

the hypothetical condition S = s (S is a subset of vari-

ables), counterfactual inference proceeds in the following

three steps:

Step 1 (abduction): Update the prior distribution P (u)

to the posterior distribution P (u|w).

Step 2 (action): Replace the equations for S with the

equations S = s.

Step 3 (prediction): Compute the distribution on the re-

maining equations and obtain the probability of X = x.

Step 2 in Definition 2 is also called an intervention in S.

In these three steps, the amount of change in the probability

of X = x is called a causal effect of S on X, which can be

interpreted as the amount indicating how much S affects X.

2.3 Counterfactual Fairness

Kusner et al. [25] focus on the causal effect and define

counterfactual fairness. We assume that a classifier and at-

tributes are binary without loss of generality and give the

definition below.

Definition 3 (Counterfactual Fairness). Let Ŷ denote a

prediction of a binary classifier, S denote a binary sensi-

tive attribute, and Z ⊆ X denote a set of attributes (X is

a set of non-sensitive attributes). The classifier satisfies

counterfactual fairness if we have

P (ŶS←s|S = s, Z = z) = P (ŶS←s′ |S = s, Z = z) (3)

under any condition Z = z, where s, s′ ∈ {0, 1}, and ŶS←s

denotes the variable Ŷ after the intervention that replaces

the equations for S with S = s.

Here, the sensitive attribute is some traits identified by

law [31] on which it is illegal to discriminate against.

Definition 3 is based on the belief that the classifier should

make the same prediction both in the actual world and the

counterfactual world. In other words, the causal effect of

the sensitive attribute on the output of the classifier should

be zero.
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3. CUV-GAN

In this section, we introduce CUV-GAN, which provides

a method of generating counterfactual images. CUV-GAN

is a network architecture based on causal relationships in-

cluding attributes and images.

3.1 Causal Model of CUV-GAN

We consider the causal relationships including images as

the causal diagram in Fig. 2 (a). The generation process

of the attribute variables y followed LvLiNGAM [18]. In

the generation process of the image x, we consider any fac-

tors that affect the image x as the latent confounders f and

the attribute variables y. Hence, we derive the structural

equation for the image x as follows:

x = fx(f ,y), (4)

where fx : F × Y → X . Here, F ⊆ Rdf denotes the latent

confounders space, Y ⊆ Rdy denotes the attribute variables

space, and X ⊆ Rdx denotes the image space. f and y are

according to Upai and pai in Definition 1.

Since the structural equations (2) (4) are hardly appli-

cable to image generation directly, we employed a GAN’s

generator [14], which is a powerful technique for image gen-

eration. The well-trained generator can be interpreted as

the deterministic function G : Z → X where Z ⊆ Rdz de-

notes the latent space of GAN. The latent vector has all

information of the image. Hence, we make the following

assumptions about the latent vector and the variables that

determine the image.

Assumption 1. There is a one-to-one correspondence be-

tween the latent vector of GAN and the variables that de-

termine the image.

As long as Assumption 1 holds, the relation between them

can be described as an invertible function. Since we consider

that the variables that determine the image are the latent

confounders f and the attribute variables y, the relation

can be written as an invertible function H : F × Y → Z.

Therefore, we can formulate the structural equations for the

image x as follows:

z = H(f ,y), (5)

x = G(z). (6)

Given the above (2) (5) (6), the causal diagram of CUV-

GAN is shown in Fig. 2 (b).

3.2 Training Procedure of CUV-GAN

We assume that a well-trained generator is given, other-

wise, you need to train the generator according to any GAN

frameworks [2] [21] [22].

CUV-GAN aims to generate counterfactual images of real

images for improving counterfactual fairness. To embed the

real images into the latent space of GAN, you can use GAN-

Inversion [5] [16] [29] [39] [40], which is a technique for in-

ferring the latent vector from the image.

LvLiNGAM (2) can be transformed as follows:

[
f

y

]
=

[
0

B

][
f

y

]
+

[
f

e

]
, (7)(

I −

[
0

B

])[
f

y

]
=

[
f

e

]
, (8)

[
f

y

]
=

(
I −

[
0

B

])−1 [
f

e

]
,

(9)

= Ã

[
f

e

]
, (10)

(
Ã =

(
I −

[
0

B

])−1)
,

y = A

[
f

e

]
, (11)

where A is the bottom dy rows of Ã. Hence, you can solve

LvLiNGAM as overcomplete independent component anal-

ysis (OICA). Note that you can calculate the causal matrix

B from the matrix A by using the following equation.

Ã =

(
I −

[
0

B

])−1

, (12)

where Ã is the concatenation of the following matrix

(aij)ij(∈ Rdf×df+dy ) on the top of A.

aij =

{
1 (i = j)

0 (otherwise)
(13)

To train the invertible function H, you can use

Flow [8] [9] [15]. Let the well-trained generator, the pre-

trained encoder, and the inferred matrix be G, E, and A,

then we learn the parameter of the invertible function θH

by the following optimization problem:

θ∗H =

arg max
θH

E(x,y)∼D, ê∼P (ê)

[
L (ŷ,y) + λL

(
A

[
f̂

ê

]
,y

)]
,

(14)

where

[
f̂

ŷ

]
= H−1 (E(x)) , (15)

λ ∈ R+. (16)

Here, P (ê) is the distribution of the exogenous variables

learned by OICA. L is the loss function for evaluating the

difficulty between the true value and the predicted value

such as a mean squared error. λ is the hyperparameter for

a positive real number such as df/(df + dy).
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(a) Causal diagram with images (b) Causal diagram with images using latent vectors

Fig. 2 Causal Diagrams with Images. e, f , y, z, x denote exogenous variables, latent
confounders, attribute variables, latent variables of the well-trained generator, and
images, respectively. Black nodes and blue nodes denote unobserved variables and
observed variables.

3.3 Generating Counterfactual Images

After the training, we can generate the counterfactual im-

age from the real image. Suppose our purpose is the inter-

vention to change s ∈ y to s′. First, we embed the real

image by using the pre-trained encoder E and obtain the

inferred latent vector ẑ. Next, we input the latent vector ẑ

into the inverse function of the pre-trained invertible func-

tion H−1 and obtain the inferred attribute variables ŷ and

the inferred latent confounders f̂ . Then, we infer the ex-

ogenous variables ê from Equation (8) using the inferred

causal matrix B. Then, we replace the structural equations

for s with s = s′, calculate the structural equations for

the remaining attribute variables y\s, and obtain a coun-

terfactual attribute variables ys←s′ . Finally, we generate a

counterfactual image G(H(f̂ ,ys←s′)).

These procedures are shown in Algorithm 1. We can con-

firm that our Algorithm 1 is according to Definition 2.

4. Experiments

4.1 Dataset and Implementation

To evaluate the generating quality of CUV-GAN, we cre-

ated the synthetic dataset that has 10,000 simple facial im-

ages with the attribute variables. The attributes and images

in our dataset were generated according to our assumption

about the generation process. First, the exogenous variables

and the latent confounders were sampled from their distri-

butions. Second, the observed variables were generated from

the parent variables. Finally, the images were drawn from

the observed variables and the latent confounders. We show

examples of our dataset in Figure 3 and the causal diagram

of the observed variables and the latent confounders in Fig-

ure 4. In detail, the structural equations for the attributes

are as follows:

Algorithm 1 Generating Counterfactual Images with In-

terventions in s
Input: Image x, attributes y, intervention variables s ⊆ y,

trained generator G, trained encoder E,

inferred causal matrix B, trained invertible function H.

Output: counterfactual image x̂

Abduction :

1: ẑ = E(x).

2:

[
f̂
ŷ

]
= H(ẑ).

3:

[
f̂
ê

]
=

(
I −

[
0
B

])[
f̂
y

]
.

Action :

4: Set s = s′

Prediction :

5: Let the indices of s be is.

6: for i← {0, ..., dy}\is do

7: yi ← bi

[
f̂
y

]
+ ei, (bi: the i-th row of B).

8: end for

9: Let the attribute variables after the intervention be ys←s′ .

10: zs←s′ = H−1
(
[f̂ ,ys←s′ ]

)
.

11: xs←s′ = G(zs←s′ ).

fr = er, er ∼ U(0, 1), (17)

ys = es, es ∼ U(0, 1), (18)

yc = 0.4fr + ec, ec ∼ U(0, 0.6), (19)

ye = 0.2fr + 0.3ys + ee, ee ∼ U(0, 0.5), (20)

where U is the continuous uniform distribution.

Since the structural equation for the image is extremely

complex, we can not write down the equation. Intuitively,

the eyes attribute controls the diameter of the eyes in the

image, the smiling attribute controls the curve of the mouth,
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Fig. 3 Examples of Our Dataset. The images are determined by attributes. The smiling
attribute determines the degree of the mouth curvature. The skin attribute de-
termines the color of the skin. The eyes attribute determines the size of the eyes.
From the top row, this figure illustrates the results of changing the smiling, color,
eyes attributes from 0 to 1.

Fig. 4 Causal Diagram of Our Dataset. The smiling, color, and
eyes attributes are the observed variables. The race at-
tribute is the latent confounder. We modeled simple rela-
tionships in the human face as follows: Race affects skin
color and eyes size. Smiling affects the degree of eyes
openness.

and the color attribute controls RGB values inside the circle

of the image.

Although we assume that a well-trained generator is given,

we need to train the generator for the self-making dataset. In

this paper, we employed “Mode-Seeking Generative Adver-

sarial Network” (MSGAN) [30] as the framework for train-

ing the generator. MSGAN explicitly maximizes the ratio of

the distance between generated images with respect to the

corresponding latent vectors, thus preventing the generator

from the mode collapse issue.

Since the pre-trained encoders such as Multi-Code GAN

Inversion [16] and Lia [40] are available online, you do not

need to train the encoder in a wide range of situations.

However, we need to train the encoder for the self-making

dataset. In this paper, we employed “In-Domain GAN In-

version” (Idinvert) [39] as the framework for training the

encoder. Idinvert embeds the images into the latent vectors

that minimize the distance between the original images and

the reconstructed images in the image space and the feature

space.

To solve LvLiNGAM (2), we employed “Likelihood-

Free Overcomplete Independent Component Analysis”

(LFOICA) [7]. LFOICA explores the matrix A in

OICA (11) by stochastic gradient descent and learns neu-

ral networks that transform Gaussian distributions to the

distributions of the independent components. Then, we use

Gaussian distribution and the trained neural networks as the

prior distribution of the exogenous variables e for training

the invertible function.

To train the invertible function, we employed “Non-linear

Independent Components Estimation” (NICE) [8]. NICE

estimates the invertible transformation of the distributions

using additive coupling layers.

4.2 Qualitative Evaluation

We trained CUV-GAN with our dataset and generated

the counterfactual images by Algorithm 1. The results are

shown in Figure 5. We show the generated images by CUV-

GAN and also “Matrix Subspace Projection” (MSP) [27].

The images for each row in Figure 5 are generated by per-

forming the continuous interventions in the attribute from

0 to 1 in one sample.

CUV-GAN generated images of eyes more smoothly

changing and represented darker colors when the value of

the intervention is close to 0 than MSP. While MSP changed

only the smiling attribute, CUV-GAN changed the smiling

attribute and also the eyes attribute, which is a child node

of the smiling attribute in the causal diagram. While MSP

could not change the latent confounders, CUV-GAN could

perform the intervention in it. Although CUV-GAN did not

explicitly perform the intervention in the race attribute, it

can be seen that the color and eyes attributes were changed

as a result.

4.3 Quantitative Evaluation

We built a regressor that predicts the attribute values

from the input image to quantitatively evaluate CUV-GAN.

As a result of training, the regressor has been able to pre-

dict for each attribute with a mean squared error of 0.0015 in

the test dataset. We quantitatively evaluated the generated

counterfactual images by calculating mean squared errors

between the ground truth of the counterfactual attributes

and the outputs when inputting the generated counterfac-

tual images into the regressor. The results are shown in

Table 1. CUV-GAN generated higher quality images than

MSP [27].
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Fig. 5 Generated Counterfactual Images. For each row, the images are the results of the
interventions that continuously change an attribute value from 0 to 1 in one sample.
From the top row, the images are the results of the interventions in the eyes, color,
smiling, and race attributes. Since the race attribute is the unobserved variables,
CUV-GAN can not explicitly perform the intervention in the race. However, as a
result, we can see that the interventions in the latent confounder change the color
and eyes attributes.

eyes color smiling race

MSP [27] 0.0698 0.0671 0.0728 -
CUV-GAN 0.0046 0.0050 0.0049 0.0364

Table 1 Quantitative evaluation of the generated counterfactual
images. The numbers in the table denote mean squared
errors between the ground truth of counterfactual at-
tributes and the outputs when inputting the generated
images into the trained regressor that can predict at-
tributes from the images.

4.4 Assessing Fairness

From Definition 3, we considered that a model becomes

fair by leaning the counterfactual images in the sensitive at-

tribute. We trained the simple convolutional neural network

(CNN) which predicts whether the input image is smiling as

a baseline model. Next, We used the resultant images of

the intervention in the color attribute as data augmentation

for retraining the baseline model. The results are shown in

Table 2. CNN became fair by using the generated counter-

factual images.

DA Acc. ↑ DP ↓ EO ↓
0.9647 ± 0.0032 0.0176 ± 0.0019 0.0138 ± 0.0035

✓ 0.9679 ± 0.0029 0.0145 ± 0.0042 0.0108 ± 0.0037

Table 2 Comparison of accuracy and fairness in cases using and
not using the generated counterfactual images of CUV-
GAN as data augmentation. DA, Acc., DP, and EP de-
notes data augmentation, accuracy, demographic parity,
and equal opportunity. The numbers in bold indicate
better performance than another.

5. Conclusion

We assumed a generation process of the images as the

causality and formulated structural equations using the well-

trained generator of GAN. We proposed CUV-GAN, which

is a framework based on the causal equations and can per-

form interventions and generate counterfactual images. In

qualitative and quantitative experiments using an original

synthetic dataset, it was confirmed that CUV-GAN can gen-

erate the counterfactual images and be useful for improving

fairness in machine learning.

As future works, we consider experiments with real

datasets such as CelebA dataset [28] and assessing coun-
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terfactual fairness of various datasets and image classifiers.
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