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1+1>1? Quantitative Analysis of Multiple-Frame Effect
for Human Pose Estimation

Jianfeng Xu1,a) Satoshi Komorita1,b)

Abstract: Although it is well known that the performance of recognition/classification can be effectively
improved by integrating multiple sources (e.g., the accuracy of human pose estimation increases when
using multiple frames rather than a single frame), it is very challenging to quantitatively analyze how
much improvement will be obtained by an additional source and what factors will affect the performance
improvement. As far as we know, this work presents for the first time a quantitative analysis of a partic-
ular case, where multiple frames are used to exploit temporal information for improving pose estimation
in videos. More specifically, we select a cutting-edge technology, PoseWarper, as our analysis target. For
simplicity, but without loss of generality, we focus on using two frames in PoseWarper. In this work, we
not only discuss the necessary conditions for improving performance by using one more frame but also
confirm that a linear regression works well to model the relationship between the accuracy gain and the
time difference of two frames in the dataset of PoseTrack2017.
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1. Introduction
In the tasks of recognition/classification, it is well known

that the performance can be effectively improved by inte-
grating multiple sources. For example, multimodal emo-
tion recognition [21] fuses multiple relevant modalities in-
cluding visual cues, audio cues and sensor data for bet-
ter accuracy. Similarly, besides RGB images, depth data
and IR images are helpful in the face recognition field
[32]. Also, a two-stream approach [26] shows that an RGB
stream and optical flow stream used together are effective
in action recognition. In many cases, the performance has
been demonstrated to be higher if more sources are inte-
grated. Ensemble learning that includes boosted classifier
like AdaBoost [12], [25] combines multiple “weak classi-
fiers” into a single “strong classifier”. The idea still works
well even in the era of deep learning [22], when either XG-
Boost [6] or LightGBM [18] or CatBoost [24] is widely
used. However, more memory and computational resource
are consumed when more sources are used. With limited
resources, it requires huge effort for experts to design or op-
timize the system so that the most effective source for the
system is selected. Because there is no quantitative anal-
ysis available for this important issue in the literature, the
system design/optimization is basically empirical requiring
considerable know-how. Therefore, it is very important to
know what will affect performance improvement and how
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much it can be improved when we use an additional source
in terms of cost/performance balance.

In this work, we focus on a particular case, i.e., human
pose estimation in videos [4], [17], [23]. As one of the suc-
cessful applications for deep learning technologies, many
powerful neural networks such as OpenPose [5], Alpha-
Pose [11], CPN [7], and HRNet [28] were proposed for hu-
man pose estimation in still images, in which a heatmap is
output for each joint of a person. Recently, new tech-
nologies have been further developed for videos, where
an important issue is how to use temporal information in
videos. As the state-of-the-art method, PoseWarper [4] is
selected as our analysis target, which was the winner of
PoseTrack2017 Challenge 2 “Multi-frame Person Pose Es-
timation” [1]. PoseWarper [4] estimates a warped heatmap
from one frame to another. Therefore, multiple frames
(e.g., five neighboring frames in the original paper [4])
can be fused into a heatmap, which achieves better perfor-
mance than a single frame. There are many other papers
[23], [27], [29], [30] that also use multiple frames to im-
prove the accuracy of pose estimation in videos. These
works lead to a natural question: how much accuracy gain
we can obtain by using an additional frame.

For simplicity, but without loss of generality, we focus
on using two frames in PoseWarper. Namely, we want to
estimate the human poses in Frame t given Frame A and
Frame B. Following the original paper of PoseWarper [4],
suppose ||t − A|| <= 2 and ||t − B|| <= 2. In this work, we
endeavor to answer the following questions.
• (qualitative analysis) Q1: Are there any conditions
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whereby accuracy would be increased by using an ad-
ditional frame? If so, what are the conditions?

• (quantitative analysis) Q2: What factors will affect
the accuracy gain and in what kind of function?

For the first question, we observe that there is no guar-
antee that two frames will yield better performance than a
single frame. Namely, it is possible that 1 frame + 1 frame
<1 frame. Furthermore, in this work, we provide two nec-
essary conditions for performance improvement (1+1>1).
For the second question, by analyzing the experimental re-
sults of PoseWarper [4] in PoseTrack2017 [17], we demon-
strate that a linear regression works well to model the re-
lationship between the accuracy gain and the time differ-
ence of two frames. These are the main contributions of
this work.

This work is organized as follows: in Section 2, we briefly
introduce related work on human pose estimation in still
images and videos. Then, in Section 3, we describe the
necessary preparations for analysis including an introduc-
tion to the algorithm used in PoseWarper and the dataset
of PoseTrack used in our experiments. Then, in Section
4, we report the details and our findings by analyzing the
experimental results. Finally, in Section 5, we conclude
this work.

2. Related Work
There has been significant interest in human pose esti-

mation due to its importance in many applications such
as pedestrian detection, understanding human behavior,
sports analysis, and virtual reality. We give a brief
overview of multi-person pose estimation in both still im-
ages and videos. For a detailed and complete survey, please
refer to the survey paper [10].

2.1 Multi-Person Pose Estimation in Still Images
In the past decade, many papers on multi-person pose

estimation have been published [10]. They are usually di-
vided into two categories: bottom-up and top-down ap-
proaches. As a typical bottom-up approach, OpenPose
[5] detected all the body joints in the first stage, then as-
sociated them with person instances in the second stage.
OpenPose [5] used a non-parametric representation called
Part Affinity Fields (PAFs) with a greedy algorithm to
generate the person instance.

On the other hand, top-down approaches reported better
performance, where they first detected the bounding boxes
of persons in the input image, then estimated the joint
locations in each bounding box. Fang et al.[11] noticed
that single-person pose estimation is sensitive to human
detection. To solve this problem, they employed Sym-
metric Spatial Transformer Network (SSTN) in parallel
with Single-Person Pose Estimator (SPPE) to extract a
high-quality single-person region. Mask R-CNN [14] si-
multaneously predicted bounding boxes and body joints,
which made the detection faster by sharing the features.
Moreover, the new RoI alignment method enabled more

accurate feature cropping. Chen et al.[7] proposed a net-
work structure called Cascaded Pyramid Network (CPN),
which consisted of two parts, GlobalNet and RefineNet.
The former extracted a good feature representation, while
the latter was employed to address the “hard” examples.
The latest technology of HRNet [28] proposed an archi-
tecture that preserves high-resolution feature maps, which
has been shown to be highly beneficial in multi-person
pose estimation tasks. HRNet [28] consisted of multi-
ple branches with different resolutions. Lower resolution
branches captured contextual information and higher reso-
lution branches preserved spatial information. With multi-
scale fusions between branches, HRNet [28] can generate
high resolution feature maps with rich semantic content.

Note that in all the papers mentioned above a heatmap
is generated for each joint, in which the pixel value in-
dicates the joint existence probability at that location.
Zhang et al. [31] regarded heatmap as the de facto stan-
dard coordinate representation in human pose estimation.

2.2 Exploiting Temporal Information in Videos
For videos, a big challenge is how to exploit their tempo-

ral information [17]. Several prior methods [16], [17] tack-
led the video pose estimation task as a two-stage problem,
first detecting the body joints in individual frames, and
then applying temporal smoothing techniques. Later, re-
current networks especially LSTM [15] and GRU [8] were
proposed for pose estimation [3], [20]. Moreover, 3D con-
volution is also useful for temporal information [13], [33].
Girdhar et al. [13] extended Mask-RCNN with 3D convo-
lution for human pose estimation.

As demonstrated in other fields like action recognition
[26], optical flow is a powerful source for temporal infor-
mation because it explicitly contains motion information.
In human pose estimation, optical flow was often used to
temporally warp the heatmaps from another frame to the
current frame [23], [27]. Song et al. [27] computed a dense
optical flow between neighboring frames to propagate joint
location estimates through time, and a flow based warping
layer aligned the heatmaps to the current frame.

Recently, heatmap prediction/warping was realized by
designing a particular subnet [4], [29]. PoseWarper [4] pro-
posed convolutional layers with different dilation rates and
deformable convolutions [9] to warp the heatmap from one
frame to another. Note that the backbone network used in
PoseWarper [4] was HRNet [28]. By using multiple frames,
PoseWarper [4] was shown to be a promising approach to
solve the challenging occlusion problem in human pose es-
timation and won the PoseTrack2017 Challenge 2 “Multi-
frame Person Pose Estimation” [1]. However, the question
of how much accuracy gain we can obtain by using an ad-
ditional frame remains unanswered.

3. Preparations for Analysis
In this section, we briefly introduce the algorithm of our

analysis target, PoseWarper [4], plus the basic informa-
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Fig. 1: The pipeline of PoseWarper [4]: two frames are
used for human pose estimation in videos. With Pose-
Warper, a warped heatmap is generated from each frame
and then a fused heatmap is computed by averaging two
warped heatmaps.

tion on the PoseTrack dataset [17]. Also, we present our
implementation details and experimental results from the
PoseTrack dataset.

3.1 Analysis Target: PoseWarper
Figure 1 shows the pipeline of the cutting-edge tech-

nology, PoseWarper [4], which was selected as our analysis
target due to its high performance. The model was trained
on the training set of PoseTrack2017 with a pretrained
model of HRNet on the COCO dataset. For simplicity,
but without loss of generality, we used two frames during
inference as mentioned in Section 1, which is different from
the original paper.

As shown in Figure 1, given Frame A denoted as I(A)
(3x384x288) and Frame B denoted as I(B), PoseWarper
outputs two warped heatmaps H(A) (17x96x72) and H(B),
which can be computed by

H(A) = f (I(A);W ) (1)
H(B) = f (I(B);W ) (2)

where f is the trained network with parameter of W .
Then, we can fuse them together by simple averaging as

H(A, B) = α ∗H(A) + (1 − α) ∗H(B) (3)

where H(A, B) is the fused heatmap from Frames A and B,
and α is a weight (set as 0.5 in our experiment).

Thus, the joint locations are estimated from the loca-
tions of maximum value on heatmaps.

P = arg maxH (4)

where P is the locations of each of the 17 joints, and H

is a heatmap, which can be the fused heatmap H(A, B) or
any warped heatmap H(A)/H(B).

3.2 PoseTrack Dataset
PoseTrack dataset was released by the Max Planck In-

stitute for Informatics and University of Bonn [17]. The
videos in the dataset are from the MPII Human Pose
dataset [2]. Currently, PoseTrack is one of the largest
video datasets that include annotation for full set of body
joints (17 joints in total) [10], [17], and includes 514 videos

Fig. 2: Heatmaps of “nose” generated from five frames
respectively. From left to right: sample input images
with detected joints, heatmaps of “nose” from Frame t-
2, Frame t-1, Frame t, Frame t+1, and Frame t+2.This
figure shows that the heatmaps are successfully warped
from other frames with rather correct location of “nose”,
which help pose estimation improve the accuracy by using
multiple frames.

comprising 66,374 frames. The annotation is almost con-
sistent with the MSCOCO format (except for the joints in
the head), which is a dataset for human pose estimation
in still images [19].

In commonly used datasets such as PoseTrack, MPII,
and MSCOCO, the mean Average Precision (mAP) is gen-
erally used as a metric for the accuracy of human pose
estimation [10], [17]. Using a defined threshold for the
acceptable distance between estimated and actual joint lo-
cation, each detection within this threshold is treated as a
true-positive. The ratio of such true-positives to all detec-
tions is mAP.

3.3 Implementation Details and Results
The source codes of PoseWarper [4] are available on the

Internet*1 and were used directly in our experiments. Most
hyper-parameters are set as they were in the original paper
during training. Table 1 shows the inference results from
using just one frame in the validation dataset of PoseTrack
2017. Compared to the results of original paper, our re-
sults are a little lower (-0.2 in mAP), which may come from
the randomness in training process. Therefore, we used the
same trained model in our experiments to avoid this ran-
domness problem. Compared to the baseline of HRNet
[28] and the original PoseWarper [4] that used five frames,
even using one frame in PoseWarper provides a high accu-
racy of pose estimation on the validation dataset of Pose-
Track2017. Note that except for the current frame, the
accuracy is a little worse than the baseline, which implies
that the warped heatmaps from other frames are not per-
fect. However, as shown in Figure 2, the warped heatmaps
from other frames have great potential in improving the
accuracy of pose estimation by using multiple frames.

*1 https://github.com/facebookresearch/PoseWarper
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Method Head Shoulder Elbow Wrist Hip Knee Ankle Mean gain1 gain2
Baseline 81.6 87.9 83.0 76.4 81.0 79.4 72.7 80.4 0 -0.6
PoseWarper 81.8 88.5 83.7 77.2 82.1 80.0 73.4 81.0 0.6 0
Frame t 81.6 88.1 83.1 76.5 81.7 79.6 73.0 80.6 0.2 -0.4
Frame t-1 81.2 88.0 82.8 75.9 81.4 79.2 72.5 80.2 -0.2 -0.8
Frame t+1 81.4 87.9 82.8 75.9 81.2 79.2 72.4 80.2 -0.2 -0.8
Frame t-2 80.4 87.2 81.4 74.3 80.5 78.0 71.0 79.1 -1.3 -1.9
Frame t+2 80.6 86.9 81.4 74.2 80.2 78.0 71.0 79.0 -1.4 -2.0

Table 1: Even using one frame in PoseWarper yields high accuracy of pose estimation on the validation dataset of Pose-
Track2017. gain1: the accuracy gain from the baseline of HRNet [28]; gain2: the accuracy gain from original PoseWarper
[4] that uses a total of five frames.

(a) Heatmaps from two frames (Frame A and Frame B) are not
complementary

(b) heatmaps from two frames (Frame A and Frame B) are com-
plementary
Fig. 3: There is no guarantee that two frames will yield
better performance than a single frame. This figure illus-
trates two important cases given five test images: (a) ; (b)
. Green: correct heatmaps; red: incorrect heatmaps. Note
that Frame A or B may be any one in Table 1.

4. Analysis of Experimental Results
In this section, we report our findings by analyzing the

experimental results, which answers two questions listed
in Section 1. Namely, Section 4.1 is a qualitative analysis
to obtain the conditions for performance improvement by
using two frames. Section 4.2 is a quantitative analysis
how much improvement is.

4.1 Key Observations for Qualitative Analysis
As mentioned before, suppose that we use two frames for

human pose estimation in videos. For different test images,
there are correct heatmaps*2 and incorrect heatmaps of a
particular joint as shown in Figure 3. If we want to pro-
duce a better performance (= more correct heatmaps) by
using two frames rather than a single frame, it is necessary
to have correct heatmaps from one frame for some test im-
ages and correct heatmaps from another frame for other
test images, which is defined as the heatmaps from the two
frames are complementary as shown in Figure 3(b). Oth-
erwise, as shown in Figure 3(a), where the heatmaps are
not complementary, it is impossible for the fused results
to be better than Frame A alone. This is because there is
no way to get correct heatmaps for the third and fourth
test images in Figure 3(a). In a word, the first necessary
condition for better performance by using two frames is

*2 Correct heatmap means the joint location estimated from the
heatmap is true-positive.

(a) Worse accuracy than single frame due to improper fusion

(b) Better accuracy than single frame due to proper fusion
Fig. 4: There is no guarantee that two frames will yield
better performance than a single frame. This figure illus-
trates two different fusion strategies. Height denotes the
fusion weight.

that the frames should be complementary
Generally speaking, it is important to fuse the heatmaps

from two frames. Figure 4 shows the concept of the fu-
sion strategy. When a correct heatmap and an incorrect
heatmap are generated from two frames respectively, it
is necessary to give more weight to the correct heatmap
than the incorrect one so that the fused heatmap is cor-
rect as shown in Figure 4(b). Otherwise, the fused results
are even worse than a single frame as shown in Figure
4(a). In a word, the second necessary condition for better
performance by using two frames is that a proper fusion
strategy should be designed. This requires that we know
which heatmap is correct in our fusion strategy.

Fortunately, we have confidence level in heatmaps. The
maximum value in a heatmap is generally used to de-
termine the degree of confidence. Usually, an incorrect
heatmap has a lower maximum value (or confidence level)
than a correct heatmap, which means we can tell which
heatmap is correct in many cases. Therefore, as shown
in Figure 5, a simple average works well, which was also
demonstrated in PoseWarper [4]. Note that because the
confidence level is not perfect, it is still useful in designing
a smarter fusion strategy.

Finally, we conducted a comprehensive experiment by
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Fig. 5: We observe that even a very simple fusion strat-
egy like averaging still works in human pose estimation
thanks to the confidence effect. Color thickness denotes
the confidence.

combining two frames to demonstrate the findings out-
lined above. As shown in Table 2, we obtained worse per-
formance (80.5) by using Frame t from HRNet and Pose-
Warper than by just using PoseWarper (80.6), which infers
no complementary information is available from two algo-
rithms if we use the same frame. However, we do see a gain
in accuracy if the two frames come from different frames,
which are complementary.

4.2 Regression for Quantitative Analysis
For regression analysis, it is necessary to define the

proper variables. Because we want to know the magni-
tude of the accuracy gain, it seems natural to use mAP as
the output variable. However, there are two mAPs avail-
able from two frames. Therefore, we used the average of
the mAPs from the two frames (denoted as mAP in Equa-
tion 5) and defined the difference from the accuracy of the
fused heatmap as the output variable y.

mAP =
mAP(H(A)) + mAP(H(B))

2
(5)

y = mAP(H(A, B)) − mAP (6)

where mAP(H) denotes the accuracy from heatmap H.
Note that the output variable y, which is called accuracy
gain, is actually a relative value instead of an absolute
value. This means the absolute performance depends not
only y but also mAP.

For the input variable, it seems intuitive to include an
index to show the degree to which the two frames are com-
plementary. In this work, we used the time difference as
the index.

x = ||A − B|| (7)

where A and B denote the frame indexes of the two frames.
We calculated x and y using the experimental data from

Tables 1 and 2 with Equations 5, 6, and 7, whose results
are shown in Table 3. As shown in Figure 6, we conducted
a linear regression between x and y, with the result:

y = 0.3008x + 0.183 (8)

4.3 Discussion
Limitations: The linear function in Equation 8 shows

that if two frames are far away from each other, the ac-
curacy gain is large. However, this cannot be extended
indefinitely. We can imagine that if the time difference

Method Head Shoul. Elbow Wrist Hip Knee Ankle Mean
B & t 81.6 88.0 83.0 76.4 81.5 79.5 72.9 80.5
t-2 & t-1 81.2 88.1 82.9 76.0 81.6 79.4 72.5 80.3
t-2 & t 81.6 88.3 83.3 76.5 82.0 79.8 73.0 80.7
t-2 & t+1 81.6 88.3 83.3 76.8 81.9 79.9 72.9 80.7
t-2 & t+2 81.4 88.1 83.0 76.3 81.6 79.5 72.4 80.4
t-1 & t 81.7 88.4 83.4 76.6 81.9 79.8 73.2 80.8
t-1 & t+1 81.8 88.4 83.5 77.0 82.0 79.9 73.3 80.9
t-1 & t+2 81.7 88.3 83.3 76.7 81.9 79.7 73.0 80.7
t & t+1 81.8 88.3 83.4 76.8 81.9 79.8 73.1 80.8
t & t+2 81.6 88.1 83.2 76.6 81.9 79.7 72.9 80.6
t+1&t+2 81.4 87.9 82.9 76.1 81.4 79.2 72.4 80.3

Table 2: Accuracy by using two frames in PoseWarper
on the validation dataset of PoseTrack2017. The red row
shows worse accuracy than a single frame.

Method x mAP mAP(H(A, B)) y

Baseline & Frame t 0 80.471 80.5 0.029
Frame t-2 & Frame t-1 1 79.65 80.3 0.65
Frame t-2 & Frame t 2 79.85 80.7 0.85
Frame t-2 & Frame t+1 3 79.65 80.7 1.05
Frame t-2 & Frame t+2 4 79.05 80.4 1.35
Frame t-1 & Frame t 1 80.4 80.8 0.4
Frame t-1 & Frame t+1 2 80.2 80.9 0.7
Frame t-1 & Frame t+2 3 79.6 80.7 1.1
Frame t & Frame t+1 1 80.4 80.8 0.4
Frame t & Frame t+2 2 79.8 80.6 0.8
Frame t+1 & Frame t+2 1 79.6 80.3 0.7

Table 3: The input and output variables for linear regres-
sion, calculated from Tables 1 and 2.

Fig. 6: The accuracy gain depends on the time difference
of two frames, which forms a linear function.
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between two frames is too large, the accuracy gain will be
saturated because the information in a faraway frame is
not related to the current frame, resulting in difficulty in
warping heatmaps. Actually, our experiment is limited to
the short-term (less than five frames).

5. Conclusions
As far as we know, this paper presents for the first time

a quantitative analysis of multiple-frame effect for human
pose estimation in videos. Interestingly, we observe that
there is no guarantee that two frames will yield better
performance than a single frame. Furthermore, we specify
here two necessary conditions for performance improve-
ment (1+1>1): the frames should be complementary, and
a proper fusion strategy should be designed. In addition,
by analyzing the experimental results of PoseWarper [4]
in PoseTrack2017 [17], we demonstrate that a linear re-
gression works well to model the relationship between the
accuracy gain and time difference of two frames.
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