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Abstract: Autonomous mobile devices, such as robots and unmanned aerial vehicles, as alternatives to humans, are
expected to be applied to searching for and manipulating a variety of emergent events of which the location and number
of occurrences are unknown. When an autonomous mobile device searches for an event, it needs to sense a physical
signal emitted by an event, such as radio waves, smell or temperature. After a device finds an event, it must manipu-
late the event. We previously proposed Mobile Sensing Cluster (MSC), which applies swarm intelligence to multiple
autonomous mobile devices to quickly search for and manipulate multiple events using dynamically formed multiple
swarms of mobile devices. However, in an environment that the physical signal emitted by an event and sensed by a
device includes some random noises, the behavior of swarms in MSC becomes unstable. As a result, MSC requires a
long time to search and manipulate. In this paper, we propose a dynamic swarm spatial scaling MSC for improving the
tolerance of MSC against such random noises, and show its effectiveness.
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1. Introduction

In the near future, as alternatives to humans, autonomous mo-
bile devices, such as robots and unmanned aerial vehicles, are ex-
pected to be applied to searching for and manipulating a variety
of emergent events of which the location and number of occur-
rences are unknown [1], [2]. When an autonomous mobile device
searches for such an event, it needs to sense a physical signal
emitted by an event, such as radio waves, smell or temperature.
In this paper, we focus on radio waves as the physical signal. Af-
ter a device finds an event, it must manipulate the event. The
event is defined as generalizing diverse phenomena, such as an
outbreak of damage on buildings and infrastructures, an outbreak
of survivors to rescue in a disaster, etc. The manipulation is, for
example, repairing the damage to buildings and rescuing the sur-
vivors. Because of the nature of an event, the device is required to
search for and manipulate a greater large number of events in less
time, however, it is difficult for a single device to realize the re-
quirement because of its restrictions such as sensing performance,
manipulating performance, battery power, mobile speed, etc.

We previously proposed Mobile Sensing Cluster (MSC) [3] to
address the above issues. In MSC, multiple devices share infor-
mation through wireless communication between them and create
a swarm to search for an event and manipulate the event by apply-
ing particle swarm optimization (PSO) [4] to the devices. MSC
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also extends PSO to form dynamic multiple swarming.
In MSC, the strength of a physical signal emitted by an event

and sensed by a device is assumed to monotonically increase
according to how near it approaches an event. However, in a
real environment, the physical signal sensed by a device includes
some random noises caused by an obstacle or interference and
its strength does not always monotonically increase as a device
approaches an event. In such environments, the swarms in MSC
spend a long time to searching for and manipulating multiple un-
known events because they are moving in the incorrect direction
to an event because of random noises they are sensing.

In this paper, we propose a dynamic swarm spatial scaling
for MSC in such noisy environments in which the strength of a
physical signal includes random noises. The proposed method
increases the spatial scale of the swarm in the search phase to im-
prove the tolerance of MSC against random noises, decreases the
spatial scale as the swarm approaches the event, then decreases
the time of searching for and manipulating an event that emits a
physical signal with random noises.

The rest of this paper is organized as follows. Section 2
presents related works, Section 3 explains MSC, Section 4 de-
scribes the proposed method, and Section 5 shows evaluation with
simulation. Finally, Section 6 draws conclusions.

2. Related Works

2.1 Swarm Robotics
Swarm robotics [5], [6], [7] is a new approach for coordinating

multi-robot systems consisting of large numbers of mostly sim-
ple physical robots. This approach is inspired by nature and is
a combination of swarm intelligence and robotics. The individu-
als in the swarm are normally simple, small, and inexpensive. A
key component of this approach is the communication between
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the individuals in a swarm, which is normally local, allowing a
multi-robot system to be scalable and robust.

2.2 Reynolds Flocking Model
The Reynolds flocking model [8], which simply simulates the

swarming behavior of flocks of birds, was introduced in 1987.
Each agent moves based on the following three rules [9], [10]:
• alignment: agents adjust their velocity to that of their neigh-

bor agents;
• cohesion: agents are attracted to the average position of their

neighboring agents; and
• collision avoidance: agents are repulsed from their neighbor-

ing agents.
The Reynolds flocking model has no function to search for an

event because its algorithm maintains a swarm’s form, which is
organized by multiple agents. It also takes into account the for-
mation for a single swarm.

2.3 Particle Swarm Optimization
Particle Swarm Optimization (PSO) [11], [12], inspired by the

swarm behavior of flocks of birds and schools of fish, is a math-
ematical search model based on multiple particles. Each particle
has a location and velocity, and its location is evaluated using a
fitness function [13], [14], [15]. The velocity of each particle is
derived from its personal and global bests. The former is the best
previous location of the particle, and the latter is the best previous
location of all particles.

2.4 Consensus Problem
Multiple agent systems, which cooperatively control arbitrary

systems by multiple agents, are expected to be used in the field
of sensor networks or to control autonomous robots. In such sys-
tems, the velocity of robots and the sensing data values converge
to an arbitrary value called a consensus problem [16], [17]. Only
obtaining a consensus among multiple agents, the systems ad-
dress the formation of a single swarm [18].

3. Mobile Sensing Cluster

Most works in section 2 focus on the formation of single
swarm, but do not investigate the division of a swarm to form
multiple swarms. Therefore, they cannot search for and manip-
ulate multiple unknown events in parrallel by forming multiple
swarms.

In this section, we explain the original MSC [3] that can search
for and manipulate multiple unknown events in parallel by form-
ing multiple swarms, and that can search for and manipulate more
events in a shorter time. The original MSC is composed of two
mechanisms as follows.
• A search and manipulation mechanism based on PSO of un-

known events using wireless communication to enable inter-
action between mobile devices

• A dynamic multiple-swarming mechanism that extends PSO
to create the behavior of multiple swarms.

The search and manipulation mechanism is based on PSO
using wireless communication to create the intelligent swarm’s
behavior that emerges from the collective behavior of a large

number of autonomous mobile devices. The dynamic multiple-
swarming mechanism divides a swarm into multiple swarms to
search for and manipulate multiple events in parallel.

3.1 Precondition with MSC
An autonomous mobile device can estimate its position, and

share information by wireless communication among multiple
mobile devices. An event emits its physical signal which contain
its identification.

If the device detects the strength of a physical signal above
a threshold, it determines that it reaches an event and starts to
manipulate the event. Each device can manipulate an event inde-
pendently and in parallel.

3.2 Search and Manipulation Mechanism
3.2.1 Location Updating Rule

To search for and manipulate unknown events in the real world,
this mechanism is operated in each mobile device to derive a lo-
cation to move toward based on the following updating rule:

vi(t + 1) = wvi(t) + pi(t)(xPbest
i (t) − xi(t))

+ li(t)(xLbest(t) − xi(t)) + �S i

(1)

xi(t + 1) = xi(t) + vi(t + 1), (2)

where t is time, vi(t) is the velocity of device i at time t, w is the
weight of the inertia vector vi(t) at time t + 1, pi(t) is the weight
of the personal best, li(t) is the weight of the local best, xPbest

i is
the personal best location, xLbest

i (t) is the best location of neighbor
devices, and �S i is the collision-avoidance vector of device i.

3.2.2 Personal Best and Local Best Locations
The personal best location is where each mobile device senses

the physical signal strength from events, based on the personal
best evaluation value, that shows the distance from an event:
• If the personal best evaluation value improves, a device ran-

domly updates the velocity vector around the current moving
direction.

• Otherwise, a device randomly updates the velocity vector
around the opposite direction to the current moving direc-
tion:

xPbest
i (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|vi(t − 1)|(cos(α + β), sin(α + β)) + xi(t)

if EPbest
i (t − 1) > EPbest

i (t)

−|vi(t − 1)|(cos(α + β), sin(α + β)) + xi(t)

otherwise.

(3)

Here EPbest
i (t) is the personal best evaluation value of device i at

time t, α is an angle of vi(t − 1) with x axis, β is a random angle
in [−θ, θ] and θ is a parameter defining the random number space
for β.

The local best location is a site where a neighbor device is near-
est to the events in the wireless communication range. The indi-
rect distance to the nearest event from the neighbor devices uses
the local best evaluation value.
3.2.3 Evaluation Value

The above updating rule uses the following three evaluation
values:
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• The personal best evaluation value shows the distance from
the nearest event in the discovery and sensing neighboring
events. This value is derived as follows:

EPbest
i (t) = min

K∈discoveryi(t)
{EK

i (t)}, (4)

where discoveryi(t) is a set of discovered events by device
i at t and Ek

i (t) is an evaluation value showing the distance
from event K based on sensing the physical-signal strength
of K in device i at t.

• The local best evaluation value shows the minimum distance
to an event in the neighbor devices and derived by being
based on the self-evaluation value, which shows the distance
to an event in each device:

ELbest
i (t) = min

j∈neighbori(t)
{E j(t)}, (5)

where ELbest
i (t) is the local best evaluation value of device i

at t, neighbori(t) is a set of devices whose neighbor devices
of device i are found at t, and E j(t) is a self-evaluation value
of device j at t.

• A self-evaluation value shows the distance to an event. If the
personal best evaluation value is less than the personal best
evaluation values of the neighbors in the wireless commu-
nication range, the self-evaluation value is the personal best
evaluation value; otherwise, it is the sum of the local best
evaluation value and the distance to the local best location
and is derived as follows:

Ei(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

EPbest
i (t)

if EPbest
i (t) < min

j∈neighbori(t)
{EPbest

j (t)}
ELbest

i +CLbest
i (t)

otherwise.

(6)

Here Ei(t) is the self-evaluation value of device i at t and
CLbest

i (t) is the distance to the local best location of device i

at t.
3.2.4 Selecting Leader

MSC chooses a device that has a minimum personal best value
for an event as the leader of a swarm. The leader only moves
based on the personal best value, and devices other than the leader
(called followers) just move based on the local best value; that is,
the leader selfishly moves to an event and the followers obey the
leader to search for an event. To produce the above behavior in
the swarm, the weights of the personal and local best values are
derived as

pi(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if EPbest

i (t) < min
j∈neighbori(t)

{EPbest
j (t)}

0 otherwise.
(7)

li(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if EPbest

i (t) < min
j∈neighbori(t)

{EPbest
j (t)}

1 otherwise.
(8)

3.2.5 Collision-avoidance Control
MSC extends the collision avoidance in the Reynolds flocking

model. All devices have collision-avoidance vectors that repulse
other devices. A collision-avoidance vector is derived from the

distance between it and other devices. The vector, which becomes
a strong repulsion vector as a device moves closer to its neighbor,
is derived as

�S i = ci
3

∑

j∈n

−−−−→
Vji(t)

|Vji(t)|(di j(t))k
, (9)

where ci
3 is the avoidance weight of device i,

−−−−→
Vji(t) is the veloc-

ity vector to device i from device j, n is the neighbor devices of
device i, di j is the distance between devices i and j, and k is the
avoidance degree.
3.2.6 Search and Manipulation Phases

MSC repeatedly turns between the search and manipulation
phases. In the former, as described above, devices search for
events by communicating with other neighbor devices based on
Eqs. (1) and (2). If the device senses the strength of the physical
signal above a threshold, it determines that it has reached an event
and enters the manipulation phase.

To stay within a range where the physical signal is strong above
a threshold, the device decelerates and adjusts the distance among
its neighbors to evenly disperse them. The velocity vector in Eq.
(1) and collision-avoidance weight in Eq. (9) are derived as

ci
3 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
cS earch

3 if Ei > T

cS earch
3 /n otherwise.

(10)

vi(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

vi(t)
|vi(t)|M

upper if |vi(t)| > Mupper

vi(t) otherwise,
(11)

where cS earch
3 is the separation weight in the search phase, n is an

integer n, T is a threshold entering the manipulation phase, and
Mupper is the upper limit of velocity per second.

In the manipulation phase, if a device becomes unable to sense
the physical signal from an event within certain a period, it de-
termines that the manipulating of an event is completed. Then to
search for other events, it discards the current evaluation values
and returns to the search phase.
3.2.7 Wireless Communication among Multiple Mobile De-

vices
MSC uses wireless communication for sharing information

among devices, which advertise the following information and
share it among neighboring devices:
• self-location;
• personal best evaluation value;
• self-evaluation value.
The devices that received the above information use it to up-

date their locations and best evaluation values and the leader’s
selection.

3.3 Dynamic Multiple-swarming Mechanism
MSC dynamically forms multiple swarms to search for and

manipulate multiple events in parallel. To manifest the above be-
havior, it introduces an event-crowd degree for deriving the per-
sonal best value and a neighbor-crowd degree for deriving the
local best value, divides a swarm into multiple swarms, and con-
trols the number of devices that form a sub-swarm within each
swarm.
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Fig. 1 Area of neighbor-crowd degree.

3.3.1 Multiple Leaders for Dividing a Swarm into Multiple
Swarms

As described above, only one device is selected as a leader
in a swarm. The dynamic multiple-swarming mechanism selects
multiple leaders to search for and manipulate multiple events. To
divide a swarm into multiple swarms based on multiple events,
the weights of the personal and local best values are revised:

pi(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if EPbest(K)

i (t) < min j∈neighbori(t){EPbest(K)
j (t)}

0 otherwise.

(12)

li(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if EPbest(K)

i (t) < min
j∈neighbori(t)

{EPbest(K)
j (t)}

1 otherwise.
(13)

Here, EPbest(K)
i (t) is a personal best evaluation value of device i

for K at t.
The event-crowd degree is also introduced to derive a personal

best value to control the number of devices in a swarm. The
event-crowd degree for K accords with the number of neighbor-
ing devices in a swarm that is approaching K. By applying the
event-crowd degree to the personal best value, since another new
leader can be selected to search for other events in a swarm, a
swarm is divided into multiple swarms. The event-crowd degree
and personal best evaluation value that apply that degree are de-
rived as

Dk
i (t) = {x|x ∈ neighbori(t), P

k(x, t)} (14)

EPbest(K)
i (t) = min

k∈discoveryi(t)
{EPbest(k)

i (t) + c4|DK
i (t)|}, (15)

where PK(x, t) is a set of devices approaching K at t, DK
i (t) is

a set of the event-crowd degrees for K of device i, and c4 is a
coefficient of the event-crowd degree.
3.3.2 Impartial Swarm Size among Multiple Swarms

To optimize the search and manipulation mechanism based on
multi-swarms, the swarm size, which is the number of devices
that form a swarm, must be impartial among multiple swarms, To
make the number of followers uniform among multiple swarms,
we applied the neighbor-crowd degree to derive the local best
evaluation value. The neighbor-crowd degree accords with the
number of devices between a device and its neighboring devices,
as shown in Fig. 1. If the neighbor -crowd degree for a neighbor
is large, that is, the swarm among the neighbors is crowded, it
follows another device with a lower neighbor-crowd degree. To

enable the above behavior, we derive the local best evaluation
value with the neighbor-crowd degree:

N j
i (t) = {x|x ∈ neighbori(t), x ∈ neighbor j(t)} (16)

ELbest
i (t) = min

j∈neighbori(t)
{E j(t) + c4|N j

i (t)|}, (17)

where N j
i (t) is a neighbor-crowd degree of device i for neighbor

device j at t.

4. Proposal Method

In this section, we discuss the proposed dynamic swarm spa-
tial scaling for MSC in a noisy environment so that the device
senses a physical signal emitted by an event which includes ran-
dom noises.

4.1 Swarm Behavior in a Noisy Environment
In an environment where a physical signal does not include

random noises, the strength of the physical signal emitted by
events monotonically increases when approaching the event. The
increase in the strength of the physical signal sensed by the de-
vice corresponds to a decrease in the distance between the device
and the event. In MSC, the device nearest the event (Fig. 2 (a)) is
selected as a leader, which the other devices follow.

In a noisy environment, where the physical signal sensed by a
device includes random noises, two incorrect behaviors emerge
in an MSC swarm. One is that the leader moves in an incorrect
direction to an event: when the personal best evaluation value in
a leader increases, that is, when a leader moves away from an
event, it turns in the opposite direction to where the personal best
evaluation value increases. But as shown in Fig. 2 (b), the leader
moves in an incorrect direction because the strength of the physi-
cal signal from events oscillates by random noise, and an increase
in the personal best evaluation value does not always correspond
to moving away from an event. Consequently, a leader may move
in an incorrect direction, and MSC requires more time to search
for events. The incorrect behavior is called Pbest noise.

The other is the leader-selection noise shown in Fig. 2 (c). In a
noisy environment, the strength of the physical signal from events
oscillates by random noise, and the decrease in the personal best
evaluation value does not always correspond to the approach to an
event. Therefore, a device with the smallest personal best evalua-
tion value is not always nearest the event (device j on Fig. 2 (c)).
An incorrect device may be selected as a leader in the swarm.
Consequently, the swarm spends more time searching for and ma-
nipulating events.

The Pbest noise is incorrect behavior in an individual leader,
who retains the nearest device to an event without any occurrence
in the leader-selection noise. On the other hand, in the leader se-
lection noise, a device that is not nearest to an event behaves as a
leader, the followers approach the incorrect leader, therefore, all
the devices, that is, the swarm moves in an incorrect direction.
Therefore, the leader-selection noise more strongly impacts the
searching manipulation performance than the Pbest noise.

4.2 Dynamic Swarm Spatial Scaling Mechanism
The dynamic swarm spatial scaling MSC avoids the leader-
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Fig. 2 Value, Direction, and Environment for internal consistency.

Fig. 3 Direction in evaluation value by dynamic swarm-scale control.

selection noise in a noisy environment by using a dynamic swarm
spatial scaling mechanism. If the distance is small between the
devices in a swarm, that is, the swarm’s scale is spatially small,
the devices in a swarm are located near each other, and their eval-
uation values that are near the event are also close to each other.
Therefore, the relation between their evaluation values on spa-
tially small-scale swarms is easily disordered by random noise
in the physical signal, and leader-selection noise occurs easily
(Fig. 3 (a)). In other words, a spatially small-scale swarm sensi-
tively reacts to random noise in the physical signal. On the other
hand, if the distance between devices in a swarm is large, that
is, if the swarm scale is spatially large, the devices in it are lo-
cated far from each other, and their evaluation values are clearly
different. Therefore, the relation between their evaluation value
on a spatially large-scale swarm is difficult to disrupt by random
noise in the physical signal, and leader-selection noise rarely oc-
curs (Fig. 3 (b)). In other words, a spatially large-scale swarm can
absorb the random noise in its physical signal.

As mentioned above, a dynamic swarm-scaling mechanism
spatially inflates the swarm to eliminate leader-selection noise.
However, if the swarm scale remains large, the number of devices
reaching an event decreases, and the number of devices manipu-
lating an event decreases. On the other hand, the random noises
in the physical signal will probably decrease when approaching
an event because obstacles and interferences between a device

Fig. 4 Transition of c3 with dynamic swarm-scale mechanism.

and an event decrease when approaching an event. Therefore, a
dynamic swarm-scaling mechanism spatially shrinks the swarm
as it approaches events and aims to obtain a sufficient number
of devices in the manipulation phase. At a point far from the
event, the mechanism inflates the swarm’s scale to absorb ran-
dom noises and shrinks its scale for more devices to manipulate
when approaching an event. For the above behavior to emerge in
a swarm, the mechanism utilizes the avoidance weight in Eq. (9),
which represents the repulsive force among the devices:

ci
3(t) =

ycLc

yc + (Lc − yc)e−rcEi(t)
, (18)

where yc is a lower limit of the avoidance weight, Lc is its upper
limit, and rc is its slope.

In Fig. 4, the x-axis shows the distance to an event, and the y-
axis shows the c3 in Eq. (18). Lc is the upper limit of c3, and yc

is the lower limit respectively. rc represents the slope of c3 calcu-
lated by Eq. (18). Based on Fig. 4, c3 inflates the scale of a swarm
at a point far from an event and shrinks it when approaching an
event by controlling the avoidance weight based on a device’s
evaluation value.

5. Evaluation

This Section shows the effectiveness of dynamic swarm spatial
scaling MSC with simulation.

5.1 Simulation Specifications
The simulation parameters are listed in Table 1. The devices

and events are defined as follows:
• A device is equipped with an IEEE802.11b interface and pe-

riodically advertises its information (Section 3.2.7).
• An event is equipped with an IEEE802.11b interface and pe-

riodically advertises a beacon including event identities as a
MAC address.

Each device receives information from neighboring devices and
beacons from events, which it can identify based on the received
beacons. Each device also derives the following three evaluation
values:
• Personal best evaluation value (EPbest

i )
Based on Eqs. (14), (15), a personal best evaluation value is
defined as

EPbest(K)
i (t) = min

k∈discoveryi(t)
{|RS S Ik

i (t)| + c4|DK
i (t)|}, (19)
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Table 1 Simulation parameters.

Parameters Values

Simulator ns3

Simulation time (sec) 5000

Number of trials for each simulation scenario 10

Number of devices 10∼30

Number of events 1,10∼30

Initial location of devices (m×m) (30, 30)

Initial location of events (m×m) (100, 100)

Update cycle of velocity vector (sec) 0.1

Inertia weight w 0.5

Avoidance degree k 2

Coefficient of event crowd degree −10

θ of β in Eq. (3) 30

Mupper in search phase (m/sec) 1

Mupper in manipulation phase (m/sec) 0.3

Manipulation capacity of event 300

Wireless communication IEEE802.11b

Transmission power (dBm) 17.0206

Fading model Rician fading

K-factor (dB) 1

Transition threshold to manipulation phase (dBm) −50.6262

Distance to collision Dc (m) 1

yc in Eq. (18) 5

Lc in Eq. (18) 1000

rc in Eq. (18) 0.1 and 0.3

where RS S Ik
i (t) is the Receive Signal Strength Indicator

(RSSI) of a beacon that device i receives from K at t and
discoveryi(t) is a set of events from which device i receives
beacons at t. If a device cannot receive a beacon from any
event, let the personal best evaluation value be a positive in-
finity.

• Local best evaluation value (ELbest
i )

Based on Eqs. (16), (17), a local best evaluation value is de-
fined as

ELbest
i (t) = min

j∈neighbor
{E j(t) + c4|N j

i (t)|}. (20)

• Self-evaluation value (Ei)
Based on Eq. (6), a self-evaluation value is defined as

Ei(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

EPbest(K)
i (t)

if EPbest(K)
i (t) < min

j∈neighbori(t)
{EPbest(K)

j (t)}
ELbest

i + |RS S ILbest
i (t)|

otherwise,

(21)

where RS S ILbest
i (t) is the RSSI of the information that de-

vice i received from a device treated as a local best device at
t.

If the distance between two devices becomes lower than thresh-
old (Dc), it is judged that the two devices will collide. The devices
stop to advertise their information and create a moving vector.

An event has manipulation capacity, which is a measure of the
time taken from reaching an event to the completion of manipu-
lating an event. The device in the manipulating phase decreases 1

Table 2 Comparison methods.

c3 in search phase c3 in manipulate phase

Previous Method 1 25 5

Previous Method 2 1000 5

Proposed Method 1 c3 is controlled dynamically based on rc 0.3

Proposed Method 2 c3 is controlled dynamically based on rc 0.1

manipulation capacity per sec. When the manipulation capacity
of an event becomes 0, the event disappears from the simulation
field.

In this simulation, it is assumed that the physical signal from
an event is radio waves. We applied a radio-propagation model to
the rice-fading model [19], and the RSSI included random noises.

5.2 Comparison Methods
In this simulation, we compared the four methods listed in Ta-

ble 2. Previous methods 1 and 2 are mechanisms based on MSC.
The c3 of the previous method 1 is 25, and the c3 of the previ-
ous method 2 is 1000. Therefore, the previous method 1 searches
for an event by a constantly small-scale swarm, and the previ-
ous method 2 searches for an event by a constantly large-scale
swarm. Our proposed methods 1 and 2 are mechanisms with a
dynamic swarm spatial scaling mechanism. The rc in Eq. (18) of
proposed method 1 is 0.3, and that of proposed method 2 is 0.1.
That is, proposed method 1 shrinks the swarm scale more rapidly
than proposed method 2 when approaching an event. The four
methods were evaluated by turnaround time, which is the time to
finish searching for and manipulating all events. If the devices
cannot complete searching for and manipulating at all events, let
the turnaround time be the simulation time.

5.3 Evaluation based on Simulation Results
5.3.1 Turnaround Time

The dependence of turnaround time on the number of devices
is shown in Fig. 5. The turnaround time of proposed method 1
was lower than that of previous methods 1 and 2 regardless of the
number of devices and events. Comparing the proposed method
1 and 2 on turnaround time, they were almost equivalent on the
number of events 1, but that of proposed method 1 was lower than
that of proposed method 2 in the other cases. Proposed methods
1 and 2 maintain a large swarm scale when they locate far from
an event, but proposed method 1 more rapidly shrinks the swarm
scale than proposed method 2 when approaching an event. There-
fore, to absorb random noises, maintaining a large swarm scale
until approaching an event is effective. However, when approach-
ing an event, shrinking the swarm scale is effective because of the
significant decrease in the random noises from an event.
5.3.2 Dependence of Turnaround Time on the Manipulation

Capacity of an Event
The dependence of the turnaround times on the manipulation

capacity of an event when the manipulation capacity is varied
from 100 to 500 is shown in Fig. 6. Proposed methods 1, 2 and
previous method 1 were almost equivalent. Previous method 2
was significantly inferior to the others. Proposed methods 1 and
2 shrank the swarm scale near an event, and previous method 1
kept it small; therefore, a large number of devices could manip-
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Fig. 5 Dependence of turnaround time on number of devices.

Fig. 6 Dependence of turnaround time on manipulation capacity of an event.

Fig. 7 Dependence of turnaround time on searching time.

ulate an event, which reduced the time. Previous method 2 kept
the swarm scale large, and the number of devices near an event
was small; the number of manipulating devices to the event was
also small. Therefore, previous method 2 required more time to
manipulate an event.
5.3.3 Dependence of Turnaround Time on Searching Time

Figure 7 shows the turnaround time of each method when the
manipulation capacity was 1, therefore, it shows the comparison
with search time, which is turnaround time without manipulating
time, in each method. Proposed method 1 outperformed the oth-
ers regardless of the number of devices and events. The swarm-
scaling mechanism (Section 5.3.1) absorbed random noises.

Table 3 lists the ratios of the leader-selection noise and the
pbest noise of a leader. As mentioned above, the leader-selection
noise is incorrect behavior when the device, which is not the near-
est to an event, is selected as a leader. The pbest noise is incorrect
behavior when the leader moves away from an event due to the
pbest with random noise.

Table 3 shows that the pbest noise of a leader for each method
ranged from 28 to 37%, and the maximum difference among the
methods was about 10%. The leader-selection noise for each

Table 3 Swarm noise.

Leader-Selection noise Pbest noise of Leader

Previous Method 1 74.03% 37.69%

Previous Method 2 48.86% 34.52%

Proposed Method 1 51.38% 28.77%

Proposed Method 2 57.42% 34.65%

method ranged from 48 to 74%, and the difference between pre-
vious method 1, which kept the swarm scale small, and the other
three methods, which kept the swarm scale large at a point far
from an event, was about 25%. The leader was correctly selected
by inflating the swarm scale at a point far from an event. By
inflating the swarm scale, the difference in the evaluation value
between devices increased and became so large that it was not
affected by the random noise. As a result, the disorder in the rela-
tions between the personal best evaluation values derived by each
device decreased, and the leader was correctly selected.

5.4 Dependence of Turnaround Time on K-factor
Figure 8 shows the dependence of turnaround time on K-factor

when the manipulation capacity of an event is 1, therefore, shows
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Fig. 8 Dependence of turnaround time on K-factor.

the dependence of search time on K-factor. K-factor indicates
the ratio of indirect wave power to direct wave power. A high K-
factor means that RSSI is mainly composed of direct wave power,
and RSSI includes less random noises, on the other hand, a low
K-factor means that RSSI is mainly composed of indirect wave
power, and that RSSI includes many random noises. Therefore,
Fig. 8 shows the tolerance to random noise in a physical signal in
the search function of each method.

As shown in Fig. 8, proposal method 1 and previous method 1
have the trend that they decrease the turnaround time according
to the K-factor increase, and then the turnaround time in proposal
method 2 is lowest and constant regardless of the K-factor. In
addition, in most of the K-factors, the proposal methods outper-
form the previous methods. The difference in the times between
the proposal methods 1, 2 and the previous method 1 increase as
K-factor decreases. The reason is that previous method 1 is more
affected by random noise than the proposal methods because it in-
creases the number of the leader-selection noises by small swarm
scale.

Comparing with the turnaround time of proposed methods
1 and 2, that of proposed method 2 is constant regardless of
the K-factor, and much lower than that of proposed method 1.
Therefore, the following behaviors in swarm emerged by the
swarm spatial scaling mechanism is effective to absorb any ran-
dom noises in physical signal from an event and to decrease the
turnaround time.
• When the random noise is large in a location far from an

event, that is, when the physical signal from an event is in-
accurate, the form of swarm becomes sparse and loose by
inflating swarm scale and swarm moves to an event while
spreading in multiple directions.

• When the random noise decreases on approaching an event,
that is, when the physical signal from an event becomes
accurate, the swarm tightly moves directly to an event by
shrinking swarm scale.

Based on the above simulation results, our proposed mehcan-
ism, which dynamically controls a spatial scale in a swarm, re-
duces the turnaround time even in a noisy environment.

6. Conclusion

We proposed a dynamic swarm spatial scaling mechanism for
a swarm composed of multiple autonomous mobile devices in
noisy environments containing a physical signal including ran-

dom noises. The proposed mechanism increases the scale of a
swarm in the search phase to improve tolerance against random
noises and decreases the scale as the swarm approaches an event.
Simulation showed that the proposed mechanism decreases the
time required to search for and manipulate an event in a noisy
environment with random noises.

In this paper, we assume that there are no obstacles or barriers
in the simulation area, but there are many obstacles or barriers in
a real environment. Therefore, we will investigate the application
of MSC for space with obstacles as future work.
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