
Electronic Preprint for Journal of Information Processing Vol.29

Regular Paper

Packrat Parsers Can Support Multiple Left-recursive
Calls at the Same Position

Masaki Umeda1,a) AtusiMaeda2

Received: June 29, 2020, Accepted: September 22, 2020

Abstract: One of the common problems with the recursive descent parsing method is that when parsing with a left-
recursive grammar, the parsing does not terminate because the same parsing function is recursively invoked indefi-
nitely without consuming the input string. Packrat parsing, which is a variant of recursive descent parsing method that
handles grammars described in parsing expression grammars (PEGs) by backtracking, is also affected by the above
problem. Although naive backtracking parsers may exhibit an exponential execution time, packrat parsers achieve
a linear time complexity (for grammars that are not left-recursive) by memoizing the result of each call to the pars-
ing functions. Some methods have been proposed to solve the problem of left recursion in packrat parsers. In these
methods, memoization tables in packrat parsers are modified to limit the depth of the recursive calls. By calling the
same parsing function repeatedly while increasing the limit, the parsed range in the input string is expanded gradually.
These methods have problems in that multiple occurences of left-recursive calls at the same input position cannot be
handled correctly, and some of the grammars that does not include left recursion cannot be handled. In this research,
we propose and implement a new packrat parser to address these problems. This packrat parser can handle multiple
occurences of left-recursive calls at the same position in the input by giving priority to the most recently used rule
when gradually increasing the parsed range of the recursion. In the evaluation of the proposed method, in addition to
the grammars including left recursion manageable by the methods proposed in existing studies, we confirmed that our
approach supports the grammars that cannot be handled by those existing methods.

Keywords: PEG, packrat parser, left recursion, memoization

1. Introduction

1.1 Background
1.1.1 Parsing Expression Grammars

Parsing expression grammars (PEGs) [2] are formal grammars
which, along with context free grammars (CFGs) and regular ex-
pressions, consists of a set of rules that describe the procedure
for parsing strings in a top-down manner. PEGs adopt ordered
choices, and thus there is no ambiguity from choices, whereas
CFGs have no priority in the analysis of choices, and therefore
there can be an ambiguity that a sentence have multiple analysis
results for the same sentence. In addition, PEGs can describe a
range of grammar classes that cannot be represented by CFGs,
because of their unlimited lookahead [2].

A PEG rule is written using parsing expression e and non-
terminals N as follows.

<N>← e

And the set of parsing expressions is defined recursively by ap-
plying the following rules to ε (the empty string) and the elements
of the set of terminals T and nonterminals NT .

1 Graduate School of Science and Technology Degree Programs in Sys-
tems and Information Engineering Master’s Program in Computer Sci-
ence, University of Tsukuba, Tsukuba, Ibaraki 305–8573, Japan

2 Department of Information Engineering, Faculty of Engineering, Infor-
mation and Systems, University of Tsukuba, Tsukuba, Ibaraki 305–8573,
Japan

a) umeda@ialab.cs.tsukuba.ac.jp

• The empty string ε is a parsing expression.
• A terminal t (t ∈ T ) is a parsing expression.
• The constant ·, which stands for any terminal symbol, is a

parsing expression.
• A nonterminal N (N ∈ NT ) is a parsing expression.
• A concatenation e1e2 of two parsing expressions e1, e2 is a

parsing expression.
• An ordered choice e1/e2 of two parsing expressions e1, e2 is

a parsing expression.
• A zero-or-more repetitions e∗ of a parsing expression e is a

parsing expression.
• A one-or-more repetitions e+ of a parsing expression e is a

parsing expression.
• An affirmative lookahead &e of a parsing expression e is a

parsing expression.
• A negative lookahead &e of a parsing expression e is a pars-

ing expression.
• An optional match e? of a parsing experssion e is a parsing

expression.
In this paper, we write a string of terminals as ‘str’, and a

nonterminal in a grammar definition as <NT>.
The following is an example of a grammar described in a PEG,

which represents a non-context-free language.

<S> ← &(<A>!‘b’)‘a’ + <B>! ·
<A> ← ‘a’<A>?‘b’
<B> ← ‘b’<B>?‘c’

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

This grammar matches {anbncn | n ≥ 1}, a length-n sequence
of ‘a’ followed by sequences of ‘b’ and ‘c’ of the same length,
in that order. That is, it matches for ‘aaabbbccc’ but not for
‘abbcc’.

In the above rules, zero-or-more repetitions, one-or-more repe-
titions, affirmative lookahead, and optional match parsing expres-
sions are syntactic sugars, each of which can be rewritten with a
nonterminal symbol N and is defined as follows.
e∗: zero-or-more repetitions of e

N ← eN/ε

e+: one-or-more repetitions of e

N ← eN/e

&e: affirmative lookahead of e

N ←!!e

e?: optional match of e

N ← e/ε

1.1.2 Packrat Parsing
The parsing directed by a PEG can be performed using a recur-

sive descent parsing with backtracking. However, backtracking
may cause the same input and rule combination to be analyzed
multiple times, leading to an exponential time-complexity, which
is unacceptable in practice. To solve this problem, a technique
called memoization is used [1].

In memoization, the arguments and results of function calls are
recorded. If the arguments of a subsequent call are in the table,
the stored value can be returned. In the case of recursive descent
parsing, each rule and parsing position in the input are consid-
ered as arguments. When the same rules and parsing positions
are used for parsing, the recorded parsing results are reused.

Packrat parsing achieves a linear time complexity (for ‘well-
formed’ grammars [2], which excludes left recursion) through
memoization, even though it allows backtracking [1]. A parser
implementation using pacrkat parsing is called a packrat parser.
1.1.3 Left Recursion in PEG

Consider the following PEG.

<Expr>← <Expr>‘+’<Term>/<Expr>‘-’<Term>/<Term>
Here, if Termmatches an unsigned integer such as ‘123’ or ‘0’,
what is parsed by Expr is either an integer arithmetic expres-
sion consists of addition and subtraction such as ‘12+361’ or
‘1000-700+73’, or a single integer such as ‘373’. In this ex-
ample, the first and second alternatives of the Expr are prefixed
by the Expr itself. The structure in which the nonterminal on the
left side of the rule appears to the leftmost of any of the alterna-
tives for each of the ordered choices on the right side is called
(direct) left recursion.

Recursive descent parsers parse an input string by calling the
function corresponding to each nonterminal symbol recursively.
Therefore, when a naive recursive descent parser encounters a
rule that involves left recursion, the parsing generally does not
terminate because it repeats recursive calls infinitely without con-
suming the input characters.

In this paper, we call a function call corresponding to a non-
terminal symbol (e.g., Expr in the example above) causing left
recursion a left-recursive call.

In general, it is possible to convert a left-recursive grammar to
a non-left-recursive grammar that accepts the same input string,
although the shape of the resulting syntax tree changes. As an ex-
ample, the input string ‘1-2-3’ will be parsed as ‘(1-2)-3’
prior to conversion, whereas after conversion it is parsed as
‘1-(2-3)’. This means that the conversiion changes the calcu-
lation result when the parsed result is interpreted as an arithmetic
expression.
1.1.4 Handling of Left Recursion in Previous Studies

In Warth et al. [6] and Goto et al. [3], the authors modified the
memoization table of the packrat parser to limit the number of
functions called at a time and prevent an infinite recursion. Then,
by repeating the parsing process over same rules, they have suc-
ceeded in parsing the grammars including left recursion. How-
ever, Warth et al.’s method [6] has a problem in that it is not pos-
sible to analyze multiple left-recursive calls that occur at the same
position in the input string. For example, if we give an input string
‘baab’ to the grammar

<S> ← <A>‘b’/‘b’
<A> ← <A>‘a’/<S>‘a’

(where the start symbol is S), a left-recursive invocation of the
invocation path <S> → <A> → <A> and another left- recursive
invocation of the path <S> → <A> → <S> will occur at the first
input character position 0, and the Warth et al.’s method [6] will
terminate abonormally. Goto et al.’s method [3], which addressed
the problem of Warth et al.’s method, also has their own problems.
Given a grammar

<S> ← <A>‘-’<A>
<A> ← <B>‘b’/‘b’
<B> ← <B>‘a’/<A>‘a’

(where the start symbol is S), which causes multiple left-recursive
calls at the same location plus multiple left-recursive calls at mul-
tiple input character positions, their method does not behave as
the authors claimed (e.g., parsing of the string ‘baab-baab’
fails). In addition, Goto et al.’s method [3] cannot handle the fol-
lowing grammars, which was handled by Warth et al.’s method.
In particular, Goto et al’s method:
• fails to parse input ‘1+1’ with the grammar

<Exp>← ‘1’‘+’<Exp>/‘1’,
which does not include any left-recursive calls,

• fails to parse non-repetitive input ‘b’ with the grammar

<S> ← <A>‘b’/‘b’
<A> ← <A>‘a’/<S>‘a’,

• and fails to parse input ‘aaa’ with the grammar

<S>← <S>‘a’/‘a’,
which includes only direct left recursion.

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

1.2 Purpose of this Research
As mentioned in Section 1.1.3, it is possible to eliminate left

recursion in a grammar described in a PEG by transforming the
grammar into a different version with a different form of a syntax
tree. However, in general, a change in the shape of the syntax tree
may change the meaning of the parsed results, which is undesir-
able. In this study, we propose a novel algorithm that can han-
dle PEGs that cannot be handled in previous methods, as well as
those that have successfully been handled in previous approaches,
increasing the usability and applicability of packrat parsing.

1.3 Structure of the Paper
In Section 2, we present the basic implementation of our pack-

rat parser using a pseudo code. In Section 3, we extend the pack-
rat parser to allow it to handle grammar rules with left recursion,
according to the algorithm proposed in a previous study, and de-
scribe its problems. In the following Section 4, we describe our
method to solve these problems. Section 5 presents an evaluation
of the proposed method, and finally, Section 6 provides some con-
cluding remarks as well as future issues and prospects.

2. The Basic Packrat Parser

In this section, we describe the general structure and behavior
of the packrat parser used throuout this paper. The parser de-
scribed in this paper is assumed to be a recognizer that takes a
PEG and a string as input and judges whether the whole input
string matches the grammar without generating a syntax tree.

2.1 Structure of the Packrat Parser
Our basic version of packrat parser is defined using the mutu-

ally recursive functions eval (Fig. 1) and applyRule (Fig. 2).
The results of the parse are expressed in Ast type, which has

two values, Match, and MisMatch.
In addition, the following global variables are defined.
POS: This indicates the current parsing position of the input

string, initialized to zero.
MEMO: This is a table indexed by the positions and nontermi-

nals defined in the grammar, and stores a pair of ans, which
is a value of type Ast and is the parsed result, and pos next,
which is of a Position type and indicates the start position of
the next parse. All parse results are initialized to Null.

2.1.1 The eval Function
The eval function takes a parsing expression as an argument.

It decomposes the given parsing expression and tries to parse the
input string. If each decomposed element is a string of terminals,
it is checked against the input characters, and if it is a nontermi-
nal, the applyRule function is applied to the symbol.

The pseudo code for the eval function is shown in Fig. 1. The
parsing expression given is assumed to be desugared and replaced
by an alternative representation.

In our implementation, ordered choices and concatenations are
processed from left to right, in depth-first order.
2.1.2 The applyRule Function

The applyRule function takes a nonterminal symbol and a
position as arguments. It parses the input string using the pars-
ing expression which is associated with the given nonterminal

Fig. 1 The eval function.

Fig. 2 applyRule.

symbol. It also maintains the memo table MEMO and reuses the
previously recorded result, if the result for the arguments can be
found in the table.

The pseudo code for the applyRule function is shown in
Fig. 2. We introduce an auxilary function getRuleDef, which
takes a nonterminal N as an argument and returns the parsing ex-
pression associated with N.

2.2 How the Packrat Parser Works
The parsing of the input string is initiated by calling the

applyRule function on the start symbol, which is a nontermi-
nal in a given PEG. The parsing terminates when the initial call
to the applyRule function returns, and the parse is successful if
the return value is Match and the POS at the end of the analysis is

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

the same as the length of the input string.
This packrat parser cannot handle left recursion. When a gram-

mar with left recursion is given, the parser terminates abnormally
due to a stack overflow of the function call, caused by infinite
recursive calls.

3. Goto et al.’s Packrat Parser

In this section, we describe the packrat parser proposed in Goto
et al. [3] that can parse constructs containing left recursion.

Let us reconsider the example grammar involving left recursion
in Section 1.

<Expr>← <Expr>‘+’<Term>/<Expr>‘-’<Term>/<Term>
In general, we can substitute a nonterminal symbol in any pars-

ing expression for the parsing expression of the right-hand side
of the symbol. Repeating this substitution may result in left-
recursive rules (similar to the one above) we previously defined.
We call such derived case indirect left recursion. By contrast,
as with Expr in the example above, a single rule involving left-
recursive calls is called direct left recursion. Left-recursive rules
are widely used in various types of grammars, for example, when
defining left-associative operators. In this paper, following the
terminology of previous studies [3], [6], we call the first rule of a
cyclic path in call graph that is created by left-recursive call the
“head rule” and the other rules in the cycle “involved rules.” In
the case of direct left recursion there are no involved rules, but
only a head rule for each cycle.

3.1 Resolving Left Recursion with Seeds
Consider the following grammar.

<A>← <A>‘+n’/‘n’
The strings that can be parsed by this grammar will be ‘n’,

‘n+n’, and so on; however, given the grammar, the packrat parser
in Section 2 recurs infinitely and the parsing never terminates.
Thus, we rewrite this grammar to the following with a limit on
the number of left-recursive calls.

<A0> ← MisMatch

<An> ← <An−1>‘+n’/‘n’ (n ≥ 1)

Suppose we parse ‘n+n+n’ using this grammar. The range to
be parsed and the results are shown in Table 1. First, we use A0

to match with A1. Since A0 always fails, the first alternative of A1

fails and the next alternative ‘n’matches the first ‘n’ in the input
string. Therefore, A1 as a whole matches ‘n’. We then use A1 to
match with A2. Since A1 matches ‘n’ in the first alternative, we
consider whether the next ‘+n’ matches. In addition, since the
rest of the input string is ‘+n+n’, the entire A2 matches ‘n+n’,
leaving ‘+n’. Similarly, let us try to match A3 using A2. Since

Table 1 Matching A with bounded left recursion.

input n + n + n result
A0 × MisMatch
A1 ‘n’ Match
A2 A1 ‘+n’ Match
A3 A2 ‘+n’ Match
A4 ‘n’ Match

A2 matches ‘n+n’, the next ‘+n’ matches the remaining ‘+n’ of
the input string, and the entire input string ‘n+n+n’ matches A3

and the parse terminates successfully.
Now, we consider how to proceed further. That is, matching

A4 using A3. Since A3 matches ‘n+n+n’, which is the entire in-
put string, the next ‘+n’ match fails because no further input to
be matched remains. Since the first alternative fails, the parser
backtracks to the beginning of the input string, and tries the next
alternative. Since the second alternative is ‘n’, it matches the first
‘n’ of the input string, leaving ‘+n+n’ as unprocessed. There-
fore, A4 as a whole matches ‘n’.

Thus, if we consider the match of An using An−1 as a single
parsing step, the shortest string is matched in the first step and the
matched range increases with each subsequent step. When the
match is already reached to the longest possible range, the result
of the next parsing step returns to the first shortest value. We call
the result of the first match, A1, a “seed.” Based on this observa-
tion, the authors of Refs. [6] and [3] each proposed a version of
packrat parsers that can handle left recursion, although with some
limitations. Warth et al.’s method [6] does not take into account
the case in which multiple call cycles (and thus multiple head
rules) occur at the same location, and it terminates abnormally
when analyzing such left-recursive grammars. In the following,
we describe Goto et al.’s method [3], which takes into account the
case in which there are multiple head rules.

3.2 Goto et al.’s Method
The packrat parser proposed by Goto et al. [3] uses the same

eval function applied in the basic packrat parser but modifies the
applyRule function. In addition, the updateMemo and glowLR
functions are used.

In addithion, the following variables are newly defined.
MAXPOS: This is a variable of Position type, which records

the maximum value of the parse position. As the parsing
progresses, if the POS is updated to a value larger than the
current MAXPOS, MAXPOS is updated.

CALL: This is a call stack recording rules already applied by
the applyRule function.

GROWSTATE: This is a boolean variable that indicates
whether the analysis is in the iteration mode (i.e. during a
call to the glowLR function).

In addition to Match and MisMatch, Goto et al. [3] include Fail
as a value of Ast type, which is treated like MisMatch by the
eval and other functions. This corresponds to A0 in Section 3.1.
3.2.1 Detection of Left-Recursive Calls

When the basic packrat parser tries to math nonterminals using
the applyRule function, if the previous result is not found in the
MEMO table, then the eval function is called, and the result is
recorded in the MEMO table.

if(MEMO(N, p) == Null){
exp = getRuleDef(N)

ans = eval(exp)

MEMO(N, p) = {ans, POS}

}

We change the code to pre-write a special value Fail in the
MEMO table before calling the eval function.

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

if(MEMO(N, p) == Null)
MEMO(N, p) = {Fail, POS}
exp = getRuleDef(N)

ans = eval(exp)

MEMO(N, p).ans = ans

MEMO(N, p).pos_next = POS

This allows us to detect the occurrence of a left-recursive call
at the second call of the applyRule function.
3.2.2 The Updated applyRule Function

As the main change, the rule defined by the nonterminal N is ap-
plied by calling the updateMemo function. The new applyRule
function also takes a nonterminal N and a Position as arguments
and returns Ast. The modified applyRule function is shown in
Fig. 3 *1.
3.2.3 The updateMemo Function

The updateMemo function applies a bookkeeping task for
MEMO tables, which was achieved using the applyRule func-
tion in the basic version. When matching nonterminals without
left recursion, the content of MEMO(N, p) is returned, whereas
when left recursion occurs, the content of MEMO(N, p) is used
to parse the input again. In addition, the matched result is re-
turned after updating MEMO. The pseude code of the update-
Memo function is shown in Fig. 4.

By keeping the nonterminal symbol that started the parse
pushed onto the CALL stack, we can detect the parse with the
same rule and prevent a single parse from becoming too deep.
When parsing a construct with left recursion, the result returned
by the eval function called at line 7 is used as a seed. As shown
in Section 3.1, it is possible to parse an input with a left-recursive

Fig. 3 applyRule used in Goto et al.’s method.

Fig. 4 updateMemo in Goto et al.’s method.

*1 The pseudo-code in Ref. [3] is inconsistent with the explanation, and we
rewrite the code according to the explanation in the paper because other-
wise the parse will terminate abnormally.

grammar by repeatedly applying head rule, starting from a seed.
In Goto et al.’s method [3], however, any left-recursive call in a
grammar is processed by repeatedly calling the start symbol in-
stead of the head rule. This iterative parsing process is performed
regardless of whether the start symbol is (directly or indirectly)
left-recursive. The glowLR function shown in Section 3.2.4 is re-
sponsible for one step of the iteration, and the process proceeds
by repeatedly calling this function.
3.2.4 The growLR Function

The glowLR function takes a nonterminal symbol and a posi-
tion and returns Ast. The function repeats the iteration based on
a seed obtained by the call to the eval in the updateMemo func-
tion. The pseudo code for glowLR is shown in Fig. 5.

3.3 Example of Successful Analysis
As an example of a PEG with left recursion that can be parsed

using the Goto et al.’s method [3], we show a grammar for arith-
metic expressions that contain multiple additions.

<Expr> ← <Expr>‘+’<Num>/<Num>
<Num> ← <Num><DIGIT>/<DIGIT>

<DIGIT> ← ‘0’/‘1’/‘2’/‘3’/‘4’/‘5’/‘6’/‘7’/‘8’/‘9’
The input string to be analyzed is ‘12+3’. Because the start sym-
bol is Expr, parsing starts with a call to applyRule(Expr, 0).
Immediately after the parsing process starts, nothing is recorded
in MEMO, and thus the updateMemo function is called, and the
entire parsing process proceeds mainly within this function. An
example of imaginary syntax trees and MEMO table states during
the execution of the method are shown in Figs. 6 and 7. Here, the
nodes representing the portion of the tree currently being matched
are shown in dashed lines.

First, the parser attempts to parse the first alternative of Expr,
<Expr>‘+’<Num>, as shown in Fig. 6 (a). Then, because the
MEMO table contains Fail, the parsing fails and the parser tries
the next alternative. The second alternative is <Num>; because
nothing is recorded in the MEMO table, we start matching with
Num and try to match with its first alternative, <Num><DIGIT>. At
this time, as shown in Fig. 6 (b), this alternative fails because Fail
is recorded in the MEMO table, and we move on to the next alter-
native. Here, the analysis with the nonterminal DIGIT succeeds

Fig. 5 glowLR in Goto et al.’s method.

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

Fig. 6 Successful parse example using Goto et al.’s method #1.

and matches to ‘1’, and the first result of the nonterminal Expr
becomes Match, the result of which is recorded in the MEMO
table, as shown in Fig. 6 (c). This result becomes the seed, which
we write as Expr1. Next, the match process moves on to the rep-
etition in the glowLR function.

In the parsing using the glowLR function, <Expr>‘+’
<Num>/<Num> is parsed again with Expr1 being recorded in the
MEMO table. Rewriting the PEG with the explicit recursion
count, we obtain <Expr2> ← <Expr1>‘+’<Num>/<Num2>. As
shown in Fig. 6 (d), we start matching the first alternative; how-
ever, it fails because the second character in the input string is
‘2’ and does not match ‘+’. The parser tries the next alternative
and starts matching with Num. The result is as shown in Fig. 7 (e),
and the first ‘12’ of the input string is recognized by the parser
as the result of the parsing of the entire expression Expr2.

The second parsing with the glowLR function attempts to
match Expr3 using Expr2 recorded in the MEMO table. As
shown in the figure, the parsing of the first alternative proceeds
to match between the nonterminal Num and ‘3’ in the input
string. Because the MEMO table contains Fail, the first alter-
native fails and the parser tries the next alternative DIGIT. As
shown in Fig. 7 (g), DIGIT and ‘3’ match, and the entire Expr

and ‘12+3’ match.
Now, before the third parsing by the glowLR function begins,

the POS matches the length of the input string. Therefore, the
complete result is returned as Match and the parsing is finished.

3.4 Example of Analysis Failure
Goto et al.’s method [3] can continue to parse multiple left-

recursive calls at the same position without errors. However, be-
cause the repetition is limited to the start symbol, their method
cannot parse correctly when left recursion on another nontermi-
nal symbol should be repeated.

We show an example of parsing the input string ‘12+34’ using
the same grammar as in the successful example. Figure 8 shows
the tree representing the parsing process and the MEMO table.
We skip up to the parsing of ‘12+3’ because it is the same as the
case of a success, and start with the parsing by Expr4.

Figure 8 (a) shows the third parsing of Expr using the glowLR
function. Because the first alternative Expr3 matches the input
string ‘12+3’ and the following ‘+’ does not match the input
string ‘4’, we move to parsing by the second alternative, as
shown in Fig. 8 (b). Because the parsing expression of the sec-
ond alternative is Num, we parse the input by Num3 using Num2 in

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

Fig. 7 Successful parse example using Goto et al.’s method #2.

the MEMO table. The first alteranative DIGIT of Num3 does not
match ‘+’ of the input string, so the parsing by Num3 fails. Fi-
nally, we try to parse the second alternative, DIGIT, which is the
state in Fig. 8 (c). Because only a ‘1’ of the input string is parsed
by DIGIT, this is the result of Expr; because MAXPOS is not
updated any further, the execution is terminated and only ‘1’ is
the final parsed result of Expr, leaving the rest of the input string,
‘2+34’, unparsed.

In addition, Goto et al.’s method [3] has the following prob-
lems, as described in Section 1.1.4:
• It fails to analyze the input that does not require repetition.
• It fails to handle direct left recursion.

4. Proposed Method

In this section, we propose a parser that can handle multiple
left-recursive calls occurring at the same position in the input
string and can handle multiple left-recursive calls occurring at a
different position *2.

Whereas Goto et al.’s method repeats on the start symbol,
the proposed method repeats on the most recently detected left-
recursive head rule.

4.1 The sturcture of Proposed Packrat Parser
In addition to the functions eval, applyRule, and glowLR,

*2 Demonstration Java code is available at https://github.com/ialab/
LeftRecursion.

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

Fig. 8 Failure parse example using Goto et al.’s method.

two new functions, applyRuleGrow and evalGrow, are added to
our parser. The Ast type is extended as in Goto et al. [3] and takes
three values of Match, MisMatch and Fail. In addition to ans and
pos next, MEMO also records grow, which is a bool-type field
that tells the caller that a left-recursive call has occurred.
4.1.1 The applyRule Function

The applyRule function in the proposed method is shown in
Fig. 9. As the main difference from the basic applyRule func-
tion, this version records Fail in the MEMO table before calling
the eval function and writes a value in the MEMO table to indi-
cate that a left-recursive call has occurred if Fail has already been
recorded in the MEMO table.
4.1.2 The glowLR Function

The glowLR function in the proposed method is shown in

Fig. 10. Unlike Goto et al.’s version, the nonterminal symbol to
which the glowLR function is applied is not limited to the start
symbol, and thus repetition decision is based on the results of
each parsing session, not on the maximum value of POS during
the analysis.
4.1.3 The applyRuleGrow Function

The applyRuleGrow function is shown in Fig. 11. If, when
matching an input string with a non-terminated symbol, the
MEMO table has already recorded the parsing result of the non-
terminated symbol, the behavior of the function changes de-
pending on whether a left-recursive call occurs. If left-recursive
calls do not occur up to this point, the record of the analy-
sis results of the MEMO table can be returned as is, and the
applyRule function takes care of this behavior. Otherwise, the

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

Fig. 9 applyRule in the proposed method.

Fig. 10 glowLR in the proposed method.

Fig. 11 applyRuleGrow in the proposed method.

results stored in the MEMO table are used to perform the pars-
ing again. This re-parsing should only be performed when the
evalGrow function is repeatedly called in the glowLR function,
and the applyRuleGrow function takes care of this process.

The applyRuleGrow function takes a set of nonterminal sym-
bols, limits, as an additional argument. This set contains non-
terminals that have already appeared in the parsing, which pre-
vents the recursive calls from becoming too deep during the pars-
ing.
4.1.4 The evalGrow Function

The evalGrow function is shown in Fig. 12. The basic behav-
ior of this function is the same as that of the eval function. It
takes as an argument a set of nonterminal symbols, limits, and
calls the applyRuleGrow function if a match is made with a non-
terminal symbol at the parsing position where it is called.

Fig. 12 evalGrow in the proposed method.

4.2 Examples of Analysis Using the Proposed Method
We will reuse the grammar used in the example in Section 3.3

as an example. Let the input string be parsed as ‘12+34’. The
syntax tree and MEMO table composed during the parsing are
shown in Figs. 13 and 14. The value of grow in the MEMO table
is represented as T for True and F for False.

Parsing begins with the nonterminal symbol Expr. Before
starting the matching process of the expression <Expr>‘+’
<Num>/<Num>, which is the right-hand side of Expr, Fail is
recorded in the MEMO table. When processing the first alterna-
tive Expr ‘+’ Num shown in Fig. 13 (a), because Fail is recorded
in the MEMO table, the fact that a left-recursive call occurred
is detected and recorded in the MEMO table. Also, the result
of (conceptually numbered) nonterminal Expr0, MisMatch, is
stored in the MEMO table, and returned. Because the result
makes parsing with the expression <Expr>‘+’<Num> fail, parser
tries the next alternative, Num. Figure 13 (b) shows an attempt
to match the input with the first alternative <Num><DIGIT> of
the nonterminal symbol Num. The MEMO table contains Fail for
Num. The parser therefore records that a left-recursive call has
occurred and the match fails. Because the first alternative failed,
the parser tries to match the next alternative, DIGIT. Because the
nonterminal DIGIT matches ‘1’ in the input string, the result of

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

Fig. 13 Example parse using proposed method #1.

Num1 is determined. The state of the parser at this time is shown
in Fig. 13 (c).

Since the result of Num1 has now been determined and the value
of (Num, 0).grow in the MEMO table is set to True, the parser
starts repeating on the head rule named by Num. Figure 13 (d)
shows the state of the parser at the point of attempting to match
the first alternative of the nonterminal Num, <Num><DIGIT>. Now
Num2 turns out to match ‘12’, because the result of Num1 is
recorded as Match. The parser then attempts to match Num3,
and the first alternative <Num2><DIGIT> does not match the first
part of the input string, ‘12+’, whereas the second alternative
<DIGIT> matches ‘1’, using the contents of the MEMO table
at (DIGIT, 0). However, the value of POS is reduced compared
to the result of Num2, and thus the parser ends the iteration with
the head rule Num, and leaves the result of matching Num2 in the
MEMO table instead of the result of Num3, and sets (Num, 0).grow
to False.

Because it is determined that Num matches the ‘12’ in the in-
put string, the result of parsing Expr1 is determined. Because

(Expr, 0).grow in the MEMO table is True, the parser starts a
left recursion iteration with the head rule Expr. Figure 13 (e)
shows the state of parsing at the time of the match with the first
alternative of Expr, <Expr>‘+’<Num>. Because Expr1 matches
‘12’ as does the next ‘+’ also matches, the parser starts match-
ing Num with the rest of the input string ‘34’. It records Fail in
the MEMO table and tries to match ‘34’ with the first alternative
of Num, <Num><DIGIT>. At this time, because Fail is recorded in
the MEMO table, the MEMO table is updated to indicate that a
left-recursive call has occurred. The second alternative <DIGIT>
of Num matches ‘3’ in the input string and updates the MEMO
table. The state at this time is shown in Fig. 14 (f).

Because the result of Num1 is determined and (Num, 3).grow
in the MEMO table is True, the parsing of the left recursion with
Expr as the head rule is suspended, and the iteration with the head
rule Num is started. Figure 14 (g) shows the state of the match with
the first alternative <Num><DIGIT> of Num2. Since the MEMO
table contains a record showing that Num1 matched the input sub-
string ‘3’, Num2 matches ‘34’. The parser stores this result in the

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

Fig. 14 Example parse using proposed method #2.

MEMO table and then tries to match the rest of the input string
with Num3. Matching the first alternative <Num><DIGIT> will fail
because there are no more characters left in the input string to
read. The match with the next alternative <DIGIT> matches ‘3’
based on the contents of the MEMO table; however, because the
value of POS is less than the result of Num2, the iteration with Num
as the head rule is terminated, and the pending iteration of left
recursion with Expr as the head rule is resumed.

The state of resumed parsing of the left recursion with Expr
as the head rule is shown in Fig. 14 (h). Matching by the first

alternative <Expr>‘+’<Num> will fail because Expr2 will match
the entire input string ‘12+34’ and there will be no match for
the next ‘+’. The next alternative <Num> matches ‘12’ from the
contents of the MEMO table. At this time, because POS is less
than the value in the case of Expr2, the parser ends the iteration
with Expr as the head rule, leaving the parsing results of Expr2 in
the MEMO table instead of adopting the parsing results of Expr3.

This causes the entire input string ‘12+34’ to be parsed by the
nonterminal Expr, and the parsing succeeds.

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

Fig. 15 Java primary expression grammar.

5. Evaluation

In this section, we evaluate the proposed method by compar-
ing the method with Warth et al.’s method [6] and Goto et al.’s
method [3]. Specifically, we evaluate our method in the follow-
ing aspects.
• Is it possible to analyze a grammar that can be analyzed us-

ing Warth et al.’s method?
• Is it possible to analyze a grammar that can be analyzed us-

ing Goto et al.’s method?
• Is it possible to analyze a grammar that has not been ana-

lyzed using Goto et al.’s method?
• How does the number of function calls differ with these

methods?

5.1 Java Primary Expressions
Using the simplified Java primary expression grammar used

in the evaluation of Warth et al. [6], we show that the proposed
method supports grammar classes that can be handled by existing
methods.

The grammar to be used is shown in Fig. 15. Note that the start
symbol is the first rule of the grammar, Primary.

Using this grammar, we parse the following input.
• ‘this’
• ‘this.x’
• ‘this.x.y’

Table 2 Parsing result of Java primary expressions.

Warth Goto Proposed

‘this’ Match MisMatch *3 Match
‘this.x’ Match Match Match
‘this.x.y’ Match Match Match
‘this.x.m()’ MisMatch MisMatch MisMatch
‘x[i][j].y’ Match Match Match

• ‘this.x.m()’
• ‘x[i][j].y’

The results are shown in Table 2.
Note that the result for ‘this.x.m()’ is MisMatch for all

methods, because the input string does not match the Java primary
expression syntax. In addition, the result of the input ‘this’ in
Goto et al.’s method is MisMatch. This is because their method
fails to parse some class of inputs that do not require repetition.

5.2 Multiple Left-recursive Calls Occurring at the Same Po-
sition

The following was presented by Goto et al. [3] as an example
of a grammar that cannot be handled correctly using Warth et al’s
method because multiple left-recursive calls occur at the same
position.

<S> ← <A>‘b’/‘b’
<A> ← <A>‘a’/<S>‘a’

*3 Although Goto et al. [3] claimed to have successfully analyzed these in-
put strings, we were unable to reproduce their results.

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

The result of the analysis using this grammar is shown in Ta-
ble 3. When the parse terminates abnormally, it is represented as
Error.

5.3 Left-recursive Calls that Occur at Multiple Positions
The following grammar causes left-recursive calls at multiple

positions in addition to left-recursive calls at the same position.

<S> ← <A>‘-’<A>
<A> ← <B>‘b’/‘b’
<B> ← <B>‘a’/<A>‘a’
The results are shown in Table 4. In this section, we empiri-

cally showed that the proposed method can handle some grammar
classes that were not handled correctly by the existing methods.
In addition, based on the testing thus far, the proposed method
can successfully handle all grammar classes that can be handled
by previous methods.

5.4 Number of Function Calls
Consider the following grammar.

<S> ← <A>k<L>

<A> ← ε
<L> ← <L>‘l’/ε

where <A>k denotes a sequence of k copies of a nonterminal A.

Table 3 Parse with a grammar that includes multiple occurences of left re-
cursion at the same position.

Warth Goto Proposed

‘b’ Error MisMatch *3 Match
‘bab’ Error Match Match
‘baab’ Error Match Match
‘baabab’ Error Match Match
‘baabaab’ Error Match Match

Table 4 Parse with a grammar that includes multiple occurences of left re-
cursion at multiple positions.

Warth Goto Proposed
‘b-b’ Error MisMatch Match
‘bab-b’ Error Match Match
‘b-bab’ Error Match Match
‘bab-bab’ Error MisMatch Match
‘babab-babab’ Error MisMatch Match

Table 5 Function call count with k = 1.

0 10 20 30 40 50 60 70 80 90 100
Warth 5 14 24 34 44 54 64 74 84 94 104
Goto 6 33 63 93 123 153 183 213 243 273 303

Proposal 5 14 24 34 44 54 64 74 84 94 104

Table 6 Function call count with k = 10.

0 10 20 30 40 50 60 70 80 90 100
Warth 14 23 33 43 53 63 73 83 93 103 113
Goto 24 132 252 372 492 612 732 852 972 1,092 1,212

Proposal 14 23 33 43 53 63 73 83 93 103 113

Table 7 Function call count with k = 100.

0 10 20 30 40 50 60 70 80 90 100
Warth 104 113 123 133 143 153 163 173 183 193 203
Goto 204 1,122 2,142 3,162 4,182 5,202 6,222 7,242 8,262 9,282 10,302

Proposal 104 113 123 133 143 153 163 173 183 193 203

The input string that can be parsed by this grammar is a string
with an arbitrary number of ls. The total number of calls to eval
and evalGrow functions when k and n are increased during the
parse using this grammar and input, respectively, is measured.
Calls to eval and/or evalGrow from applyRule and glowLR
functions are counted. Recursive calls from within eval and
evalGrow themselves are not counted.

We measured the results when n was increased from zero to
100 by 10 for k = 1, 10, and 100, respectively. The results are
shown in Tables 5, 6, and 7, and Figs. 16, 17, and 18.

The horizontal axis of the graph is the length of the input string
and the vertical axis is the number of calls.

These results confirm that the proposed method is efficient and
competitive with existing methods.

6. Conclusion

6.1 Summary
Because the basic packrat parser parse the input strings by re-

cursively calling functions corresponding to the grammar rules,
parsing using the parser with a left-recursive grammar does not
terminate. Warth et al. [6] and Goto et al. [3] have proposed so-
lutions to this problem. However, Warth et al.’s method [6] does
not take into account the case in which multiple left-recursive
calls occur at the same point of input, and thus the parsing ter-
minates abnormally. Goto et al.’s method [3] fails when multiple

Fig. 16 Count of eval and evalGrow with different length of input (k = 1).

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

Fig. 17 Count of eval and evalGrow with different length of input (k = 10).

Fig. 18 Count of eval and evalGrow with different length of input (k =
100).

left-recursive calls occur at multiple points, although it can han-
dle multiple left-recursive calls at the same position.

In this study, we proposed a method to parse the most recently
detected left-recursion first and showed that the method extends
the range of grammars. In the evaluation experiments, we con-
firmed that our method can handle all grammars that previous
methods have been able to handle, and can handle some gram-
mars that existing methods have failed to parse. Moreover, the
measurement results of the number of calls to the eval function
during an analysis indicate that the analysis time is likely to be
shorter than that of Goto et al.’s method.

6.2 Future Tasks and Prospects
Although we have demonstrated that the proposed method can

handle more general forms of left recursion, it is yet unknown
whether this method can handle all forms of left-recursive PEGs.
Our future aim will be to formalize the method and provide proofs
of the method to determine the range of grammars that can be
handled.

In Warth et al.’s method [6], Tratt [5] pointed out that the right
recursion takes precedence when parsing with grammars that con-
tain both a left and right recursion, as in the case of the following.

<Expr>← <Expr>‘+’<Expr>/<Num>.
We regard this as a problem related to the ambiguity of a PEG

that has arisen since left recursion first became available for pars-

ing. The ability of a PEG to handle left recursion may lead to
the loss of the PEG’s determinism. With regard to this, we need
to define a new semantics of PEGs that can handle left recursion
while maintaining the determinism.

Medeiros et al. [4] proposed a parsing algorithm for PEGs that
allows for left recursion. Their algorithm uses the memoiza-
tion table only to maintain a growing parse tree in left recursion,
which result in an exponential worst-case computation time re-
gardless of whether a grammar is left-recursive. By contrast, our
algorithm applies a memoized analysis for non-left-recusive rules
as in a usual packrat parser. For left-recursive rules, we expect an
almost-linear compexity to be exhibited, although this estimate
needs to be proven.

References

[1] Ford, B.: Packrat parsing: Simple, powerful, lazy, linear time, func-
tional pearl, ACM SIGPLAN Notices, Vol.37, No.9, pp.36–47 (2002).

[2] Ford, B.: Parsing expression grammars: A recognition-based syntactic
foundation, Proc. 31st ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pp.111–122 (2004).

[3] Goto, Y., Shirata, Y., Kiyama, M. and Ashihara, H.: Implementation of
packrat parser with update detection to parse left recursive grammars
(in Japanese), IPSJ Trans. Programming (PRO), Vol.4, No.3, pp.84–93
(2011).

[4] Medeiros, S., Mascarenhas, F. and Ierusalimschy, R.: Left recursion
in parsing expression grammars, Science of Computer Programming,
Vol.96, pp.177–190 (2014).

[5] Tratt, L.: Direct left-recursive parsing expression grammars, School of
Engineering and Information Sciences, Middlesex University (2010).

[6] Warth, A., Douglass, J.R. and Millstein, T.: Packrat parsers can sup-
port left recursion, Proc. 2008 ACM SIGPLAN Symposium on Partial
Evaluation and Semantics-based Program Manipulation, pp.103–110
(2008).

Masaki Umeda graduated from the Col-
lege of Information Science, University
of Tsukuba in 2020. He is currently a
student in the Master’s program in com-
puter science, Graduate School of Sys-
tems and Information Engineering, Uni-
versity of Tsukuba. His research interest
is parsing of programming languages.

Atusi Maeda received his Ph.D. in en-
gineering from Keio University. He be-
came a research associate at the Univer-
sity of Electro-Communications in 1997.
He is currently an associate professor in
the Faculty of Engineering, Information
and Systems, University of Tsukuba. His
research interests include the implemen-

tation of programming languages, runtime systems, and dynamic
resource management. He is a member of ACM and JSSST.

c© 2021 Information Processing Society of Japan


