

 1

Logic synthesis by looking for good input to gate

Zongjin Zhou1 Masahiro Fujita1

Abstract: In this paper, we mainly discuss two logic optimization methods. The first one is from logic debugging method called
signal selection. This method searches for inputs to a gate instead of searching the new function for some internal node to complete
the debugging and optimization tasks. The other one is Set of Pairs of Functions to be Distinguished (SPFD). Base on the flexibility
of circuit, we can use this method to optimize the circuit without changing logic function. In our research, we have found that these
two methods are mathematically equivalent, but the ways to compute are different, and depending on how to utilize them, more
appropriate method can be used in logic optimization. Then we have implemented them and conducted experiments for the
comparison between the two method and also experiments in order to evaluate the powerfulness of the two methods

Keywords: Logic synthesis, Signal Selection, SPFD, equivalent

1. Introduction

Logic Synthesis is the process of transforming a set of Boolean

functions from the abstract specification into a network of logic

gates in a particular technology. The task of logic synthesis is to

transform one presentation of a logic circuit into another acquiring

some merits.

In this paper, we discuss two logic optimization techniques which

have been developed in different contexts. The first one is from a

logic debugging technique called Signal Selection [2]. Debugging

logic circuit involves searching for a new logic function for the

buggy portions of the design such that the circuit behaves the same

as the correct circuit which call specification. It mainly consists of

two main procedures: finding the appropriate candidate locations

or internal signals for correction and determining the new

functions for those candidate signals. Compared to the debug

techniques which search for the signals and then find correct logic

function, this approach focuses on finding the input to the new

function for the selected internal nodes, instead of function itself.

There are several advantages in this approach. First it can search

for signals which are candidate fanins of the gate even if they are

far from the gate. Second is that it can handle much more search

space because it searches for the inputs to signal instead of

searching signal itself. When the other debugging method searches

for signal and determine the correction function, they should

handle 2! variables where 𝑣 is the number of candidate signals.

In some situation, 𝑣 could be 16 or 32 then 2! would become

very large value and hard to handle of. In Signal Selection, 𝑣
could reach 100 or more. The definition of Signal Selection will be

discussed later.

The other is a logic synthesis method that uses Set of Pairs of

Functions to be Distinguished (SPFD) [1]. As we discussed above,

 1 The University of Tokyo, Bunkyo, Tokyo 113-0032, Japan

the task of logic synthesis is to transform logic circuit into another

one with some merits. The basis to complete the transform is

“flexibility” derived from various kinds of don’t cares and others.

The traditional synthesis methods like compatible observability

don’t case (OCDC) and compatible set of permissible functions

(CSPFs) can provide enough flexibility to effectively transform the

logic circuit. But SPFD can extends the flexibility provided by

previous approaches through the target signal must distinguish

primary input values.

In this paper, we introduce the definition of these two approaches

and discuss the equivalence between them. Then we implement

and evaluate them with the same benchmark circuits and show the

difference. We also use SPFD to optimize some circuits and show

the result.

The rest of this paper is organized as follows. Section 2 and

Section 3 overview the definitions and concepts of these two

approaches. In section 4, we discuss the equivalence of these two

approaches. Section 5 shows the experimental results and section

6 concludes the paper. Section 7 describes the future works.

2. Signal Selection

 In this section we give the definition and concepts about the

Signal Selection method. This debugging method focuses on

combination circuits or the combinational parts of the sequential

circuits.

Figure 1. Correctable with t a function of inputs/internal signals.

[2]

ⓒ 2021 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2021-ARC-243 No.31
Vol.2021-SLDM-193 No.31

2021/1/26

 2

Figure 2. Correctable with t a function of in1 case and in2 case.

[2]

Definition 1. Given a buggy circuit M, a correctable circuit S,

primary input in, and internal signal of M: t. M is correct with t if

∀𝑖𝑛, ∃𝑡.𝑀(𝑡, 𝑖𝑛) = 𝑆(𝑖𝑛)

 From Figure 1, we know that internal signal 𝑡 = 𝑓(𝑣), where 𝑓
is the logic function mapping internal variable v to t. We can derive

the equation into

∀𝑖𝑛, ∃𝑡, ∃𝑣, ∃𝑓.𝑀(𝑡 = 𝑓(𝑣), 𝑖𝑛) = 𝑆(𝑖𝑛)
 Therefore, the purpose of this approach is to find the internal

variables v instead of finding the function 𝑓 for the internal signal.
We know that a variable can choose the value of 0 or 1, so

depending on the value of the variable, there are two cases as

shown in Figure 2. The definition of in1 case and in2 case are as

follows.

Definition 2. 𝑖𝑛1	𝑐𝑎𝑠𝑒 is defined as the case when the input 𝑖𝑛1

corrects the circuit only if 𝑡 = 0. If 𝑡 = 1, the circuit becomes

buggy. This definition can be expressed as: 𝑀(𝑡 = 0, 𝑖𝑛1) =
	𝑆(𝑖𝑛1) ∧ 𝑀(𝑡 = 1, 𝑖𝑛1) ≠ 𝑆(𝑖𝑛1).
Definition 3. 𝑖𝑛2	𝑐𝑎𝑠𝑒 is defined as the case when the input 𝑖𝑛2

corrects the circuit only if 𝑡 = 1. If 𝑡 = 0, the circuit becomes

buggy. This definition can be expressed as: 𝑀(𝑡 = 1, 𝑖𝑛2) =
𝑆(𝑖𝑛2) 	∧ 	𝑀(𝑡 = 0, 𝑖𝑛2) ≠ 𝑆(𝑖𝑛2).
 With Definition 2 and Definition 3, we can derive the following

theorem by combining them: if 𝑀 is correctable with 𝑡 and

internal signals 𝑣, then the followings must be satisfied:

∀𝑡1, 𝑡2.𝑀(𝑡1 = 0, 𝑣1, 𝑖𝑛1) = 𝑆(𝑖𝑛1) ∧ 𝑀(𝑡1 = 1, 𝑣1, 𝑖𝑛1) ≠
𝑆(𝑖𝑛1) ∧ 𝑀(𝑡2 = 1, 𝑣2, 𝑖𝑛2) = 𝑆(𝑖𝑛2) ∧ 𝑀(𝑡2 = 0, 𝑣2, 𝑖𝑛2) ≠
𝑆(𝑖𝑛2) → 𝑣1 ≠ 𝑣2.

 We can transform the former equation into the SAT equation

below:

∀𝑡1, 𝑡2.𝑀(𝑡1 = 0, 𝑣1, 𝑖𝑛1) = 𝑆(𝑖𝑛1) ∧ 𝑀(𝑡1 = 1, 𝑣1, 𝑖𝑛1) ≠
𝑆(𝑖𝑛1) ∧ 𝑀(𝑡2 = 1, 𝑣2, 𝑖𝑛2) = 𝑆(𝑖𝑛2) ∧ 𝑀(𝑡2 = 0, 𝑣2, 𝑖𝑛2) ≠

𝑆(𝑖𝑛2) ∧ 𝑣1 = 𝑣2.
 If the equation above is UNSAT, then we have found that the set

of internal signal v, are sufficient as the fanins. Here we give a

simple proof: if two different inputs 𝑖𝑛1 and 𝑖𝑛2 result in the

same 𝑣1 and 𝑣2 (𝑣1 = 𝑣2) , that means we don’t have two
different circuits for one of the inputs is correct and the other one

incorrect. It is a contradiction. By iteratively solving this SAT

equation and check the sufficiency of these candidates, we can

finally get the solution or no solution. The detail of calculation can

be checked in [2].

3. SPFDs

 In this section, we will discuss the concepts and definition of Set

of Pairs of Functions to be Distinguish (SPFDs). The key point to

understand SPFDs is that how a logic function “distinguishes” the

pairs of logic functions.

To understand “distinguish”, we may first introduce “include”.

 Definition 1. For two logic functions 𝑓 and 𝑔 . If 𝑓(𝑥)
becomes 1 for all the input 𝑥 where 𝑔(𝑥) becomes 1, we said

that 𝑓 include 𝑔. It can be written as 𝑔	 ≤ 𝑓.

 Definition 2. For a pair of logic functions 𝑔" and 𝑔#, 𝑓 can
distinguish them if either one of the following conditions is

satisfied.

𝑔" ≤ 𝑓 ≤ 𝑔#===

𝑔# ≤ 𝑓 ≤ 𝑔"===
 The 𝑔" could be seen as one of the ON-Set and 𝑔# is one of the
OFF-Set.

Definition 3. SPFD is a set of pairs of functions to be distinguished.

It can be expressed like the following.

{(𝑔"$, 𝑔"%), 	(𝑔#$, 𝑔#%), 	 … , 	(𝑔&$, 𝑔&%)}
Then if a function 𝑓 can satisfy a SPFD, it means that 𝑓 can

distinguish all the 𝑔'$ and 𝑔'% in the SPFD like that:

[(𝑔"$ ≤ 𝑓 ≤ 𝑔"%=====) + (𝑔"% ≤ 𝑓 ≤ 𝑔"$=====)]	 ∧ … ∧ [(𝑔&$ ≤

𝑓 ≤ 𝑔&%=====) + (𝑔&% ≤ 𝑓 ≤ 𝑔&$=====)]

Besides, we must know that not only nodes but also wires have

their SPFD. The SPFD of node 𝑁' can be expressed as 𝑆𝑃𝐹𝐷'.
The SPFD of the wire 𝐶[',*] can be expressed as 𝑆𝑃𝐹𝐷[',*].

Here we give an easy example the SPFD of an AND gate has

been shown in Fig 3.

Figure 3. The SPFD of AND gate

 In Fig 3. We all know the logic function of AND gate is 𝑓 = 𝑎	 ∙
𝑏. Then in this situation, the ON-Set of the SPFDs is (11), that
OFF-Set of the SPFD is (00, 10, 11). Combine the ON-Set and

OFF-Set, we can get the SPFDs about the AND gate is {(00,11),

(01, 11), (10, 11)}. For the input wires a and b. The SPFD of wire

a can define as following, we look at the pairs of function in SPFD

of AND gate, we find that fanin wire a will have different value in

these pairs (00, 11) and (01, 11), then we can assign these two pairs

to the wire a. And the rest is assigned to wire b.

ⓒ 2021 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2021-ARC-243 No.31
Vol.2021-SLDM-193 No.31

2021/1/26

 3

 Given a SPFD {(𝑔"$, 𝑔"%), 	(𝑔#$, 𝑔#%)}, we can define the logic

function is 𝑓 = 	A	 ∙ 𝑔"$ 	+	 𝐴̅ 	 ∙ 𝑔"% + B	 ∙ 	𝑔#$ +	𝐵= 	 ∙ 	𝑔#% . By
controlling the variable of A and B, we can get different logic

function 𝑓 which satisfy the SPFD and can be fixed to the node.
This is “flexibility” provided by SPFD that we use to transform the

logic circuit.

4. Equivalence

4.1. Explanation of Equivalence between the two
approaches

 In this section, we want to discuss the equivalence of these two

methods.

 Recall the Debugging method Signal Selection. The goal of this

method is to find the different value of internal signal 𝑣. Let’s see
again this equation:

𝑀(𝑡1 = 0, 𝑣1, 𝑖𝑛1) = 𝑆(𝑖𝑛1) ∧ 𝑀(𝑡1 = 1, 𝑣1, 𝑖𝑛1) ≠ 𝑆(𝑖𝑛1) ∧
𝑀(𝑡2 = 1, 𝑣2, 𝑖𝑛2) = 𝑆(𝑖𝑛2) ∧ 𝑀(𝑡2 = 0, 𝑣2, 𝑖𝑛2) ≠ 𝑆(𝑖𝑛2) →
𝑣1 ≠ 𝑣2. Where 𝑡 = 𝑓(𝑣).
 We can easily find that these in1 case and in2 case can be seen as

the ON-Set and OFF-Set of SPFD. In in1 case, circuit will be

correctable if 𝑡 = 0 = 𝑓(𝑣1) , and in in2 case, circuit will be

correctable if t = 1 = 𝑓(𝑣2).
 We use the SPFD to express this condition like we have many

candidate pair of (𝑖𝑛1, 𝑖𝑛2), and the function 𝑓 can distinguish
these pairs means that these variables would be the correct input to

this node. From the explanation before, the definition of Signal

Selection can be easily transformed to the SPFD form. This prove

that they are equivalent in theoretically.

Figure 4. simple circuit and it’s truth table

 Fig. 4. Show a simple circuit and its truth table. We assume there

is buggy exist node g. From the truth table, we can get in1 case

with input (a, b) is (00, 11), in2 case is (01, 10), if we compute the

𝑖𝑛1	𝑐𝑎𝑠𝑒	 × 	𝑖𝑛2	𝑐𝑎𝑠𝑒 = {(00, 10), (11, 01), (01, 00), (10, 11)},
it’s the same as the SPFD of node g.

4.2. Meaning of Equivalence

 Two approaches can used for logic synthesis. In [2], authors

implement an experiment with the same circuits with Signal

Selection. Since there is no bug in the circuit to be corrected, it

would become logic optimization approach. It would find fewer

number of inputs to the functions compared to the original number

of circuit and find other inputs to the functions. That means if the

current inputs are not desirable, we can use Signal Selection to find

more desirable inputs. For SPFD, we can actually replace the input

to the functions. Like the above example, from the truth table, we

know that SPFD of z is {(11, 01), (11, 00), (01, 10), (00, 10)},

SPFD of g is {(00, 10), (11, 01), (01, 00), (10, 11)}, wire (g, z) can

distinguish both SPFD of g and z, so it’s SPFD would be (11, 01)

and (00, 10). We can easily find that wire a can also distinguish

wire (g, z), then we can find other input to gate z is primary input

a.

 There are some small differences. In Signal Selection method, we

didn’t know the logic function 𝑓 . The 𝑣1 and 𝑣2 will be

computed from iterative solving the SAT problem. After

completing the searching for fanin signals, the logic function 𝑓

can be fixed. But for the SPFDs method, we force the fuction 𝑓

must distinguish all the pairs in the SPFD, so the function 𝑓 can

easily computed with computing the SPFD. Also, the Signal

Selection method is based on solving the SAT problem, it can

compute the fanin of the gate directly from nothing. But for SPFD

of a node or wire, it needs to compute from primary output to

primary input in a reverse topological order. It will cost much more

space and time, especially the computing of SPFD usually use

ⓒ 2021 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2021-ARC-243 No.31
Vol.2021-SLDM-193 No.31

2021/1/26

 4

BDD form.

 They are mathematically equivalent and have similar effect on

logic optimization, but the ways to compute are different. Depend

on how to utilize them, we can use appropriate method in different

logic optimization problem.

5. Experiment Result

 In this section, we implement two experiments. The first one is to

compare the performance of these two methods. The second one is

to implement the SPFD to optimize the circuits.

 We mainly use the ITC’99 benchmarks (combinational version)

[4] and some LGSynth'91 benchmarks [5] for our experiment. The

experiments are both implemented on the platform with CPU

processor Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz and 500

GB memory running Linux kernel 5.5.4.

Figure 5 Overflow of iterative calculation of Signal Selection [2]

5.1 Experiment of comparing two methods

 In this experiment, we focus on the runtime of two approaches.

For SPFD, we compute the SPFD of circuit using BDD (Binary

Decision Diagram). The computation is starting from primary

output to primary input. We suppose the SPFD of primary output

is given, so the process is:

(1). At each node 𝑁' , the 𝑆𝑃𝐹𝐷' is distributed to each input
wires, creating the wire SPFDs.

(2). Once all the fanout wires SPFDs are computed, the node

SPFD is computed as the union of the fanout wire SPFDs.

For the Signal Selection, because it is proposed by our former

assistant researcher in our lab, we have the execute program to

implement directly. The main computation process has shown in

Figure 5. We choose the same circuit as both specification and

implementation circuit. It is the basic computation to show

efficiency of Signal Selection. Since the computation of SPFD

need compute the whole circuit’s node at once, we would try to

find the inputs for all the internal nodes in Signal Selection.

Table 1 Result of Experiment 1

circuit
internal

gates

runtime

#1(s)

runtime

#2 (s)
#iter (#2)

b01 48 0.224 0.308 2

b02 28 0.201 0.550 5

b03 157 1.017 0.695 6

b04 727 48.819 18.056 54

b05 998 11.937 1.866 12

b06 55 0.102 0.305 2

b07 441 23.672 1.353 9

b08 175 1.170 0.761 7

b09 170 0.120 1.108 10

b10 196 2.390 1.184 10

b11 764 3.824 0.829 7

 The experiment result has shown in Table 1. Column 1 is the

circuit name. The circuit used in this experiment come from

ITC’99 benchmarks. Column 2 represent the number of the

internal node in each circuit. Column 3 represent the runtime of

computing SPFD of circuit. Column 4 represent the runtime of

computing Signal Selection and column 5 is the number of

iteration number of searching the fanins signal.

 As we can see, with small circuit, the runtime of these two

approaches don’t have big difference. When the number of internal

gates is small, both methods can get result immediately. When the

number of node increase, the computation time of SPFD would

also increase. That is because the computation of SPFD is based

on BDD form. If the node’s number is increasing, the number of

BDD will be larger and larger. Then it will spend much more space

to store the BDD information and much time to calculate the BDD

operation. However, runtime of Signal Selection didn’t increase

obviously. We can assume that the runtime of two approaches

not only concern the number of internal node but also the

complexity of the internal logic mapping. In b04, both SPFD and

signal selection will cost much time to get the result. It would due

to the redundant gate in b04 circuit.

 From the table, we can get some information. When you are

planning to do some logic optimization on small circuit, both

approaches can handle the task. If you want to deal with some large

circuit like more than 1,000 or 10,000 internal nodes, the SPFD

would perform poorly even that it can’t get the result because the

limitation of BDD. In this situation, we can choose Signal

Selection to do the optimization.

 Since they are equivalent, we can have some free choices to use

both approaches to optimize logic circuit in different situations.

ⓒ 2021 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2021-ARC-243 No.31
Vol.2021-SLDM-193 No.31

2021/1/26

 5

5.2 Logic synthesis by implement SPFDs

In this experiment, we want to use the SPFDs to optimize the

circuit. The benchmark circuit would be transformed to AIG (And-

inverter Graph). It can reduce the size of circuit which would make

the SPFD computing more easier.

The optimization procedure can be conclude following:

Procedure optimizationCircuit:
(1) For each node 𝑁' and wire 𝐶[',*], compute the logic function

𝑓', the node 𝑆𝑃𝐹𝐷' and the wire 𝑆𝑃𝐹𝐷[',*].
(2) Check each wire 𝐶[',*], if the wire SPFD is null, remove the

wire 𝐶[',*], then go to step 4. Otherwise go to step 3.

(3) If there is a node 𝑁, , its logic function 𝑓, can satisfy the
𝑆𝑃𝐹𝐷[',*], then we replace the 𝐶[',*] with 𝐶[,,*] and go to stpe 4.

Otherwise go to step 2.
(4) If we change the fanins of the node 𝑁*, we would modify the

new logic funtion of 𝑁*, then go to step 2.

(5) If all wires are selected, the procedure halt. Then check the

internal node, if some node 𝑁'′𝑠 fanout becomes empty, remove

node 𝑁'.

Table 2 Result of Experiment 2

circuit
initial

wire

initial

node

optimized

wire

ratio

(w)

optimized

node

ratio

(n)

i1 101 31 99 0.980 29 0.935

i10 4522 1772 TO - TO -

k2 2946 1051 2936 0.997 1041 0.990

alu2 862 352 721 0.836 211 0.599

alu4 1562 638 1407 0.901 483 0.757

x3 1616 601 1507 0.933 492 0.819

des 8686 3500 TO - TO -

apex6 1430 593 1383 0.967 546 0.921

apex7 440 167 415 0.943 142 0.850

cc 121 42 118 0.975 39 0.929

avg 0.942 0.850

 Through the optimization procedure, we would use some other

wires which satisfy the wire SPFD replace the original input wires.

After the procedure, we can actually reduce the number of wires

and nodes in the logic circuit. The experiment result has shown in

Table 2.

 Like Table 1, Column 1 is the circuit name. The circuit used in

this experiment come from LGSynth'91 benchmarks. Column 2

and 3 represent the number of initial wire and initial node. Column

4 and 6 is the number of optimized wires and nodes. Ratio (w) is

the optimization ratio of wire, ratio (n) is the optimization ratio of

node. In i10 and des, we can find TO. It means “time out”, that is

more than 30 minutes although we didn’t put the runtime on the

table.

 From the experiment result, we first talk about the “TO” cases.

As mentioned before, SPFD can’t handle large circuit. i10 and des

has more than 1500 node and 4000 wires in the circuit. “TO” tells

us that the circuit of this size has exceeded SPFD scope.

 For the remaining result, we find that after the optimization, the

number of wires and nodes has decreased in different degree. It

proves that optimization is correct although we didn’t implement

accurate optimization calculation. The average wire reduction is

0.942. In some small circuit or large circuit, the reduction ratio is

not ideal. We think it is because small circuit has less flexibility for

used to optimize and large circuit has complex internal architecture.

 The average node reduction ration is 0.850. It seems a good result.

But it shows the same situation as wire reduction ratio. It seems

only suitable for medium size circuits.

 The average ratio tells us this optimization procedure is effective

but still have room for improvement. We didn’t implement the

accurate calculation for the reduction just replace the input wire

with other wires. If we can compute the gain after replacing,

maybe we would get better optimized result in both wire and node

reduction.

6. Conclusion

 In this paper, we mainly discuss two logic optimization method,

Signal Selection and SPFDs. From the definition of two approach,

we find that they are equivalent in mathematically. It can give us

more choice in logic synthesis in different situation.

 Then we implement two experiment. The first one is to compare

the performance of two approach and the second one is to verify

the effectiveness of SPFDs. The comparative experiment

demonstrated the characteristics of two approaches by comparing

their runtime. The runtime of SPFD would increase with the circuit

size increased and Signal Selection would not change obviously.

According the result, we find that both approaches can handle

small circuits. But in large circuit, we would like to choose Signal

Selection instead of SPFDs. In the second experiment, we verify

the effectiveness of SPFD optimization. Because this experiment

is just looking for some other wire can satisfy the original wire

SPFD and replacing the original input wire, the reduction ratio is

not so ideal. It still provides enough “flexibility” to transform the

original circuit to another with the area reducing.

ⓒ 2021 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2021-ARC-243 No.31
Vol.2021-SLDM-193 No.31

2021/1/26

 6

7. Future work
 Even the SPFD is proposed in 1990s, it still have potential in logic
synthesis fields. In the second experiment, we have optimized the
circuit using the flexibility provided by SPFD. Although he result
is not so good and can just handle middle size circuit. We can focus
on computing the gain after replacing the original wires. It would
improve the performance of wire reduction ratio. The Signal
Selection is original logic debugging technique but it can apply for
different fields. We know there are always multiple target occurs
in nowadays synthesis or debugging process. It needs optimization
method can handle multiple target in the same time. Now the
SPFDs and Signal Selection are calculated one by one. It means
that it is hard to handle multiple targets. About the Signal Selection,
we sucessfully improved to calculate multiple targets in one time
[6]. Since they are equivalent, we can refer to the method they took
and extend the SPFDs calculation into multiple nodes. That would
make SPFDs handles more different situations.

Reference
[1] S. Yamashita, H. Sawada, and A. Nagoya. A New Method to Express

Functional Permissibilities for LUT based FP- GAs and Its

Applications. In International Conference on Computer Aided Design,

pages 254–261, November 1996.

[2] Amir Masoud Gharehbaghi, Masahiro Fujita: A New Approach for

Debugging Logic Circuits without Explicitly Debugging Their

Functionality. ATS 2016: 31-36

[3] Amir Masoud Gharehbaghi, Masahiro Fujita: A new approach for

selecting inputs of logic functions during debug. ISQED 2017: 166-

173

[4] https://github.com/squillero/itc99-poli

[5] https://ddd.fit.cvut.cz/prj/Benchmarks/LGSynth91.pdf

[6] Yusuke Kimura, “Automatic Rectification Methods for Logic

Debugging and ECO”, phd-thesis, 2020.

[7] S. Yamashita, H. Sawada and A. Nagoya, "SPFD: A new method to

express functional flexibility," in IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 19, no. 8, pp.

840-849, Aug. 2000.

[8] https://people.eecs.berkeley.edu/~alanmi/abc/
[9] A. Mishchenko and R. K. Brayton, "SAT- based complete don't-care

computation for network optimization," Design, Automation and Test

in Europe, Munich, Germany, 2005, pp. 412- 417 Vol. 1
[10] Robert K. Brayton. Understanding SPFDs: A New Method for

Specifying Flexibility. In IWLS, 1997.
[11] A. Mishchenko, J. S. Zhang, S. Sinha, J. R. Burch, R. Brayton and M.

Chrzanowska-Jeske, "Using simulation and satisfiability to compute

flexibilities in Boolean networks," in IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 25,

no. 5, pp. 743-755, May 2006.
[12] Masahiro Fujita: Automatic correction of logic bugs in hardware

design: Partial logic synthesis. Procedia Computer Science 125: 790-

800, 2018.

[13] H. Sato, Y. Yasue, Y. Matsunaga and M. Fujita, "Boolean

resubstitution with permissible functions and binary decision

diagrams," 27th ACM/IEEE Design Automation Conference,

Orlando, FL, USA, 1990, pp. 284-289.

ⓒ 2021 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2021-ARC-243 No.31
Vol.2021-SLDM-193 No.31

2021/1/26

