
Electronic Preprint for Journal of Information Processing Vol.29

60th Anniversary Best Paper

Towards a Complete Perspective
on Labeled Tree Indexing:

New Size Bounds, Efficient Constructions, and Beyond

Shunsuke Inenaga1,2,a)

Received: March 9, 2020, Accepted: August 28, 2020

Abstract: A labeled tree (or a trie) is a natural generalization of a string which can also be seen as a compact repre-
sentation of a set of strings. This paper considers the labeled tree indexing problem, and provides a number of new
results on space bound analysis and on algorithms for efficient construction and pattern matching queries. Kosaraju
[FOCS 1989] was the first to consider the labeled tree indexing problem and he proposed the suffix tree for a backward
trie, where the strings in the trie are read in the leaf-to-root direction. In contrast to a backward trie, we call an ordinary
trie as a forward trie. Despite a few follow-up works after Kosaraju’s paper, indexing forward/backward tries is not
well understood yet. In this paper, we show a full perspective on the sizes of indexing structures such as suffix trees,
DAWGs, CDAWGs, suffix arrays, affix trees, affix arrays for forward and backward tries. Some of them take O(n)
space in the size n of the input trie, while the others can occupy O(n2) space in the worst case. In particular, we show
that the size of the DAWG for a forward trie with n nodes is Ω(σn), where σ is the number of distinct characters in
the trie. This becomes Ω(n2) for an alphabet of size σ = Θ(n). Still, we show that there is a compact O(n)-space
implicit representation of the DAWG for a forward trie, whose space requirement is independent of the alphabet size.
This compact representation allows for simulating each DAWG edge traversal in O(logσ) time, and can be constructed
in O(n) time and space over any integer alphabet of size O(n). In addition, this readily extends to the first indexing
structure that permits bidirectional pattern searches over a trie within linear space in the input trie size. We also discuss
the size of the DAWG built on a labeled DAG or on an acyclic DFA, and present a quadratic lower bound for its size.

Keywords: string indexing structures, pattern matching, indexing labeled trees, SDDs

1. Introduction

Strings are an abstract data type for any data in which the or-
der of the items matters. Strings cover a wide range of sequential
data, e.g., natural language text, biological sequences, temporal
data, time series, event sequences, and server logs. Due to re-
cent developments of sensor networks, M2M communications,
and high-throughput sequencing technologies, string data have
been increasing more rapidly than ever before.

String indexing is a fundamental problem in theoretical com-
puter science, where the task is to preprocess a text string so that
subsequent pattern matching queries on the text can be answered
quickly. This is the basis of today’s large-scale information re-
trieval systems and databases. The first of such string indexing
structures was the suffix tree, which was introduced by Weiner in
1973 [43]. Suffix trees also have numerous other applications in-
cluding string comparisons [43], data compression [3], data min-
ing [37], and bioinformatics [21], [33].

A labeled tree is a static rooted tree where each edge is labeled
by a single character. A trie is a kind of labeled tree such that

1 Department of Informatics, Kyushu University, Fukuoka 819–0395,
Japan

2 PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama
332–0012, Japan

a) inenaga@inf.kyushu-u.ac.jp

the out-going edges of each node are labeled by mutually distinct
characters. A trie can be naturally seen as an acyclic determin-

istic finite-state automaton (acyclic DFA) in a tree shape, which
accepts a finite set of strings. In this sense, a trie can be seen as a
compact representation of a set of strings. In another view, a trie
is a generalization of a string that is a labeled single-path tree.

This paper considers the labeled tree indexing problem, where
the task is to build a data structure that supports sub-path queries
to report all sub-paths in the trie that match a given string pat-
tern. Such sub-path queries on labeled trees are primitive in
data base searches where the XML has been used as a de facto

format of data storage. It is well known that each XML docu-
ment forms a tree*1. Other important uses of labeled trees in-
cludes SQL queries [23], dictionaries [1], [45], and data compres-
sion [44], [47], to mention just a few.

A backward trie is an edge-reversed trie, where we read the
path strings in the leaf-to-root direction. Kosaraju [28] was the
first to consider the trie indexing problem, and he proposed the
suffix tree of a backward trie that takes O(n) space*2, where n is
the number of nodes in the backward trie. Kosaraju also claimed

*1 Usually, a string label is associated to a node in an XML tree structure.
However, for such a tree, there is an obvious corresponding trie where
each edge is labeled by a single character.

*2 We evaluate the space usage of algorithms and data structures by the
number of machine words (not bits) unless otherwise stated.

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

an O(n log n)-time construction. Breslauer [11] showed how to
build the suffix tree of a backward trie in O(σn) time and space,
whereσ is the alphabet size. Shibuya [40] presented an O(n)-time
and space construction for the suffix tree of a backward trie over
an integer alphabet of size σ = O(n). This line of research has
been followed by the invention of XBWTs [15], suffix arrays [15],
enhanced suffix arrays [27], and position heaps [38] for backward
tries.

1.1 Suffix Trees, DAWGs, and CDAWGs for Forward/
Backward Tries

In addition to the suffix trees, we also consider the di-

rected acyclic word graphs (DAWGs) and the compact DAWGs

(CDAWGs), which were introduced by Blumer et al. in 1985 [9],
and in 1987 [10], respectively. Similar to suffix trees, DAWGs
and CDAWGs support linear-time pattern matching queries. For
any string of length m, the suffix tree, the DAWG, and the
CDAWG contain linear O(m) nodes and O(m) edges [9], [10],
[43]. These bounds have been generalized to a set of strings such
that, for any set of strings of total length M, the (generalized) suf-
fix tree, the DAWG, and the CDAWG contain linear O(M) nodes
and O(M) edges [10], [22]. All these bounds are independent of
the alphabet size σ.

The DAWG of a string w is the smallest DFA that accepts the
suffixes of w [9]. DAWGs for strings have important applications
including pattern matching with don’t cares [29], online Lempel-
Ziv factorization in compact space [46], finding minimal absent
words in optimal time [18], and dynamic multiple pattern match-
ing [24]. The CDAWG of a string w can be regarded as gram-

mar compression for w and can be stored in O(e) space, where
e denotes the number of right-extensions of maximal repeats in
w which can be much smaller than the string length in highly
repetitive strings [4]. There is also an space-efficient suffix tree
representation based on the CDAWG [4]. Hence, understanding
DAWGs and CDAWGs for labeled trees is very important and
will likely lead to further advances in efficient processing of la-
beled trees.

To this end, this paper initiates size analysis on these indexing
structures for a forward (ordinary) trie and a backward trie. We
show that, quite interestingly, some of the aforementioned size
bounds do not generalize to the case of tries. We present tight

lower and upper bounds on the sizes of all these indexing struc-
tures, as summarized in Table 1. Our size analysis is based on
combinatorial properties that reside in these indexing structures,
such as the duality of suffix trees and DAWGs, and maximal re-

peats on input tries, and is not straightforward from the known
bounds for strings.

Let n denote the number of nodes in a given forward trie and
in the corresponding backward trie. Our new bounds are summa-
rized as follows:
• We first present a (folklore) result such that the number of

nodes and the number of edges of the suffix tree for a for-
ward trie are both O(n2) for any forward tries, and are Ω(n2)
for some tries. These bounds are independent of the alphabet
size σ.

• As direct consequences to the aforementioned results on suf-

Table 1 Summary of the numbers of nodes and edges of the suffix tree,
DAWG, and CDAWG for a forward/backward trie with n nodes
over an alphabet of size σ. The new bounds obtained in this pa-
per are highlighted in bold. All the bounds here are valid with any
alphabet size σ ranging from Θ(1) to Θ(n). Also, all these upper
bounds are tight in the sense that there are matching lower bounds
(see Section 5).

forward trie backward trie
index structure # of nodes # of edges # of nodes # of edges

suffix tree O(n2) O(n2) O(n) O(n)
DAWG O(n) O(σn) O(n2) O(n2)

CDAWG O(n) O(σn) O(n) O(n)
suffix array O(n2) O(n2) O(n) O(n)

fix trees, the sizes of the suffix arrays for a forward trie and a
backward trie are O(n2) and O(n), respectively. These upper
bounds are also tight.

• The number of nodes in the DAWG for a forward trie is
known to be O(n) [36], however, it was left open how many
edges the DAWG can contain. It is trivially upper bounded
by O(σn), since any node can have at most σ children in
DAWGs. We show that this upper bound is tight by pre-
senting a worst-case instance that gives Ω(σn) edges in the
DAWG for a forward trie. Since this lower bound is valid
for alphabet size σ from Θ(1) to Θ(n), we obtain an Ω(n2)
worst-case size bound for the DAWG of a forward trie.

• We show that the DAWG of a backward trie shares the
same nodes with the suffix tree of the corresponding forward
trie under reversal of substrings. This immediately leads to
O(n2) and Ω(n2) bounds for the numbers of nodes and edges
of the DAWG for a backward trie, independently of the al-
phabet size.

• The CDAWG of a forward trie and the CDAWG of its cor-
responding backward trie also share the same nodes under
reversal of substrings. This leads us to O(n) bounds for the
numbers of nodes in both of these CDAWGs. However, the
number of edges can differ by at most a factor of n: The
CDAWG of a forward trie contains O(σn) and Ω(σn) edges
in the worst case, but the CDAWG of a backward trie con-
tains only O(n) edges independently of the alphabet size. We
remark that the Ω(σn) lower bound for the CDAWG edges
for the forward trie is valid for alphabet size σ ranging from
Θ(1) to Θ(n), and hence, it can contain Ω(n2) edges in the
worst case.

1.2 Implicit O(n)-size Representation of the DAWG for For-
ward Trie

Probably the most interesting result in our size bounds is the
Ω(n2) lower bound for the size of the DAWG for a forward trie
with n nodes over an alphabet of size Θ(n) (Theorem 6): Mohri
et al. [36] proposed an algorithm that constructs the DAWG for a
forward trie with n nodes in time linear in the output size. Fol-
lowing our Ω(n2)-size lower bound, Mohri et al.’s construction
must take at least Ω(n2) time and space in the worst case.

Now, one may wonder whether or not it is possible to store
the DAWG for a forward trie in a compact manner, within lin-
ear space, in the size of the input trie, in case of large alphabets.
Somewhat surprisingly, the answer to this challenging question is
positive. In this paper, we propose an implicit compact represen-

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

tation of the DAWG for a forward trie that occupies only O(n)
space independently of the alphabet size, and allows for simulat-
ing traversal of each DAWG edge in O(logσ) time. We empha-
size that this is the first linear-space representation of any DFA
that accepts all substrings of a given labeled tree, after 35 years
from the seminal paper by Blumer et al. in 1985 for the DAWG
of a string [9]. In addition, we present an algorithm that builds
this implicit representation of the DAWG for a forward trie in
O(n) time and space for any integer alphabet of size O(n). Our
data structure of an implicit representation of the DAWG is care-
fully designed upon combinatorial properties of Weiner links that
are defined on the suffix tree of the corresponding backward trie.
Also, our algorithm does not require use of any additional com-
plicated data structures.

1.3 Relation to Indexing Automata and Labeled DAGs
Mohri et al. [36] considered the problem of indexing a given

acyclic DFA (or equivalently a labeled DAG). They proposed
DAWGs (a.k.a. suffix automata) for acyclic DFAs, and claimed
that the number of nodes in the DAWG for a given acyclic DFA
with n states is O(n). However, they did not consider the number
of edges in the DAWG of an acyclic DFA.

A sequence binary decision diagram (SDD) [32] is a family of
Zero-Suppressed BDD (ZDD) [35] that represents a set of strings.
Roughly speaking, an SDD is a simple representation of a la-
beled DAG where the branches are implemented by a list that
begins with the leftmost child and continues to the right sib-
lings. SDDs are known to support a rich class of manipulations
to the set of strings, which can quickly be performed in practice.
Denzumi et al. [14] proposed an SDD-based indexing structure,
named PosFSDDdag, for an input labeled DAG which is also
given in an SDD form. PosFSDDdags can be regarded as a rep-
resentation of DAWGs or suffix automata for acyclic DFAs, with
the leftmost-child-and-right-siblings representation of branches.
PosFSDDdags can be quite space-efficient in practice, but theo-
retical size bounds of PosFSDDdag were not well understood in
the literature [14].

Notice that forward tries are the simplest kind of acyclic DFAs.
Thus, our analysis also resolves the aforementioned open ques-
tions in terms of the worst case bounds. Namely, our Ω(n2) size
bound for the DAWG of a forward trie with n nodes over an alpha-
bet of size σ = Θ(n) immediately leads to a worst-case quadratic
size for DAWGs for input acyclic DFAs. Figure 10 illustrates a
lower bound instance for DAWGs. The number of edges of the
broom-like input trie in Fig. 10 must be preserved in its SDD rep-
resentation. Moreover, even if we merge the sink nodes of the
DAWG in Fig. 10 into a single sink, the number of edges in the
DAWG still does not decrease. Thus the worst-case size of Pos-
FSDDdags is at least Ω(n2) for some input SDD of size n.

1.4 Bidirectional Pattern Search on Tries
In the bidirectional pattern search problem, the characters of

a query pattern is given in a bidirectional online manner, added
either to the left end or to the right end of the current pattern.
This enables us to perform very flexible pattern searches so that
given a current pattern, one can look for its left or right contexts

in a dynamic manner. Bidirectional pattern searches in strings
have other various applications, including: high-throughput short
read alignments [31], discovery of secondary structures in RNA
sequences [20], [34], [39], [42], multiple pattern matching [20],
and approximate pattern matching [30].

Every existing bidirectional indexing structure for a string con-
sists of a pair of two indexing structures, one built on a forward
string (to be read from left to right) and the other on the corre-
sponding backward string (to be read from right to left). Affix

trees, proposed by Stoye in 2000 [41], are the first bidirectional
indexing structure for strings, followed by the affix arrays [42]
counterparts. Bidirectional BWTs [39] are the most widely used
bidirectional search structure nowadays, since they can be stored
in compact or succinct space [5], [6].

Because a huge set of biological sequences can be compactly
stored as a tree in a practical database system [8], bidirectional
pattern search algorithms that work on tries are of high signifi-
cance. However, it seems that none of these existing bidirectional
indexing structures can readily be generalized to tries. See also
Table 1. Since affix trees (resp. affix arrays) contain at least the
same number of nodes (resp. entries) as the corresponding suf-
fix trees (resp. suffix arrays), the sizes of the affix tree/array built
on a pair of froward and backward tries turn out to be O(n2) and
Ω(n2) in the worst case. It is not obvious if one can generalize
BWT to a forward trie either, because the corresponding suffix
array contains O(n2) entries.

We focus our attention to suffix trees and DAWGs. Using the
duality of suffix trees and DAWGs [10], one can indeed perform
bidirectional pattern searches. Therefore, in the case where σ
is a constant (e.g., σ = 4 for DNA/RNA sequences), the com-
bination of the DAWG for a forward trie and the suffix tree
for a backward trie readily gives us a O(n)-space bidirectional
index for a trie. However, when the underlying alphabet is
very large, which is common in temporal sequences (time se-
ries) and Japanese/Chinese texts, the O(σn)-space requirement
is prohibitive. Still, our O(n)-space implicit representation of the
DAWG for a forward trie enables efficient bidirectional pattern
searches on a trie for a large alphabet of size σ = O(n). To
our knowledge, this is the first linear-space bidirectional index-
ing structure for labeled trees, after 20 years from the invention
of affix trees for strings in 2000 [41].

A portion of the results reported in this paper appeared in
Ref. [25].

2. Preliminaries

Let Σ be an ordered alphabet. Any element of Σ∗ is called a
string. For any string S , let |S | denote its length. Let ε be the
empty string, namely, |ε| = 0. Let Σ+ = Σ∗ \ {ε}. If S = XYZ,
then X, Y , and Z are called a prefix, a substring, and a suffix of
S , respectively. For any 1 ≤ i ≤ j ≤ |S |, let S [i.. j] denote the
substring of S that begins at position i and ends at position j in S .
For convenience, let S [i.. j] = ε if i > j. For any 1 ≤ i ≤ |S |, let
S [i] denote the ith character of S . For any string S , let S denote
the reversed string of S , i.e., S = S [|S |] · · · S [1]. Also, for any
set S of strings, let S denote the set of the reversed strings of S,
namely, S = {S | S ∈ S}.

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Fig. 1 A forward trie Tf (upper) and its corresponding backward trie Tb

(lower).

A trie T is a rooted tree (V,E) such that (1) each edge in E is
labeled by a single character from Σ and (2) the character labels
of the out-going edges of each node begin with mutually distinct
characters. In this paper, a forward trie refers to an (ordinary) trie
as defined above. On the other hand, a backward trie refers to an
edge-reversed trie where each path label is read in the leaf-to-root
direction. We will denote by Tf = (Vf,Ef) a forward trie and by
Tb = (Vb,Eb) the backward trie that is obtained by reversing the
edges of Tf. We denote by a triple (u, a, v)f an edge in a forward
trie Tf, where u, v ∈ V and a ∈ Σ. Each reversed edge in Tb is
denoted by a triple (v, a, u)b. Namely, there is a directed labeled
edge (u, a, v)f ∈ Ef iff there is a reversed directed labeled edge
(v, a, u)b ∈ Eb. See Fig. 1 for examples of Tf and Tb.

For a node u of a forward trie Tf, let anc(u, j) denote the jth
ancestor of u in Tf if it exists. Alternatively, for a node v of a
backward Tb, let des(v, j) denote the jth descendant of v in Tb if
it exists. We use a level ancestor data structure [7] on Tf (resp.
Tb) so that anc(u, j) (resp. des(v, j)) can be found in O(1) time for
any node and integer j, with linear space.

For nodes u, v in a forward trie Tf s.t. u is an ancestor of v, let
strf(u, v) denote the string spelled out by the path from u to v in Tf.
Let r denote the root of Tf and Lf the set of leaves in Tf. The sets
of substrings and suffixes of the forward trie Tf are respectively
defined by

Substr(Tf) = {strf(u, v) | u, v ∈ Vf, u is an ancestor of v},
Suffix(Tf) = {strf(u, l) | u ∈ Vf, l ∈ Lf}.

For nodes v, u in a backward trie Tb s.t. v is a descendant of
u, let strb(v, u) denote the string spelled out by the reversed path
from v to u in Tb. The sets of substrings and suffixes of the back-
ward trie Tb are respectively defined by

Substr(Tb) = {strb(v, u) | v, u ∈ Vb, v is a descendant of u},
Suffix(Tb) = {strb(v, r) | v ∈ Vb, r is the root of Tb}.

In what follows, let n be the number of nodes in Tf (or equiva-
lently in Tb).
Fact 1. (a) For any Tf and Tb, Substr(Tf) = Substr(Tb). (b) For

any forward trie Tf, |Suffix(Tf)| = O(n2). For some forward trie

Tf, |Suffix(Tf)| = Ω(n2). (c) |Suffix(Tb)| ≤ n − 1 for any backward

trie Tb.

Fact 1-(a), Fact 1-(c) and the upper bound of Fact 1-(b) should

Fig. 2 Forward trie Tf containing distinct suffixes ai{b, c}log2(n+1
3) for all

i (0 ≤ i ≤ k = (n + 1)/3), which sums up to k(k + 1) = Ω(n2)
distinct suffixes. In this example k = 4.

be clear from the definitions. To see the lower bound of Fact 1-(b)
in detail, consider a forward trie Tf with root r such that there is a
single path of length k from r to a node v, and there is a complete
binary tree rooted at v with k leaves (see also Fig. 2). Then, for
all nodes u in the path from r to v, the total number of strings in
the set {strf(u, l) | l ∈ Lf} ⊂ Suffix(Tf) is at least k(k + 1), since
each strf(u, l) is distinct for each path (u, l). By setting k ≈ n/3 so
that the number |Vf| of nodes in Tf equals n, we obtain Fact 1-(b).
The lower bound is valid for alphabets of size σ ranging from 2
to Θ(k) = Θ(n).
Remark. In case the input labeled tree is given as a compact tree
(a.k.a. Patricia tree) where each edge is labeled by a non-empty
string and every internal node is branching, then the input size n

should be translated to the total length of the string labels in the
compact tree. Then all of the the following bounds also hold for
input compact tries of size n.

3. Maximal Substrings in Forward/Backward
Tries

Blumer et al. [10] introduced the notions of right-maximal,
left-maximal, and maximal substrings in a set S of strings, and
presented clean relationships between the right-maximal/left-
maximal/maximal substrings and the suffix trees/DAWGs/
CDAWGs for S. Here we give natural extensions of these notions
to substrings in our forward and backward tries Tf and Tb, which
will be the basis of our indexing structures for Tf and Tb.

3.1 Maximal Substrings on Forward Tries
For any substring X in a forward trie Tf, X is said to be right-

maximal on Tf if (i) there are at least two distinct characters
a, b ∈ Σ such that Xa, Xb ∈ Substr(Tf), or (ii) X has an occur-
rence ending at a leaf of Tf. Also, X is said to be left-maximal on
Tf if (i) there are at least two distinct characters a, b ∈ Σ such that
aX, bX ∈ Substr(Tf), or (ii) X has an occurrence beginning at the
root of Tf. Finally, X is said to be maximal on Tf if X is both right-
maximal and left-maximal in Tf. In the example of Fig. 1 (upper),
bc is left-maximal but is not right-maximal, ca is right-maximal
but not left-maximal, and bca is maximal.

For any X ∈ Substr(Tf), let r-mxmlf(X), l-mxmlf(X), and
mxmlf(X) respectively denote the functions that map X to the
shortest right-maximal substring Xβ, the shortest left-maximal
substring αX, and the shortest maximal substring αXβ that con-
tain X in Tf, where α, β ∈ Σ∗.

3.2 Maximal Substrings on Backward Tries
For any substring Y in a backward trie Tb, Y is said to be

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

left-maximal on Tb if (i) there are at least two distinct characters
a, b ∈ Σ such that aY, bY ∈ Substr(Tb), or (ii) Y has an occurrence
beginning at a leaf of Tb. Also, Y is said to be right-maximal on
Tb if (i) there are at least two distinct characters a, b ∈ Σ such
that Ya, Yb ∈ Substr(Tb), or (ii) Y has an occurrence ending at
the root of Tb. Finally, Y is said to be maximal on Tb if Y is
both right-maximal and left-maximal in Tb. In the example of
Fig. 1 (lower), baaa is left-maximal but not right-maximal, aaa$
is right-maximal but not left-maximal, and baa is maximal.

For any Y ∈ Substr(Tb), let l-mxmlb(Y), r-mxmlb(Y), and
mxmlb(Y) respectively denote the functions that map Y to the
shortest left-maximal substring γY , the shortest right-maximal
substring Yδ, and the shortest maximal substring γYδ that con-
tain Y in Tb, where γ, δ ∈ Σ∗.

Clearly, the afore-mentioned notions are symmetric over Tf and
Tb, namely:
Fact 2. String X is right-maximal (resp. left-maximal) on Tf iff X

is left-maximal (resp. right-maximal) on Tb. Also, X is maximal

on Tf iff X is maximal on Tb.

4. Indexing Structures for Forward/Backward
Tries

In this section, we give formal definitions of indexing struc-
tures for forward/backward tries.

A compact tree for a set S of strings is a rooted tree such that
(1) each edge is labeled by a non-empty substring of a string in
S, (2) each internal node is branching, (3) the string labels of the
out-going edges of each node begin with mutually distinct char-
acters, and (4) there is a path from the root that spells out each
string in S, which may end on an edge. Each edge of a compact
tree is denoted by a triple (u, α, v) with α ∈ Σ+. We call internal
nodes that are branching as explicit nodes, and we call loci that
are on edges as implicit nodes. We will sometimes identify nodes
with the substrings that the nodes represent.

In what follows, we will consider DAG or tree data structures
built on a forward trie or backward trie. For any DAG or tree data
structure D, let |D|#Node and |D|#Edge denote the numbers of nodes
and edges in D, respectively.

4.1 Suffix Trees for Forward Tries
The suffix tree of a forward trie Tf, denoted STree(Tf), is a com-

pact tree which represents Suffix(Tf). See Fig. 3 for an example.
The nodes of STree(Tf) of Fig. 3 represent the right-maximal

substrings in Tf of Fig. 1, e.g., aab is right-maximal since it is
immediately followed by a, b, c and also it ends at a leaf in Tf.
Hence aab is a node in STree(Tf). On the other hand, aabc is
not right-maximal since it is immediately followed only by c and
hence it is not a node STree(Tf).

All non-root nodes in STree(Tf) represent right-maximal sub-
strings on Tf. Since now all internal nodes are branching, and
since there are at most |Suffix(Tf)| leaves, both the numbers of
nodes and edges in STree(Tf) are proportional to the number of
suffixes in Suffix(Tf). The following (folklore) quadratic bounds
hold due to Fact 1-(b).
Theorem 1. For any forward trie Tf with n nodes,

|STree(Tf)|#Node = O(n2) and |STree(Tf)|#Edge = O(n2). These up-

Fig. 3 STree(Tf) for the forward trie Tf of Fig. 1.

Fig. 4 STree(Tf) for the forward trie Tf of Fig. 2, which contains k(k + 1) =
Ω(n2) nodes and edges where n is the size of this Tf. In the example
of Fig. 2, k = 4 and hence STree(Tf) here has 4 · 5 = 20 leaves. It
is easy to modify the instance to a binary alphabet so that the suffix
tree still has Ω(n2) nodes.

Fig. 5 STree(Tb) for the backward trie Tb of Fig. 1.

per bounds hold for any alphabet. For some forward trie Tf with

n nodes, |STree(Tf)|#Node = Ω(n2) and |STree(Tf)|#Edge = Ω(n2).
These lower bounds hold for a constant-size or larger alphabet.

Figure 4 shows an example of the lower bounds of Theorem 1.

4.2 Suffix Trees for Backward Tries
The suffix tree of a backward trie Tb, denoted STree(Tb), is a

compact tree which represents Suffix(Tb).
See Fig. 5 for an example.
The nodes of STree(Tb) in Fig. 5 represent the right-maximal

substrings in Tb of Fig. 1, e.g., acb is right-maximal since it is im-
mediately followed by a and $. Hence acb is a node in STree(Tb).
On the other hand, ac is not right-maximal since it is immediately
followed only by c and hence it is not a node STree(Tb).

Since STree(Tb) contains at most n − 1 leaves by Fact 1-(c)
and all internal nodes of Suffix(Tb) are branching, the following
precise bounds follow from Fact 1-(c), which were implicit in the
literature [11], [28].
Theorem 2. For any backward trie Tb with n ≥ 3 nodes,

|STree(Tb)|#Node ≤ 2n − 3 and |STree(Tb)|#Edge ≤ 2n − 4, inde-

pendently of the alphabet size.

The above bounds are tight since the theorem translates to the

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

suffix tree with 2m − 1 nodes and 2m − 2 edges for a string of
length m (e.g., am−1b), which can be represented as a path tree
with n = m + 1 nodes. By representing each edge label α by a
pair 〈v, u〉 of nodes in Tb such that α = strb(u, v), STree(Tb) can
be stored with O(n) space.
Suffix Links and Weiner Links: For each explicit node aU of
the suffix tree STree(Tb) of a backward trie Tb with a ∈ Σ and
U ∈ Σ∗, let slink(aU) = U. This is called the suffix link of node
aU. For each explicit node V and a ∈ Σ, we also define the re-

versed suffix link Wa(V) = aVX where X ∈ Σ∗ is the shortest
string such that aVX is an explicit node of STree(Tb). Wa(V)
is undefined if aV � Substr(Tb). These reversed suffix links are
also called as Weiner links (or W-link in short) [12]. A W-link
Wa(V) = aVX is said to be hard if X = ε, and soft if X ∈ Σ+.
The suffix links, hard and soft W-links of nodes in the suffix tree
STree(Tf) of a forward trie Tf are defined analogously.
Suffix Arrays of Forward/Backward Tries

An array representation of the list of the leaves of STree(Tf)
(resp. STree(Tb)) sorted in the lexicographical order is the suffix

array of the forward trie Tf (resp. backward trie Tb). Hence, the
following corollaries are immediate from Theorem 1 and Theo-
rem 2, respectively:
Corollary 1. For any forward trie Tf with n nodes, the size of the

suffix array for Tf is O(n2). This upper bound holds for any alpha-

bet. For some forward trie Tf with n nodes, the size of the suffix

array for Tf is Ω(n2). This lower bound holds for a constant-size

or larger alphabet.

Corollary 2 (Ref. [15]). For any backward trie Tb with n nodes,

the size of the suffix array is exactly n − 1.

4.3 DAWGs for Forward Tries
The directed acyclic word graph (DAWG) of a forward trie

Tf is a (partial) DFA that recognizes all substrings in Substr(Tf).
Hence, the label of every edge of DAWG(Tf) is a single character
from Σ. DAWG(Tf) is formally defined as follows: For any sub-
string X from Substr(Tf), let [X]E,f denote the equivalence class
w.r.t. l-mxmlf(X). There is a one-to-one correspondence between
the nodes of DAWG(Tf) and the equivalence classes [·]E,f, and
hence we will identify the nodes of DAWG(Tf) with their corre-
sponding equivalence classes [·]E,f.

See Fig. 6 for an example.
The nodes of DAWG(Tf) of Fig. 6 represent the equivalence

classes w.r.t. the left-maximal substrings in Tf of Fig. 1, e.g., aab

is left-maximal since it is immediately followed by a and $ and
hence it is the longest string in the node that represents aab. This
node also represents the suffix ab of aab, since l-mxmlf(ab) =
aab.

By the definition of equivalence classes, every member of
[X]E,f is a suffix of l-mxmlf(X). If X, Xa are substrings in
Substr(Tf) and a ∈ Σ, then there exists an edge labeled with char-
acter a ∈ Σ from node [X]E,f to node [Xa]E,f in DAWG(Tf). This
edge is called primary if |l-mxmlf(X)| + 1 = |l-mxmlf(Xa)|, and is
called secondary otherwise. For each node [X]E,f of DAWG(Tf)
with |X| ≥ 1, let slink([X]E,f) = Z, where Z is the longest suffix of
l-mxmlf(X) not belonging to [X]E,f. This is the suffix link of this
node [X]E,f.

Fig. 6 DAWG(Tf) for the forward trie Tf of Fig. 1.

Mohri et al. [36] introduced the suffix automaton for an acyclic
DFA G, which is a small DFA that represents all suffixes of strings
accepted by G. They considered equivalence relation ≡ of sub-
strings X and Y in an acyclic DFA G such that X ≡ Y iff the
following paths of the occurrences of X and Y in G are equal.
Mohri et al.’s equivalence class is identical to our equivalence
class [X]E,f when G = Tf. To see why, recall that l-mxmlf(X) = αX

is the shortest substring of Tf such that αX is left-maximal, where
α ∈ Σ∗. Therefore, X is a suffix of l-mxmlf(X) and the following
paths of the occurrences of X in Tf are identical to the following
paths of the occurrences of l-mxmlf(X) in Tf. Hence, in the case
where the input DFA G is in form of a forward trie Tf such that its
leaves are the accepting states, then Mohri et al.’s suffix automa-
ton is identical to our DAWG for Tf. Mohri et al. [36] showed the
following:
Theorem 3 (Corollary 2 of Ref. [36]). For any forward trie Tf

with n ≥ 3 nodes, |DAWG(Tf)|#Node ≤ 2n−3, independently of the

alphabet size.

We remark that Theorem 3 is immediate from Theorem 2 and
Fact 2. This is because there is a one-to-one correspondence be-
tween the nodes of DAWG(Tf) and the nodes of STree(Tb), which
means that |DAWG(Tf)|#Node = |STree(Tb)|#Node. Recall that the
bound in Theorem 3 is only on the number of nodes in DAWG(Tf).
We shall show later that the number of edges in DAWG(Tf) is
Ω(σn) in the worst case, which can be Ω(n2) for a large alphabet.

4.4 DAWGs for Backward Tries
The DAWG of a backward trie Tb, denoted DAWG(Tb), is a

(partial) DFA that recognizes all strings in Substr(Tb). The la-
bel of every edge of DAWG(Tb) is a single character from Σ.
DAWG(Tb) is formally defined as follows: For any substring
Y from Substr(Tb), let [Y]E,b denote the equivalence class w.r.t.
l-mxmlb(Y). There is a one-to-one correspondence between the
nodes of DAWG(Tb) and the equivalence classes [·]E,b, and hence
we will identify the nodes of DAWG(Tb) with their corresponding
equivalence classes [·]E,b.

See Fig. 7 for an example.
The nodes of DAWG(Tb) in Fig. 7 represent the equivalence

classes w.r.t. the left-maximal substrings in Tb of Fig. 1, e.g., ac

is left-maximal since it begins at a leaf in Tb, and hence it is the
longest string in the node that represents ac. This node also rep-
resents the suffix c of ac, since l-mxmlb(c) = ac.

The notions of primary edges, secondary edges, and the suffix
links of DAWG(Tb) are defined in a similar manner to DAWG(Tf),
by using the equivalence classes [Y]E,b for substrings Y in the

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Fig. 7 DAWG(Tb) for the backward trie Tb of Fig. 1.

Fig. 8 CDAWG(Tf) for the forward trie Tf of Fig. 1.

backward trie Tb.
Symmetries between Suffix Trees and DAWGs: The well-
known symmetry between the suffix trees and the DAWGs
(Refs. [9], [10], [13]) also holds in our case of forward
and backward tries. Namely, the suffix links of DAWG(Tf)
(resp. DAWG(Tb)) are the (reversed) edges of STree(Tb)
(resp. STree(Tf)). Also, the hard W-links of STree(Tf)
(resp. STree(Tb)) are the primary edges of DAWG(Tb) (resp.
DAWG(Tf)), and the soft W-links of STree(Tf) (resp. STree(Tb))
are the secondary edges of DAWG(Tb) (resp. DAWG(Tf)).

4.5 CDAWGs for Forward Tries
The compact directed acyclic word graph (CDAWG) of a for-

ward trie Tf, denoted CDAWG(Tf), is the edge-labeled DAG
where the nodes correspond to the equivalence class of Substr(Tf)
w.r.t. mxmlf(·). In other words, CDAWG(Tf) can be obtained
by merging isomorphic subtrees of STree(Tf) rooted at internal
nodes and merging leaves that are equivalent under mxmlf(·), or
by contracting non-branching paths of DAWG(Tf).

See Fig. 8 for an example.
The nodes of CDAWG(Tf) of Fig. 8 represent the equivalence

classes w.r.t. the maximal substrings in Tf of Fig. 1, e.g., aab is
maximal since it is both left- and right-maximal as described
above and hence it is the longest string in the node that repre-
sents aab. This node also represents the suffix ab of aab, since
mxmlf(ab) = aab.
Theorem 4 (Ref. [26]). For any forward trie Tf with n nodes

over a constant-size alphabet, |CDAWG(Tf)|#Node = O(n) and

|CDAWG(Tf)|#Edge = O(n).
We emphasize that the above result by Inenaga et al. [26] states

size bounds of CDAWG(Tf) only in the case where σ = O(1). We
will later show that this bound does not hold for the number of
edges, in the case of a large alphabet.

Fig. 9 CDAWG(Tb) for the backward trie Tb of Fig. 1.

4.6 CDAWGs for Backward Tries
The compact directed acyclic word graph (CDAWG) of a

backward trie Tb, denoted CDAWG(Tb), is the edge-labeled
DAG where the nodes correspond to the equivalence class of
Substr(Tb) w.r.t. mxmlb(·). Similarly to its forward trie coun-
terpart, CDAWG(Tb) can be obtained by merging isomorphic
subtrees of STree(Tb) rooted at internal nodes and merging
leaves that are equivalent under mxmlf(·), or by contracting non-
branching paths of DAWG(Tb).

See Fig. 9 for an example.
The nodes of CDAWG(Tb) in Fig. 9 represent the equivalence

classes w.r.t. the maximal substrings in Tf of Fig. 1, e.g., acb is
maximal since it is both left- and right-maximal in Tb and hence
it is the longest string in the node that represents acb. This node
also represents the suffix cb of acb, since mxmlf(cb) = acb. No-
tice that there is a one-to-one correspondence between the nodes
of CDAWG(Tf) in Fig. 9 and the nodes of CDAWG(Tb) in Fig. 8.
In other words, X is the longest string represented by a node in
CDAWG(Tf) iff Y = X is the longest string represented by a node
in CDAWG(Tb). For instance, aab is the longest string repre-
sented by a node of CDAWG(Tf) and baa is the longest string
represented by a node of CDAWG(Tb), and so on. Hence the
numbers of nodes in CDAWG(Tf) and CDAWG(Tb) are equal.

5. New Size Bounds on Indexing Forward/
Backward Tries

To make the analysis simpler, we assume each of the roots, the
one of Tf and the corresponding one of Tb, is connected to an aux-
iliary node ⊥ with an edge labeled by a unique character $ that
does not appear elsewhere in Tf or in Tb.

5.1 Size Bounds for DAWGs for Backward Tries
We begin with the size bounds for the DAWG for a backward

trie.
Theorem 5. For any backward trie Tb with n nodes,

|DAWG(Tb)|#Node = O(n2) and |DAWG(Tb)|#Edge = O(n2).
These upper bounds hold for any alphabet. For some back-

ward trie Tb with n nodes, |DAWG(Tb)|#Node = Ω(n2) and

|DAWG(Tb)|#Edge = Ω(n2). These lower bounds hold for a

constant-size or larger alphabet.

Proof. The bounds |DAWG(Tb)|#Node = O(n2) and
|DAWG(Tb)|#Node = Ω(n2) for the number of nodes imme-
diately follow from Fact 2 and Theorem 1.

Since each internal node in DAWG(Tb) has at least one out-
going edge and since |DAWG(Tb)|#Node = Ω(n2), the lower bound
|DAWG(Tb)|#Edge = Ω(n2) for the number of edges is immediate.

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

To show the upper bound for the number of edges, we consider
the suffix trie of Tb. Since there are O(n2) pairs of nodes in Tb,
the number of substrings in Tb is clearly O(n2). Thus, the num-
bers of nodes and edges in the suffix trie of Tb are O(n2). Hence
|DAWG(Tb)|#Edge = O(n2). �

5.2 Size Bounds for DAWGs for Forward Tries
In this subsection, we consider the size bounds for the DAWG

of a forward trie.
Theorem 6. For any forward trie Tf with n nodes,

|DAWG(Tf)|#Edge = O(σn). For some forward trie Tf with n

nodes, |DAWG(Tf)|#Edge = Ω(σn) which is Ω(n2) for a large

alphabet of size σ = Θ(n).
Proof. Since each node of DAWG(Tf) can have at most σ out-
going edges, the upper bound |DAWG(Tf)|#Edge = O(σn) follows
from Theorem 3.

To obtain the lower bound |DAWG(Tf)|#Edge = Ω(σn), we con-
sider Tf which has a broom-like shape such that there is a single
path of length n − σ − 1 from the root to a node v which has out-
going edges with σ distinct characters b1, . . . , bσ (see Fig. 10 for
illustration.) Since the root of Tf is connected with the auxiliary
node ⊥ with an edge labeled $, each root-to-leaf path in Tf repre-
sents $an−σ+1bi for 1 ≤ i ≤ σ. Now ak for each 1 ≤ k ≤ n−σ− 2
is left-maximal since it is immediately preceded by a and $. Thus
DAWG(Tf) has at least n−σ−2 internal nodes, each representing
ak for 1 ≤ k ≤ n−σ−2. On the other hand, each ak ∈ Substr(Tf) is
immediately followed by bi with all 1 ≤ i ≤ σ. Hence, DAWG(Tf)
contains σ(n−σ− 2) = Ω(σn) edges when n−σ− 2 = Ω(n). By
choosing e.g., σ ≈ n/2, we obtain DAWG(Tf) that contains Ω(n2)
edges. �
5.2.1 On Construction of DAWGs for Forward Tries

Mohri et al. (Proposition 4 of Ref. [36]) claimed that one can
construct DAWG(Tf) in time proportional to its size. The follow-
ing corollary is immediate from Theorem 6:
Corollary 3. The DAWG construction algorithm of Ref. [36] ap-

plied to a forward trie with n nodes must take at least Ω(n2) time

in the worst case for an alphabet of size σ = Θ(n).
Mohri et al.’s proof for Proposition 4 in Ref. [36] contains yet

another issue: They claimed that the number of redirections of
secondary edges during the construction of DAWG(Tf) can be
bounded by the number n of nodes in Tf, but this is not true.
Breslauer [11] already pointed out this issue in his construction
for STree(Tb) that is based on Weiner’s algorithm (recall that
Weiner’s suffix tree construction algorithm inherently builds the
DAWG for the reversed strings), and he overcame this difficulty
by using σ nearest marked ancestor data structures for all σ char-
acters, instead of explicitly maintaining soft W-links. This leads
to O(σn)-time and space construction for STree(Tb) that works in
O(n) time and space for constant-size alphabets. In Section 6 we
will present how to build an O(n)-space implicit representation of
DAWG(Tf) in O(n) time and working space for larger alphabets
of size σ = O(n).
5.2.2 Size Bounds of Smallest Automaton for Forward Tries

Consider the smallest DFA that accepts the set Suffix(Tf) of
suffixes of forward trie Tf. It is apparent that DAWG(Tf) is not
the smallest such DFA, since it can have multiple sinks as in

Fig. 10 Upper: The broom-like Tf for the lower bound of Theorem 6, where
n = 10 and σ = (n − 2)/2 = 4. Lower: DAWG(Tf) for this Tf has
Ω(n2) edges. The labels b1, . . . , b4 of the in-coming edges to the
sinks are omitted for better visualization.

the example of Fig. 6. However, our lower bound instance for
DAWG(Tf) also gives Ω(σn) transitions in the smallest DFA. See
Fig. 10. The smallest DFA that accepts the same language as the
DAWG in Fig. 10 is the one obtained by merging all the sink
nodes which correspond to the final states. However, this does
not reduce the number of edges (transitions) at all. Hence, this
smallest DFA still has Ω(σn) transitions.
Theorem 7. For any forward trie Tf with n nodes, the number of

transitions in the smallest DFA that accepts Suffix(Tf) is O(σn).
For some forward trie Tf with n nodes, the number of transitions

in the smallest DFA that accepts Suffix(Tf) is Ω(σn), which is

Ω(n2) for a large alphabet of size σ = Θ(n).
The same bounds hold for the smallest DFA that accepts the

set Substr(Tf) of substrings in forward trie Tf.

5.3 Size Bounds for CDAWGs for Backward Tries
We begin with the size bounds of the CDAWG for a backward

trie.
Theorem 8. For any backward trie Tb with n nodes,

|CDAWG(Tb)|#Node ≤ 2n − 3 and |CDAWG(Tb)|#Edge ≤ 2n − 4.

These bounds are independent of the alphabet size.

Proof. Since any maximal substring in Substr(Tb) is
right-maximal in Substr(Tb), by Theorem 2 we have
|CDAWG(Tb)|#Node ≤ |STree(Tb)|#Node ≤ 2n − 3 and
|CDAWG(Tb)|#Edge ≤ |STree(Tb)|#Edge ≤ 2n − 4. �

The bounds in Theorem 8 are tight: Consider an alphabet
{a1, . . . , a
log2 n�, b1, . . . , b
log2 n�, $} of size 2
log2 n� + 1 and a bi-
nary backward trie Tb with n nodes where the binary edges at
each depth d ≥ 2 are labeled by the sub-alphabet {ad, bd} of size 2
(see also Fig. 11). Because every suffix S ∈ Suffix(Tb) is maximal
in Tb, CDAWG(Tb) for this Tb contains n − 1 sinks. Also, since
for each suffix S in Tb there is a unique suffix S ′ � S that shares

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Fig. 11 Upper: A backward trie which gives the largest number of nodes
and edges in the CDAWG for backward tries. Here, the sub-
alphabets are {a, b} for depth 2, {c, d} for depth 3, and {e, f } for
depth 4. Lower: The CDAWG for the backward trie. Notice that
no isomorphic subtrees are merged under our definition of equiv-
alence classes. For instance, consider substrings c and d. Since
mxmlb(c) = r-mxmlb(l-mxmlb(c)) = r-mxmlb(c) = c � d =
r-mxmlb(l-mxmlb(d)) = r-mxmlb(d) = mxmlb(d), the isomorphic
subtrees rooted at c and d are not merged. By the same reasoning,
isomorphic subtrees (including sink nodes) are not merged in this
CDAWG.

the longest common prefix with S , CDAWG(Tb) for this Tb con-
tains n− 2 internal nodes (including the source). This also means
CDAWG(Tb) is identical to STree(Tb) for this backward trie Tb.

5.4 Size Bounds for CDAWGs for Forward Tries
Next, we turn our attention to the size bounds of the CDAWG

for a forward trie.
Theorem 9. For any forward trie Tf with n nodes,

|CDAWG(Tf)|#Node ≤ 2n− 3 and |CDAWG(Tf)|#Edge = O(σn). For

some forward trie Tf with n nodes, |CDAWG(Tf)|#Edge = Ω(σn)
which is Ω(n2) for a large alphabet of size σ = Θ(n).
Proof. It immediately follows from Fact 1-(a), Fact 2, and The-
orem 8 that |CDAWG(Tf)|#Node = |CDAWG(Tb)|#Node ≤ 2n − 3.
Since a node in CDAWG(Tf) can have at most σ out-going edges,
the upper bound |CDAWG(Tf)|#Edge = O(σn) of the number of
edges trivially holds. To obtain the lower bound, we consider the
same broom-like forward trie Tf as in Theorem 6. In this Tf, ak

for each 1 ≤ k ≤ n − σ − 2 is maximal and thus CDAWG(Tf)
has at least n − σ − 2 internal nodes each representing ak for
1 ≤ k ≤ n − σ − 2. By the same argument as Theorem 6,
CDAWG(Tf) for this Tf contains at least σ(n − σ − 2) = Ω(σn)
edges, which amounts to Ω(n2) for a large alphabet of size e.g.,
σ ≈ n/2. �

The upper bound of Theorem 9 generalizes the bound of The-
orem 4 for constant-size alphabets. Remark that CDAWG(Tf) for

the broom-like Tf of Fig. 10 is almost identical to DAWG(Tf), ex-
cept for the unary path $a that is compacted in CDAWG(Tf).

6. Constructing O(n)-size Representation of
DAWG(Tf) in O(n) time

We have seen that DAWG(Tf) for any forward trie Tf with n

nodes contains only O(n) nodes, but can have Ω(σn) edges for
some Tf over an alphabet of size σ ranging from Θ(1) to Θ(n).
Thus some DAWG(Tf) can have Θ(n2) edges for σ = Θ(n) (The-
orem 3 and Theorem 6). Hence, in general it is impossible to
build an explicit representation of DAWG(Tf) within linear O(n)-
space. By an explicit representation we mean an implementation
of DAWG(Tf) where each edge is represented by a pointer be-
tween two nodes.

Still, we show that there exists an O(n)-space implicit repre-
sentation of DAWG(Tf) for any alphabet of size σ ranging from
Θ(1) to Θ(n), that allows us O(logσ)-time access to each edge of
DAWG(Tf). This is trivial in case σ = O(1), and hence in what
follows we consider an alphabet of size σ such that σ ranges from
ω(1) to Θ(n). Also, we suppose that our alphabet is an integer al-
phabet Σ = [1..σ] of size σ. Then, we show that such an implicit
representation of DAWG(Tf) can be built in O(n) time and work-
ing space.

Based on the property stated in Section 4, constructing
DAWG(Tf) reduces to maintaining hard and soft W-links over
STree(Tb). Our data structure explicitly stores all O(n) hard W-
links, while it only stores carefully selected O(n) soft W-links.
The other soft W-links can be simulated by these explicitly stored
W-links, in O(logσ) time each.

Our algorithm is built upon the following facts which are
adapted from Refs. [16], [17]:
Fact 3. Let a be any character from Σ.

(a) If there is a (hard or soft) W-link Wa(V) for a node V in

STree(Tb), then there is a (hard or soft) W-linkWa(U) for

any ancestor U of V in STree(Tb).
(b) If two nodes U and V have hard W-linksWa(U) andWa(V),

then the lowest common ancestor (LCA) Z of U and V also

has a hard W-linkWa(Z).
In the following statements (c), (d), and (e), let V be any node of

STree(Tb) such that V has a soft W-linkWa(V) for a ∈ Σ.

(c) There is a descendant U of V s.t. U � V and U has a hard

W-linkWa(V).
(d) The highest descendant of V that has a hard W-link for char-

acter a is unique. This fact follows from (b).
(e) Let U be the unique highest descendant of V that has a hard

W-link Wa(U). For every node Z in the path from V to U,

Wa(Z) =Wa(U), i.e., the W-links of all nodes in this path

for character a point to the same node in STree(Tb).

6.1 Compact Representation of Weiner Links
We construct a micro-macro tree decomposition [2] of

STree(Tb) in a similar manner to Ref. [19], such that the nodes
of STree(Tb) are partitioned into O(n/σ) connected components
(called micro-trees), each of which contains O(σ) nodes. (see
Fig. 12). Such a decomposition always exists and can be com-
puted in O(n) time. The macro tree is the induced tree from the

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Fig. 12 Illustration for our micro-macro tree decomposition of STree(Tb).
The large circles represent micro tree of size O(σ) each, and the
square nodes are the roots of the micro trees. The macro tree is the
induced tree from the square nodes.

roots of the micro trees, and thus the macro tree contains O(n/σ)
nodes.

In every node V of the macro tree, we explicitly store all soft
and hard W-links from V . Since there can be at most σ W-links
from V , this requires O(n) total space for all nodes in the macro
tree. Let mt denote any micro tree. We compute the ranks of all
nodes in a pre-order traversal in mt. Let a ∈ Σ be any character
such that there is a node V in mt that has a hard W-linkWa(V).
Let Pmt

a denote an array that stores a sorted list of pre-order ranks
of nodes V in mt that have hard W-links for character a. Hence
the size of Pmt

a is equal to the number of nodes in mt that have
hard W-links for character a. For all such characters a, we store
Pmt

a in mt. The total size of these arrays for all the micro trees is
clearly O(n).

Let a ∈ Σ be any character, and V any node in STree(Tb) which
does not have a hard W-link for a. We wish to know if V has a
soft W-link for a, and if so, we want to retrieve the target node of
this link. Let mt denote the micro-tree to which V belongs. Con-
sider the case where V is not the root R of mt, since otherwise
Wa(V) is explicitly stored. IfWa(R) is nil, then by Fact 3-(a) no
nodes in the micro tree have W-links for character a. Otherwise
(ifWa(R) exists), then we can findWa(W) as follows:
(A) If the predecessor P of V exists in Pmt

a and P is an ancestor
of V , then we follow the hard W-link Wa(P) from P. Let
Q =Wa(P), and let c be the first character in the path from
P to V .
(i) If Q has an out-going edge whose label begins with c,

the child of Q below this edge is the destination of the
soft W-linkWa(V) from V for a (see Fig. 13).

(ii) Otherwise, then there is no W-link from V for a (see
Fig. 14).

(B) Otherwise, Wa(R) from the root R of mt is a soft W-link,
which is explicitly stored. We follow it and let U =Wa(R).
(i) If Z = slink(U) is a descendant of V , then U is the des-

tination of the soft W-link Wa(V) from V for a (see
Fig. 15).

(ii) Otherwise, then there is no W-link from V for a (see
Fig. 16).

In Figs. 13, 14, 15 and 16, the large circles show micro tree
mt and the square nodes are the roots of mt. We query the soft
W-link of V (gray nodes) for character a. The black nodes are the

Fig. 13 Case (A)-(i) of our soft W-link query algorithm.

Fig. 14 Case (A)-(ii) of our soft W-link query algorithm.

Fig. 15 Case (B)-(i) of our soft W-link query algorithm.

Fig. 16 Case (B)-(ii) of our soft W-link query algorithm.

nodes that have hard W-link for character a, and the red broken
arrows represent hard W-links for a of our interest. The green
broken arrows represent soft W-links for a of our interest.

Figures 13 and 14 respectively show the sub-cases of Case (A)-
(i) and Case (A)-(ii) where the root of the micro tree mt has a hard
W-link for a, but our algorithm works also in the sub-cases where
the root has a soft W-link for a.

We remark that in Case (B) there can be at most one path in the
micro tree mt containing nodes which have hard W-links for char-
acter a, as illustrated in Fig. 15 and in Fig. 16. This is because, if

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

there are two distinct such paths in mt, then by Fact 3-(b) the root
of mt must have a hard W-link for character a, which contradicts
our assumption for Case (B).

The correctness of this algorithm follows from Fact 3-(e).
Since each micro-tree contains O(σ) nodes, the size of Pmt

a is
O(σ) and thus the predecessor P of V in Pmt

a can be found in
O(logσ) time by binary search. We can check if one node is an
ancestor of the other node (or vice versa) in O(1) time, after stan-
dard O(n)-time preprocessing over the whole suffix tree. Hence,
this algorithm simulates soft W-link Wa(V) in O(logσ) time.
Since soft W-links correspond to secondary edges of DAWGs,
we obtain the following:
Lemma 1. Our data structure simulates secondary-edge traver-

sal on DAWG(Tf) for a forward trie with n nodes in O(logσ) time

each, and occupies O(n) space.

Note that our data structure for secondary-edge traversal on
DAWG(Tf) is as time and space efficient as a standard represen-
tation of labeled graphs where branches are implemented by bal-
anced binary search trees or arrays.

6.2 Construction Algorithm
What remains is how to preprocess the input trie to compute

the above data structure.
Lemma 2. Given a backward trie Tb with n nodes, we can com-

pute STree(Tb) with all hard W-links in O(n) time and space.

Proof. We build STree(Tb) without suffix links in O(n) time and
space [40]. We then add the suffix links to STree(Tb) as follows.
To each node v of Tb we allocate its rank in a breadth-first traver-
sal so that for any reversed edge strb(v, a, u), v has a smaller rank
than u. We will identify each node with its rank.

Let SA be the suffix array for Tb that corresponds to the leaves
of STree(Tb), where SA[i] = j iff the suffix in Tb beginning at
node j is the ith lexicographically smallest suffix. We compute
SA and its inverse array in O(n) time via STree(Tb), or directly
from Tb using the algorithm proposed by Ferragina et al. [15].
The suffix links of the leaves of STree(Tb) can easily be computed
in O(n) time and space, by using the inverse array of SA. Unlike
the case of a single string where the suffix links of the leaves form
a single chain, the suffix links of the leaves of STree(Tb) form a
tree, but this does not incur any problem in our algorithm. To
compute the suffix links of the internal nodes of STree(Tb), we
use the following standard technique that was originally designed
for the suffix tree of a single string (see e.g., Ref. [33]): For any
internal node V in STree(Tb), let 	V and rV denote the smallest
and largest indices in SA such that SA[V ..rV] is the maximal
interval corresponding to the suffixes which have string V as a
prefix. It then holds that slink(V) = U, where U is the lowest
common ancestor (LCA) of slink(V) and slink(rV). For all nodes
V in Tb, the LCA of slink(V) and slink(rV) can be computed in
O(n) time and space. After computing the suffix links, we can
easily compute the character labels of the corresponding hard W-
links in O(n) time. �
Lemma 3. We can compute, in O(n) time and space, all W-links

of the macro tree nodes and the arrays Pmt
a for all the micro trees

mt and characters a ∈ Σ.

Proof. We perform a pre-order traversal on each micro tree mt.

At each node V visited during the traversal, we append the pre-
order rank of V to array Pmt

a iff V has a hard W-link Wa(V) for
character a. Since the size of mt is O(σ) and since we have as-
sumed an integer alphabet [1..σ], we can compute Pmt

a for all
characters a in O(σ) time. It takes O(n

σ
· σ) = O(n) time for

all micro trees.
The preprocessing for the macro tree consists of two steps.

Firstly, we need to compute soft W-links from the macro tree
nodes (recall that we have already computed hard W-links from
the macro tree nodes by Lemma 2). For this purpose, in the above
preprocessing for micro trees, we additionally pre-compute the
successor of the root R of each micro tree mt in each non-empty
array Pmt

a . By Fact 3-(d), this successor corresponds to the unique
descendant of R that has a hard W-link for character a. As above,
this preprocessing also takes O(σ) time for each micro tree, re-
sulting in O(n) total time. Secondly, we perform a bottom-up
traversal on the macro tree. Our basic strategy is to “propagate”
the soft W-links in a bottom up fashion from lower nodes to up-
per nodes in the macro tree (recall that these macro tree nodes
are the roots of micro trees). In so doing, we first compute the
soft W-links of the macro tree leaves. By Fact 3-(c) and -(e),
this can be done in O(σ) time for each leaf using the succes-
sors computed above. Then we propagate the soft W-links to the
macro tree internal nodes. The existence of soft W-links of in-
ternal nodes computed in this way is justified by Fact 3-(a), how-
ever, the destinations of some soft W-links of some macro tree
internal nodes may not be correct. This can happen when the cor-
responding micro trees contain hard W-links (due to Fact 3-(e)).
These destinations can be modified by using the successors of the
roots computed in the first step, again due to Fact 3-(e). Both of
our propagation and modification steps take O(σ) time for each
macro tree node of size O(σ), and hence, it takes a total of O(n)
time. �

We have shown the following:
Theorem 10. Given a forward trie Tf of size n over an integer al-

phabet Σ = [1..σ] with σ = O(n), we can construct in O(n) time

and working space an O(n)-space representation of DAWG(Tf)
that simulates edge traversals in O(logσ) time each.

6.3 Bidirectional Searches on Tries
A consequence of Theorem 10 is a space-efficient data struc-

ture that allows for bidirectional searches of patterns on a given
trie.
Theorem 11. Our O(n)-size implicit representation of Weiner

links of STree(Tb) allows bidirectional searches of a given pat-

tern P of length m in O(m logσ + occ) time, where occ is the

number of occurrences of P in the input trie.

Proof. We initially set P← ε and start at the root of STree(Tb).
Suppose we have added k (0 ≤ k < m) characters to P in a

bidirectional manner, and that we know the locus for the current
P over STree(Tb).

If a new character a is appended to P, then we perform a stan-
dard edge traversal on STree(Tb), in O(logσ) time. Then we set
P ← Pa and continue to the next character that will be either
prepended or appended to P.

If a new character b is prepended to P, then there are two sub-

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

cases. If the locus for P is an explicit node of STree(Tb), then we
perform the aforementioned algorithm and find the correspond-
ing Weiner link for b, in O(logσ) time. Otherwise (if the locus
for P is an implicit node of STree(Tb)), then let V be the nearest
explicit ancestor of the locus for P. We perform the aforemen-
tioned algorithm on V and find the destination U of the Weiner
link Wb(V). Let c be the first character of the edge from V to
the locus for P. We find the out-going edge of U whose edge
label begins with c in O(logσ) time. Then, the locus for bP is
at the |P| − |V |th character of this edge. Since each edge label in
STree(Tb) is implemented by a pointer to a corresponding path in
Tb, we can move to the locus for bP in O(1) time (using the level
ancestor query on the trie). Then we set P ← bP and continue to
the next character that will be either prepended or appended to P.

After adding all m characters, we know the locus for the fi-
nal pattern P in STree(Tb). Then we use a standard technique of
traversing the subtree rooted at the locus in STree(Tb), and takes
all its leaves. Each of these leaves corresponds to the occ occur-
rences of P in the trie. This takes O(occ) time. �

To the best of our knowledge, this is the first indexing structure
on tries that permits efficient bidirectional pattern searches.

7. Concluding Remarks

This paper dealt with the labeled tree indexing problem. We
presented tight upper and lower bounds on the sizes of the index-
ing structures (i.e. suffix trees, DAWGs, CDAWGs, suffix arrays,
affix trees, and affix arrays) built on forward and backward tries.

In addition, we proposed a non-trivial O(n)-space implicit rep-
resentation of the DAWG for a forward trie for any alphabet of
size σ = O(n), of which a naı̈ve explicit representation must use
Ω(n2) space in the worst case. We also showed how to construct
such a representation in O(n) time for an integer alphabet of size
σ = O(n). The proposed data structure can also solve the bidirec-
tional pattern search problem over a trie.

We believe that all these results have revealed a much clearer
view of the labeled tree indexing problem. In addition, some of
the quadratic lower bounds were generalized to the labeled DAG
indexing problem, which provided negative answers to the open
questions from the literature [14], [36].

There remain intriguing open questions:
• Direct construction of CDAWG(Tb): It is not difficult to

construct CDAWG(Tb) from STree(Tb), but whether or not
there is an efficient algorithm that builds CDAWG(Tb) di-

rectly from a given backward trie Tb remains open.
• Implicit representation of CDAWG(Tf): Can we generalize

the ideas from Section 6 to CDAWG(Tf), so that it can be
stored in O(n) space for a large alphabet of size σ = O(n)?

• Bidirectional BWT for tries: Our bidirectional indexing
structure for a trie is not succinct or compressed. Is there
a version of BWT for tries that is capable of bidirectional
searches with succinct or compressed space?

• Tight size bound on indexing structures for labeled DAGs:
In Section 1.3 we discussed that our quadratic lower bounds
also hold for the DAWG or its SDD version built on a labeled
DAG. We conjecture that a stronger lower bound holds for
some labeled DAGs.

Acknowledgments The author thanks Dany Breslauer (de-
ceased) for fruitful discussions at the initial stage of this work.
The author is also grateful to an anonymous referee for pointing
out an error in the previous version of this paper and for sug-
gesting use of micro-macro tree decomposition. This research is
supported by KAKENHI grant number JP17H01697 and by JST
PRESTO Grant Number JPMJPR1922.

References

[1] Aho, A.V. and Corasick, M.: Efficient string matching: An Aid to Bib-
liographic Search, Comm. ACM, Vol.18, No.6, pp.333–340 (1975).

[2] Alstrup, S., Secher, J.P. and Spork, M.: Optimal On-Line Decremen-
tal Connectivity in Trees, Inf. Process. Lett., Vol.64, No.4, pp.161–164
(1997).

[3] Apostolico, A. and Lonardi, S.: Off-line compression by greedy tex-
tual substitution, Proc. IEEE, Vol.88, No.11, pp.1733–1744 (2000).

[4] Belazzougui, D. and Cunial, F.: Fast Label Extraction in the CDAWG,
Proc. SPIRE 2017, pp.161–175 (2017).

[5] Belazzougui, D. and Cunial, F.: Fully-Functional Bidirectional
Burrows-Wheeler Indexes and Infinite-Order De Bruijn Graphs, Proc.
CPM 2019, pp.10:1–10:15 (2019).

[6] Belazzougui, D., Cunial, F., Kärkkäinen, J. and Mäkinen, V.: Ver-
satile Succinct Representations of the Bidirectional Burrows-Wheeler
Transform, Proc. ESA 2013, pp.133–144 (2013).

[7] Bender, M.A. and Farach-Colton, M.: The Level Ancestor Problem
simplified, Theor. Comput. Sci., Vol.321, No.1, pp.5–12 (2004).

[8] Bieganski, P., Riedl, J., Carlis, J.V. and Retzel, E.F.: Generalized Suf-
fix Trees for Biological Sequence Data: Applications and Implemen-
tation, Proc. HICSS 1994, pp.35–44 (1994).

[9] Blumer, A., Blumer, J., Haussler, D., Ehrenfeucht, A., Chen, M.T. and
Seiferas, J.: The Smallest Automaton Recognizing the Subwords of a
Text, Theor. Comput. Sci., Vol.40, pp.31–55 (1985).

[10] Blumer, A., Blumer, J., Haussler, D., Mcconnell, R. and Ehrenfeucht,
A.: Complete inverted files for efficient text retrieval and analysis, J.
ACM, Vol.34, No.3, pp.578–595 (1987).

[11] Breslauer, D.: The Suffix Tree of a Tree and Minimizing Sequen-
tial Transducers, Theoretical Computer Science, Vol.191, No.1–2,
pp.131–144 (1998).

[12] Breslauer, D. and Italiano, G.F.: Near real-time suffix tree construc-
tion via the fringe marked ancestor problem, J. Discrete Algorithms,
Vol.18, pp.32–48 (2013).

[13] Crochemore, M. and Rytter, W.: Text Algorithms, Oxford University
Press (1994).

[14] Denzumi, S., Tsuda, K., Arimura, H. and Minato, S.: Compact Com-
plete Inverted Files for Texts and Directed Acyclic Graphs Based on
Sequence Binary Decision Diagrams, Proc. PSC 2013, pp.157–167
(2013).

[15] Ferragina, P., Luccio, F., Manzini, G. and Muthukrishnan, S.: Com-
pressing and indexing labeled trees, with applications, J. ACM, Vol.57,
No.1, pp.4:1–4:33 (2009).

[16] Fischer, J. and Gawrychowski, P.: Alphabet-Dependent String Search-
ing with Wexponential Search Trees (2013).

[17] Fischer, J. and Gawrychowski, P.: Alphabet-Dependent String Search-
ing with Wexponential Search Trees, CPM 2015, pp.160–171 (2015).

[18] Fujishige, Y., Tsujimaru, Y., Inenaga, S., Bannai, H. and Takeda, M.:
Computing DAWGs and Minimal Absent Words in Linear Time for
Integer Alphabets, Proc. MFCS 2016, pp.38:1–38:14 (2016).

[19] Gawrychowski, P.: Simple and efficient LZW-compressed multiple
pattern matching, J. Discrete Algorithms, Vol.25, pp.34–41 (2014).

[20] Gog, S., Karhu, K., Kärkkäinen, J., Mäkinen, V. and Välimäki, N.:
Multi-pattern matching with bidirectional indexes, J. Discrete Algo-
rithms, Vol.24, pp.26–39 (2014).

[21] Gusfield, D.: Algorithms on Strings, Trees, and Sequences, Cambridge
University Press (1997).

[22] Gusfield, D. and Stoye, J.: Linear time algorithms for finding and
representing all the tandem repeats in a string, J. Comput. Syst. Sci.,
Vol.69, No.4, pp.525–546 (2004).

[23] Hammer, J. and Schneider, M.: Data Structures for Databases, Hand-
book of Data Structures and Applications, Chapman and Hall/CRC
(2004).

[24] Hendrian, D., Inenaga, S., Yoshinaka, R. and Shinohara, A.: Efficient
dynamic dictionary matching with DAWGs and AC-automata, Theor.
Comput. Sci., Vol.792, pp.161–172 (2019).

[25] Inenaga, S.: Suffix Trees, DAWGs and CDAWGs for Forward and
Backward Tries., Accepted for LATIN 2020 (2020).

[26] Inenaga, S., Hoshino, H., Shinohara, A., Takeda, M. and Arikawa, S.:

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Construction of the CDAWG for a Trie, Proc. PSC 2001, pp.37–48
(2001).

[27] Kimura, D. and Kashima, H.: Fast Computation of Subpath Kernel for
Trees, Proc. ICML 2012 (2012).

[28] Kosaraju, S.R.: Efficient Tree Pattern Matching (Preliminary Version),
Proc. FOCS 1989, pp.178–183 (1989).

[29] Kucherov, G. and Rusinowitch, M.: Matching a Set of Strings with
Variable Length don’t Cares, Theor. Comput. Sci., Vol.178, No.1-2,
pp.129–154 (1997).

[30] Kucherov, G., Salikhov, K. and Tsur, D.: Approximate string match-
ing using a bidirectional index, Theor. Comput. Sci., Vol.638, pp.145–
158 (2016).

[31] Lam, T.W., Li, R., Tam, A., Wong, S.C.K., Wu, E. and Yiu, S.: High
Throughput Short Read Alignment via Bi-directional BWT, Proc.
BIBM 2009, pp.31–36 (2009).

[32] Loekito, E., Bailey, J. and Pei, J.: A binary decision diagram based
approach for mining frequent subsequences, Knowl. Inf. Syst., Vol.24,
No.2, pp.235–268 (2010).

[33] Mäkinen, V., Belazzougui, D., Cunial, F. and Tomescu, A.I.: Genome-
Scale Algorithm Design: Biological Sequence Analysis in the Era of
High-Throughput Sequencing, Cambridge University Press (2015).

[34] Mauri, G. and Pavesi, G.: Algorithms for pattern matching and discov-
ery in RNA secondary structure, Theor. Comput. Sci., Vol.335, No.1,
pp.29–51 (2005).

[35] Minato, S.: Zero-Suppressed BDDs for Set Manipulation in Combi-
natorial Problems, Proc. DAC 1993, pp.272–277 (1993).

[36] Mohri, M., Moreno, P.J. and Weinstein, E.: General suffix automa-
ton construction algorithm and space bounds, Theor. Comput. Sci.,
Vol.410, No.37, pp.3553–3562 (2009).

[37] Muthukrishnan, S.: Efficient algorithms for document retrieval prob-
lems, Proc. SODA 2002, pp.657–666 (2002).

[38] Nakashima, Y., I, T., Inenaga, S., Bannai, H. and Takeda, M.: The
Position Heap of a Trie, Proc. SPIRE 2012, pp.360–371 (2012).

[39] Schnattinger, T., Ohlebusch, E. and Gog, S.: Bidirectional search in
a string with wavelet trees and bidirectional matching statistics, Inf.
Comput., Vol.213, pp.13–22 (2012).

[40] Shibuya, T.: Constructing the Suffix Tree of a Tree with a Large Al-
phabet, IEICE Trans. Fundamentals of Electronics, Communications
and Computer Sciences, Vol.E86-A, No.5, pp.1061–1066 (2003).

[41] Stoye, J.: Affix trees, Technical Report Report 2000-04, Universität
Bielefeld (2000).

[42] Strothmann, D.: The affix array data structure and its applications
to RNA secondary structure analysis, Theor. Comput. Sci., Vol.389,
No.1-2, pp.278–294 (2007).

[43] Weiner, P.: Linear pattern-matching algorithms, Proc. 14th IEEE Ann.
Symp. Switching and Automata Theory, pp.1–11 (1973).

[44] Welch, T.A.: A Technique for High Performance Data Compression,
IEEE Computer, Vol.17, pp.8–19 (1984).

[45] Witten, I.H., Moffat, A. and Bell, T.C.: Managing Gigabytes: Com-
pressing and Indexing Documents and Images, Second Edition, Mor-
gan Kaufmann (1999).

[46] Yamamoto, J., I, T., Bannai, H., Inenaga, S. and Takeda, M.: Faster
Compact On-Line Lempel-Ziv Factorization, Proc. STACS 2014,
pp.675–686 (2014).

[47] Ziv, J. and Lempel, A.: Compression of Individual Sequences via
Variable-length Coding, IEEE Trans. Information Theory, Vol.24,
No.5, pp.530–536 (1978).

Shunsuke Inenaga Shunsuke Inenaga
received a master’s degree in science at
Kyushu University in 2002, and received
a PhD in science at Kyushu University in
2003. From 2003, he worked as a pos-
doc researcher for Japan Science Tech-
nology Agency, University of Helsinki,
Kyoto University, and Japan Society for

the Promotion of Science. He became a tenure track research
fellow at Kyushu University in 2006, and then became an asso-
ciate professor at Kyushu University in 2011. Since 2019, he
has also been a researcher for PRESTO, Japan Science and Tech-
nology Agency. His main research interests are algorithms and
data structures for string processing, text compression, and ap-
plied word combinatorics.

c© 2021 Information Processing Society of Japan

