
Electronic Preprint for Journal of Information Processing Vol.28

Regular Paper

PSPACE-completeness of
Pulling Blocks to Reach a Goal

Joshua Ani1,a) Sualeh Asif1,b) Erik D. Demaine1,c) Yevhenii Diomidov1,d)

Dylan Hendrickson1,e) Jayson Lynch1,f) Sarah Scheffler2,g) Adam Suhl3,h)

Received: January 1, 2020, Accepted: September 10, 2020

Abstract: We prove PSPACE-completeness of all but one problem in a large space of pulling-block problems where
the goal is for the agent to reach a target destination. The problems are parameterized by whether pulling is optional,
the number of blocks which can be pulled simultaneously, whether there are fixed blocks or thin walls, and whether
there is gravity. We show NP-hardness for the remaining problem, Pull?-1FG (optional pulling, strength 1, fixed
blocks, with gravity).

Keywords: motion planning, hardness, puzzles

1. Introduction

In the broad field of motion planning, we seek algorithms
for actuating or moving mobile agents (e.g., robots) to achieve
certain goals. In general settings, this problem is PSPACE-
complete [3], [15], but much attention has been given to finding
simple variants near the threshold between polynomial time and
PSPACE-complete; see, e.g., Ref. [13]. One interesting and well-
studied case, arising in warehouse maintenance, is when a sin-
gle robot with O(1) degrees of freedom navigates an environment
with obstacles, some of which can be moved by the robot (but
which cannot move on their own). Research in this direction was
initiated in 1988 [20].

A series of problems in this space arise from computer puz-
zle games, where the robot is the agent controlled by the player,
and the movable obstacles are blocks. The earliest and most fa-
mous such puzzle game is Sokoban, first released in 1982 [19].
Much later, this game was proved PSPACE-complete [4], [13]. In
Sokoban, the agent can push movable 1 × 1 blocks on a square
grid, and the goal is to bring those blocks to target locations. Later
research in pushing-block puzzles considered the simpler goal of
simply getting the robot to a target location, proving various ver-
sions NP-hard, NP-complete, or PSPACE-complete [5], [9], [11].

In this paper, we study the Pull series of motion-planning

1 MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar
St., Cambridge, MA 02139, USA

2 Boston University, Boston, MA, USA
3 Algorand, Boston, MA, USA
a) joshuaa@mit.edu
b) sualeh@mit.edu
c) edemaine@mit.edu
d) diomidov@mit.edu
e) dylanhen@mit.edu
f) jaysonl@mit.edu
g) sscheff@bu.edu
h) asuhl@mit.edu

problems [14], [16], where the agent can pull (instead of push)
movable 1 × 1 blocks on a square grid. Figure 1 shows a sim-
ple example. This type of block-pulling mechanic (sometimes
together with a block-pushing mechanic) appears in many real-
world video games, such as Legend of Zelda, Tomb Raider,
Portal, and Baba Is You.

We study several different variants of Pull, which can be com-
bined in arbitrary combination:
(1) Optional/forced pulls: In Pull!, every agent motion that

can also pull blocks must pull as many as possible (as in
many video games where the player input is just a direc-
tion). In Pull?, the agent can choose whether and how many

Fig. 1 A pulling-block problem. The robot is the agent, the flag is the goal
square, the light gray blocks can be moved, and the bricks are fixed
in place. Robot and flag icons from Font Awesome under CC BY 4.0
License.

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Table 1 Summary of our results.

Problem Forced Strength Features Gravity Our result Previous best
Pull?-kF no k ≥ 1 fixed blocks no PSPACE-complete [§2] NP-hard [16]
Pull?-∗F no ∞ fixed blocks no PSPACE-complete [§2] NP-hard [16]
Pull!-kF yes k ≥ 1 fixed blocks no PSPACE-complete [§2]
Pull!-∗F yes ∞ fixed blocks no PSPACE-complete [§2]
Pull?-1FG no k = 1 fixed blocks yes NP-hard [§4]
Pull?-1WG no k = 1 thin walls yes PSPACE-complete [§3.2]
Pull?-kFG no k ≥ 2 fixed blocks yes PSPACE-complete [§3.2]
Pull?-∗FG no ∞ fixed blocks yes PSPACE-complete [§3.2]
Pull!-kFG yes k ≥ 1 fixed blocks yes PSPACE-complete [§3.3]
Pull!-∗FG yes ∞ fixed blocks yes PSPACE-complete [§3.3]

blocks to pull. Only the latter has been studied in the litera-
ture, where it is traditionally called Pull; we use the explicit
“?” to indicate optionality and distinguish from Pull!.

(2) Strength: In Pull-k, the agent can pull an unbroken hori-
zontal or vertical line of up to k pullable blocks at once. In
Pull-∗, the agent can pull any number of blocks at once.

(3) Fixed blocks/walls: In Pull-F, the board may have fixed
1 × 1 blocks that cannot be traversed or pulled. In Pull-W,
the board may have fixed thin (1×0) walls; this is more gen-
eral because a square of thin walls is equivalent to a fixed
block. Thin walls were introduced in Ref. [7].

(4) Gravity: In Pull-G, all movable blocks fall downward af-
ter each agent move. Gravity does not affect the agent’s
movement.

Table 1 summarizes our results: for all variants that include
fixed blocks or walls, we prove PSPACE-completeness for any
strength, with optional or forced pulls, and with or without grav-
ity, with the exception of Pull?-1FG for which we only show
NP-hardness.

The only previously known hardness result for this family of
problems is NP-hardness for both Pull?-kF and Pull?-∗F [16].
In some cases, our results are stronger than the best known re-
sults for the corresponding Push (pushing-block) problem; see
Ref. [14]. More complex variants PullPull (where pulled blocks
slide maximally), PushPull (where blocks can be pushed and
pulled), and Storage Pull (where the goal is to place multiple
blocks into desired locations) are also known to be PSPACE-
complete [7], [14].

Our reductions are from Asynchronous Nondeterministic Con-
straint Logic (NCL) [13], [18] and planar 1-player motion plan-
ning [2], [10]. In Section 2, we reduce from NCL to prove
PSPACE-hardness of all nongravity variants. In Section 3, we use
the motion-planning-through-gadgets framework [10] to prove
PSPACE-completeness of most variants with gravity, including
all variants with forced pulling and variants with optional pulling
and either thin walls or fixed blocks with k ≥ 2. These reduc-
tions use two particular gadgets for 1-player motion planning, the
newly introduced nondeterministic locking 2-toggle (a variant of
the locking 2-toggle from Ref. [10]) and the 3-port self-closing
door (one of the self-closing doors from Ref. [2]). Although the
latter gadget is proved hard in Ref. [2], for completeness, we give
a more succinct proof in Appendix A.1. In Section 4, we prove
NP-hardness for the one remaining case of Pull?-1FG, again re-
ducing from 1-player planar motion planning, this time with an
NP-hard gadget called the crossing NAND gadget [2].

2. Pulling Blocks with Fixed Blocks is
PSPACE-complete

In this section, we show the PSPACE-completeness of all vari-
ants of pulling-block problems we have defined without gravity,
namely Pull?-kF, Pull?-kW, Pull!-kF, and Pull!-kW for k ≥ 1,
and Pull?-∗F, Pull?-∗W, Pull!-∗F, and Pull!-∗W. We do this
through a reduction from Nondeterministic Constraint Logic [13],
which we describe briefly before moving on to the main proof.

2.1 Asynchronous Nondeterministic Constraint Logic
Nondeterministic Constraint Logic (NCL) takes place on

constraint graphs: a directed graph where each edge has weight
1 or 2. Weight-1 edges are called red; weight-2 edges are called
blue. The “constraint” in NCL is that each vertex must maintain
in-weight at least 2. A move in NCL is a reversal of the direction
of one edge, while maintaining compliance with the constraint.

In asynchronous NCL, the process of switching the orientation
of an edge does not happen instantaneously, but instead it takes a
positive amount of time, and it is possible to be in the process of
switching several edges simultaneously. When an edge is in the
process of being reversed, it is not oriented toward either vertex.
Viglietta [18] showed that this model is equivalent to the regu-
lar (synchronous) model, because there is no benefit to having an
edge in the intermediate unoriented state. In this work, we only
use the asynchronous NCL model; any mention of NCL should
be understood to mean asynchronous NCL.

An instance of Nondeterministic Constraint Logic consists
of a constraint graph G and an edge e of G, called the target
edge. The output is yes if there is a sequence of moves on G that
reverses the direction of e, and no otherwise. Nondeterminis-
tic Constraint Logic is PSPACE-complete, even for planar con-
straint graphs that have only two types of vertices: AND (two red
edges, one blue edge) and OR (three blue edges). We will reduce
from the planar, AND/OR, asynchronous version of NCL to show
pulling-block problems without gravity PSPACE-hard. For more
description of NCL, including a proof of PSPACE-completeness,
the reader is referred to Ref. [13].

2.2 NCL Gadgets in Pulling Blocks
In order to embed an NCL constraint graph into Pull?-kF, we

need three components, corresponding to NCL edges (which can
attach to AND and OR gadgets in all necessary orientations, and
that allows the player to win if the winning edge is flipped), AND
vertices, and OR vertices. In each of these gadgets, we will

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 3 Edge gadget for building NCL constraint graph in Pull?-kF. This edge encodes an NCL wire point-
ing to the right (opposing the blocks, which are moved to the left). This figure shows the winning
edge, which if flipped allows reaching the goal; nonwinning edges are the same but without the
flag.

Fig. 2 Diode gadget, which can be repeatedly traversed from left to right but
never from right to left. In diagrams to follow it will be represented
by the diode symbol.

show that if the underlying NCL constraint is violated, then the
agent will be “trapped”, meaning that the state is in an unrecov-
erable configuration, a concept used in several previous blocks
games [4], [13]. This occurs when the agent makes a pull move
after which no set of moves will lead to a solution, generally be-
cause the agent has trapped itself in a way that no pull can be
made at all (or only a few more pull moves may be made, and all
of them lead to a state such that there are no more pull moves).

Diode Gadget. Before describing the three main gadgets, we
describe a helper gadget, the diode, shown in Fig. 2. The diode
can be repeatedly traversed in one direction but never the other.
It was introduced in Ref. [16].

In the next three sections, we describe the three main gadgets
in turn.
2.2.1 Edge Gadget

The edge gadget, shown in Fig. 3, encodes a single edge (of
either weight) from NCL into Pull?-kF. The blocks can shift by
exactly one space; whether they are moved left or right (or up
or down) corresponds to the NCL edge pointing right or left (or
down or up) respectively. (Note that the orientation of the NCL
edge opposes the direction of the blocks.) The ends of the wires
will be in vertex gadgets, which are explained below.

The diodes on the sides are to allow the agent to traverse be-
tween edges without going through a vertex gadget. The posi-
tion and orientation of the diode gadgets prevent the agent from
pulling a block out of the edge gadget without trapping itself.

The edge shown in Fig. 3 only goes in a straight line; it may
turn corners via the corner gadget in Fig. 4. We fix small mis-
alignment of wires at the gadgets, not on the wires.

This wire gadget also allows encoding the win condition in the
target edge: the finish tile can be in a small room coming out of
the wall, blocked by the blocks’ current placement, as shown in

Fig. 4 Gadget for allowing wires to turn corners. Currently oriented with
the NCL wire pointed left/down.

Fig. 3; it can then be reached only if the edge can be reversed
(Without the flag, Fig. 3 shows an ordinary edge gadget).

The agent could try to cheat by pulling a block out of the wire,
by pulling a block up into the downward-facing diode at the top-
left of the gadget, or symmetrically by pulling a block down into
the upward-facing diode at the bottom-right of the gadget. If the
agent does so, then we claim that the game enters an unrecover-
able configuration. First, the agent cannot return to the wire gad-
get the way it came, because the block it just pulled is blocking
the way for forward traversal. Second, the agent cannot traverse
the adjacent diode because it points the wrong way. Therefore,
the agent cannot pull blocks without reaching an unrecoverable
configuration, except for the moves which correspond to revers-
ing the NCL edge.

The player may partially reverse an NCL edge and exit before
completing the reversal. This leaves a gap of two empty squares
between consecutive movable blocks somewhere in the edge gad-
get. This is why we reduce from asynchronous NCL; while in this
partially reversed state, the NCL edge is not oriented toward ei-
ther vertex, and each vertex gadget behaves as though the edge
were oriented away from it.
2.2.2 OR gadget

The OR gadget, shown in Fig. 5, consists of an area fully en-
closed by walls except at three connections to edge gadgets. The
agent can enter and exit the enclosed area through an edge con-
nection when the blocks in the edge are pulled away from the
OR gadget (i.e., when the NCL edge points in). When the edge
blocks are pulled inward (i.e., NCL edge points out), the agent
cannot escape the enclosed area through that edge gadget. Thus,

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 5 Gadget for an NCL OR vertex. Currently, the left edge points out,
the right edge points in, and the top edge points out.

when inside the enclosed area, the agent may pull an edge block
in (i.e., start switching the NCL edge to point out), but if both
other NCL edges already point out, the agent will be trapped in-
side the gadget. This enforces the constraint that at least one edge
must point toward the OR vertex.

This gadget can vary in size: if some edge gadgets are slightly
misaligned, the middle part can be made bigger or smaller to
accommodate—the interior of the gadget needs only to be fully
enclosed except at the incident edge gadgets.
Lemma 2.1. The OR gadget enforces exactly the constraints of

an NCL OR vertex.

Proof. The NCL OR constraint is that at least one edge must
point into the vertex at all times. If the constraint is satisfied,
then at least one wire of blocks is pushed out, and the agent can
escape through that edge gadget. If the agent tries to violate the
constraint, then the first move it must take in order to make the
last edge point away from the vertex is to pull the last block of
the corresponding edge gadget inward. This puts the gadget into
an unrecoverable condition: the agent is now trapped in the OR
gadget. �
2.2.3 AND gadget

An NCL AND vertex has two red (weight 1) edges and one
blue (weight 2) edge. Its constraint is that the blue edge may
point outward only if both red edges point inward. Our AND
vertex gadget in Pull?-kF is shown in Fig. 6.

Like the OR gadget, the AND gadget traps the agent inside the
gadget if the agent tries to violate the NCL constraint. Two of the
edge connections, one red and one blue, are like those of the OR
gadget, allowing the agent to escape the gadget into the edge if the
blocks have been pulled outward (i.e., if the NCL edge points in-
ward). The remaining red edge connection is different: the agent
can never escape into this edge. Instead, when this edge’s blocks
are pulled outward (i.e., when the NCL edge points inward), it
unblocks a path allowing the agent to traverse from the blue-exit
side of the gadget to the red-exit side of the gadget.

An agent inside the gadget trying to pull the blue edge block
inward (i.e., start switching the blue NCL edge to point outward)
is trapped on the blue-exit side of the gadget unless this special
red edge has its blocks pulled outward (i.e., the red NCL edge
points inward); even then, the agent is still trapped inside the gad-
get unless the other red edge also has its blocks pulled outward
to allow escape (i.e., the other red NCL edge also points inward).
Thus an agent trying to switch the blue NCL edge outward is

Fig. 6 Gadget for an NCL AND vertex, currently with all three edges point-
ing in. The lower diode allows traversal from right to left, and is
blocked if the right red edge is pointing away; the upper diode al-
lows traversal from left to right. If the (top) blue edge is pointing in,
the agent can escape through that edge gadget. To escape the AND
gadget after making the blue edge point away by pulling the bottom-
most blue block down, both red edges must be pointing in, so that
the agent can go through the bottom diode and escape through the
left red edge.

Fig. 7 The agent has just started to flip the blue NCL edge outward by
pulling a blue block inward. Both red NCL edges are pointed inward,
so the agent can traverse the lower diode and escape out the left red
edge. Note that if either red NCL edge were pointed outward, escape
would be impossible.

trapped unless both red NCL edges point inward, enforcing the
AND condition. This is illustrated in Fig. 7.

The AND gadget contains two reusable one-way gadgets. The
lower diode is blocked if the right red edge points away, trapping

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 8 The agent has just started to flip the left red NCL edge outward by
pulling the red block inward. Because the blue NCL edge points in-
ward, the agent can traverse the top diode and escape out the blue
edge.

the agent if the blue edge also points away, but allowing the agent
to traverse from right to left and escape if both red edges point
in. The upper diode allows the agent to travel from the red-exit
side to the blue-exit side regardless of the state of the third edge;
this is necessary to ensure the agent can escape out the blue exit
(if the blue edge points in) after flipping either red edge to point
away, as illustrated in Fig. 8.

As with the OR gadget, if the incident edge gadgets are aligned
with different parity, this gadget can be expanded slightly to ac-
commodate the edge gadgets.
Lemma 2.2. The AND gadget enforces exactly the constraints of

an NCL AND vertex.

Proof. The NCL AND constraint is that either the blue edge
(top) or both red edges (bottom left and right) point toward the
vertex. If both red edges are pointing in, then the agent can pull
the bottom blue block in and then escape through the left red edge
gadget by going through the bottom diode. If the blue edge is
pointing in, then the agent can always escape through the blue
edge gadget. The agent can orient the left red edge out by enter-
ing through the red-exit, going through the top diode, and leaving
through the blue exit; and it can orient the right red edge out by
entering and leaving through the blue exit.

The agent can attempt to violate the constraint by making both
the blue edge and at least one red edge point away from the AND
vertex. We consider the two red edges separately. First, if both
the left red edge and the blue edge point out, then both exit points
from the gadget are blocked, so the agent is trapped. Second, sup-
pose that the constraint becomes violated by both the blue edge
and the right red edge pointing away. Then the agent has just
pulled either the bottom blue block on the top red block into the
AND gadget, and the agent is in the right side of the gadget. The
agent is trapped: the blue exit is blocked by the blue edge point-

ing away, the bottom diode is blocked by the red edge pointing
away, and the top diode cannot be traversed from right to left. �

2.3 Proof of PSPACE-completeness
We first observe that every pulling-block problem we consider

is in PSPACE.
Lemma 2.3. Every pulling-block problem defined in Section 1 is

in PSPACE.

Proof. The entire configuration while playing on instance of a
pulling-block problem can be stored in polynomial space (e.g.,
as a matrix recording whether each cell is empty, a fixed block,
a movable block, the agent’s location, or the finish tile). There
is a simple nondeterministic algorithm which guesses each move
and keeps track of the configuration using only polynomial space,
accepting if the agent reaches the goal square. Thus the prob-
lem is in NPSPACE, so by Savitch’s Theorem [17] it is also in
PSPACE. �
Theorem 2.4. Pull?-kF and Pull!-kF PSPACE-complete for

k ≥ 1 and k = ∗.
Proof. Lemma 2.3 gives us containment in PSPACE. For
PSPACE-hardness, we reduce from asynchronous NCL (as de-
fined in Section 2.1).

Given a planar AND/OR NCL graph, we construct an instance
of Pull?-kF or Pull!-kF as follows. First, embed the graph in a
grid graph. Scale this grid graph by enough to fit our gadgets;
20 × 20 suffices. At each vertex, place the appropriate AND or
OR vertex gadget. Place edge gadgets in the appropriate configu-
ration along each edge, using corner gadgets on turns. Adjust the
vertex gadgets to accommodate the alignment of the edge gadgets
incident to them. Finally, place the goal tile in the edge gadget
corresponding to the target edge so that it is accessible only if the
target edge is flipped, and place the agent on any empty tile.

The agent can walk through edge gadgets to visit any NCL
edge or vertex, and by Lemmas 2.1 and 2.2, flip edges in accor-
dance with the rules of NCL. Ultimately, it can reach the goal tile
if and only if the target edge of the NCL instance can be reversed.

In our construction, the agent never has the opportunity to pull
more than 1 block at a time. Thus the reduction works for Pull?-
kF for any k ≥ 1, including k = ∗. In addition, the agent never has
to choose not to pull a block when taking a step, so the reduction
works for Pull!-kF as well as Pull?-kF. �
Corollary 2.5. Pull?-kW and Pull!-kW are PSPACE-complete

for k ≥ 1 and k = ∗.
Proof. A fixed block can be simulated using four thin walls
drawn around a single tile, so our constructions can be built using
thin walls instead of fixed blocks. Formally, this is a reduction
from Pull?-kF to Pull?-kW and a reduction from Pull!-kF to
Pull!-kW. �

3. Pull?-kFG is PSPACE-complete for k ≥
2 and Pull!-kFG is PSPACE-complete for
k ≥ 1

In this section, we show PSPACE-completeness results for
most of the pulling-block variants with gravity. In Section 3.1, we
introduce and prove results about 1-player motion planning from

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 9 State space of the locking 2-toggle [10].

the motion-planning-through-gadgets framework introduced in
Ref. [8], which will be the basis for the later proofs. In Sec-
tion 3.2, we show PSPACE-completeness for Pull?-kFG with
k ≥ 2, for Pull?-∗FG, for Pull?-kWG with k ≥ 1, and for Pull?-
∗WG. In Section 3.3, we show PSPACE-completeness for Pull!-
kFG with k ≥ 1, and for Pull!-∗FG. The one case missing from
this collection is Pull?-1FG, which we prove NP-hard later in
Section 4.

3.1 1-player Motion Planning
1-player motion planning refers to the general problem of

planning an agent’s motion to complete a path through a series
of gadgets whose state and traversability can change when the
agent interacts with them. In particular, a gadget is a constant-
size set of locations, states, and traversals, where each traversal
indicates that the agent can move from one location to another
while changing the state of the gadget from one state to another.
A system of gadgets is constructed by connecting the locations
of several gadgets with a graph, which is sometimes restricted to
be planar. The decision problem for 1-player motion planning is
whether the agent, starting from a specified stating location, can
follow edges in the graph and transitions within gadgets to reach
some goal location.

Our results use the known results that 1-player planar motion
planning is PSPACE-complete for the following gadgets:
(1) The locking 2-toggle, shown in Fig. 9, is a three-state two-

tunnel reversible deterministic gadget. In the middle state,
both tunnels can be traversed in one direction, switching to
one of two leaf states. Each leaf state only allows the tran-
sition back across that tunnel in the opposite direction, re-
turning the gadget to the middle state. Traversing one tunnel
“locks” the other side from being used until the prior traver-
sal is reversed. 1-player planar motion planning with lock-
ing 2-toggles was shown PSPACE-complete in Ref. [10]. In
Section 3.1.1, we strengthen the result in Ref. [10] by show-
ing that 1-player motion planning with locking 2-toggle re-
mains hard even if the initial configuration of the system has
all gadgets in leaf (locked) states.

(2) The nondeterministic locking 2-toggle, shown in Fig. 10, is
a four-state gadget where each state has two transitions, each
across the same tunnel. The top pair of states each allow a

Fig. 10 State space of the nondeterministic locking 2-toggle.

Fig. 11 State space of the 3-port self-closing door, used in the Pull!-kFG
reduction.

single traversal downward, and allow the agent to choose ei-
ther of the two bottom states for the gadget. Similarly, the
bottom pair of states each allow a single traversal upward to
one of the top states. We can imagine this as being simi-
lar to the locking 2-toggle if the tunnel to be taken next is
guessed ahead of time: the bottom state of the locking 2-
toggle is split into two states which together allow the same
traversals, but only if the agent picks the correct one ahead
of time.
In Section 3.1.1, we show that 1-player motion planning with
the nondeterministic locking 2-toggle is PSPACE-complete.

(3) The door gadget has three directed tunnels called open,
close, and traverse. The traverse tunnel is open or closed
depending on the state of the gadget and does not change the
state. Traversing the open or close tunnel opens or closes
the traverse tunnel, respectively. 1-player motion planning
with door gadgets was shown PSPACE-complete in Ref. [1]
and explored more thoroughly (in particular, proved hard for
most planar cases) in Ref. [2].

(4) The 3-port self-closing door, shown in Fig. 11, is a gadget
with a tunnel that becomes closed when the agent traverses
it and a location that the agent can visit to reopen the tun-
nel. It has an opening port, which opens the gadget, and
a self-closing tunnel, which is the tunnel that closes when
traversed.
In Appendix A.1, we prove that 1-player planar motion
planning with the 3-port self-closing door is PSPACE-
complete. A more general result on self-closing doors can
be found in Ref. [2], but we include this more succinct proof
for completeness and conciseness.

3.1.1 Nondeterministic Locking 2-toggle
In this section, we prove that 1-player motion planning with

the nondeterministic locking 2-toggle is PSPACE-complete. We

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 12 Constructing a locking 2-toggle from a nondeterministic locking 2-
toggle. It is currently in the unlocked state. The nondeterministic
locking 2-toggles are in leaf states (top states in Fig. 10).

also show that 1-player motion planning with the locking 2-toggle
remains PSPACE when the gadgets are restricted to start in leaf
states.

We use the construction shown in Fig. 12 to show simultane-
ously that locking 2-toggles starting in leaf states can simulate a
locking 2-toggle starting in a nonleaf state, and nondeterminis-
tic locking 2-toggles can simulate a locking 2-toggle. This con-
struction consists of two nondeterministic locking 2-toggles and
a 1-toggle. A 1-toggle is a two-state, two-location, reversible,
deterministic gadget where each state admits a single (opposite)
transition between the locations and these transitions flip the state.
It can be trivially simulated by taking a single tunnel of a locking
2-toggle or nondeterministic locking 2-toggle.
Theorem 3.1. 1-player planar motion planning with the nonde-

terministic locking 2-toggle is PSPACE-complete.

Proof. In the construction shown in Fig. 12, the agent can en-
ter through either of the top lines; suppose they enter on the left.
Other than backtracking, the agent’s only path is across the bot-
tom 1-toggle, then up the leftmost tunnel, having chosen the state
of the nondeterministic locking 2-toggle which makes that tunnel
traversable.

Now the only place the agent can usefully enter the construc-
tion is the leftmost line. The agent can only go down the leftmost
tunnel, up the 1-toggle, and out the top right entrance, again mak-
ing the appropriate nondeterministic choice when traversing the
left gadget.

Symmetrically, if (from the unlocked state) the agent enters the
top right, they must exit the bottom right, and the next traversal
must go from the bottom right to the top right and return the con-
struction to the unlocked state. Thus this construction simulates
a locking 2-toggle. �

If we instead build the above construction with locking 2-
toggles in leaf states, then all three of the locking 2-toggles used
are in leaf states (the 1-toggle is one tunnel of a locking 2-toggle).
A very similar argument as the nondeterministic locking 2-toggle
construction shows this gadget also simulates a locking 2-toggle.
Thus, given a 1-player motion planning problem with locking 2-
toggles, we can replace all of the locking 2-toggles in nonleaf
states with this gadget to obtain an instance where all starting
gadgets are in leaf states.

Fig. 13 1-toggle in Pull?-2FG.

Fig. 14 Locking 2-toggle in Pull?-2FG.

Corollary 3.2. 1-player motion planning with the locking 2-

toggle where all of the locking 2-toggles start in leaf states is

PSPACE-complete.

3.2 Pull?-kFG
In this section, we show that several versions of pulling-block

problems with optional pulling and gravity are PSPACE-complete
by a reduction from 1-player motion planning with nondetermin-
istic locking 2-toggles, shown PSPACE-hard in Section 3.1.1.

We begin with a construction of a 1-toggle, and then use those
and an intermediate construction to build a nondeterministic 2
toggle.

1-toggle. A 1-toggle is a gadget with a single tunnel,
traversable in one direction. When the agent traverses the tun-
nel of a 1-toggle, the direction that the tunnel can be traversed is
flipped to the other direction, meaning that the agent must back-
track and return the way it came in order to be able to traverse it
the first way again.

Our 1-toggle construction in Pull?-kFG for k ≥ 2 is shown in
Fig. 13. In the state shown, it can only be traversed from left to
right by pulling both blocks to the left. This traversal flips the
direction that the gadget can be traversed—it can now only be
traversed from right to left.

Nondeterministic Locking 2-toggle. Our construction of a
nondeterministic locking 2-toggle, shown in Fig. 14, uses two 1-
toggles plus a connecting section at the top.

The configuration shown in Fig. 14 is a leaf state. The right
tunnel is traversable from top right to bottom right. If the agent
traverses that tunnel, it can choose whether to pull the top pair
of blocks to the right (because pulling is optional), corresponding
to the nondeterministic choice in the nondeterministic locking 2-
toggle. Both 1-toggles will be in the state where they can be tra-

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 15 Locking 2-toggle in Pull?-1WG.

versed from bottom (outside) to top (inside). One of these paths
will be blocked by the top pair of blocks and the other will be
traversable, depending on whether the agent chose to pull those
blocks. Traversing the traversable path then puts the gadget in a
leaf state, either the one shown or its reflection.

It is possible for the agent to pull only one block instead of two,
but this can only prevent future traversals, so it never benefits the
agent.
Theorem 3.3. Pull?-kFG is PSPACE-complete for k ≥ 2 and

k = ∗.
Proof. Lemma 2.3 gives containment in PSPACE. For hard-
ness, we reduce from 1-player planar motion planning with the
nondeterministic locking 2-toggle, shown PSPACE-hard in The-
orem 3.1. We embed any planar network of gadgets in a grid,
and replace each nondeterministic locking 2-toggle with the con-
struction described above in the appropriate state. The resulting
pulling-block problem is solvable if and only if the motion plan-
ning problem is.

This reduction works for Pull?-kFG for any k ≥ 2 including
k = ∗, because the player only ever has the opportunity to pull
2 blocks at a time. This proof requires optional pulling because
the player must choose whether to pull blocks while traversing a
nondeterministic locking 2-toggle. �
Corollary 3.4. Pull?-kWG is PSPACE-complete for k ≥ 1 and

k = ∗.
Proof. With thin walls, the tunnels can be separated by a thin
wall instead of a fixed block, which means that only one block is
required in each of the toggles. This is shown in Fig. 15. The rest
of the proof follows in the same manner, demonstrating PSPACE-
completeness of Pull?-kWG for k ≥ 1. �

3.3 Pull!-kFG
In this section, we show PSPACE-completeness for

pulling-block problems with forced pulling and gravity, us-
ing a reduction from 1-player planar motion planning with the
3-port self-closing door, shown PSPACE-hard in Theorem A.1.1.
Theorem 3.5. Pull!-kFG is PSPACE-complete for k ≥ 1 and

k = ∗.
Proof. Lemma 2.3 gives containment in PSPACE. We show
PSPACE-hardness by a reduction from 1-player planar motion
planning with the 3-port self-closing door. It suffices to construct
a 3-port self-closing door in Pull!-kFG.

Fig. 16 A diode in Pull!-kFG.

Fig. 17 A 3-port self-closing door in Pull!-kFG.

First, we construct a diode, shown in Fig. 16. The agent cannot
enter from the right. If the agent enters from the left, it must pull
the left block to the left to advance. If it pulls the left block left
and then exits, they still cannot enter from the right, so doing so
is useless. The agent then advances and is forced to pull the left
block back to its original position. The agent then must pull the
right block left to advance, and must actually advance because the
way back is blocked. As the agent exits the gadget, it is forced
to pull the right block back to its original position. Therefore,
the agent can always cross the gadget from left to right and never
from right to left, simulating a diode.

Using this diode, we then construct a 3-port self-closing door,
shown in Fig. 17; the diode icons indicate the diode shown in
Fig. 16. The bottom is exit-only. In the closed state, the agent
should not enter from the top because it would become trapped
between a block and the wrong end of a diode. The agent can
enter from the right, pull the block 1 tile right, and leave, open-
ing the gadget. In the open state, the agent can enter from the
top and exit out the bottom, and is forced to pull the block back
to its original position, closing the gadget. So this construction
simulates a 3-port self-closing door.

Because the player never has the opportunity to pull multiple
blocks, this reduction works for all k ≥ 1 including k = ∗. �

4. Pull?-1FG is NP-hard

In this section, we show NP-hardness for Pull?-1FG by re-
ducing from 1-player planar motion planning with the crossing

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 18 Single-use one-way gadget in Pull?-1FG that initially allows
traversal from left-to-right and then prevents traversal in both di-
rections.

Fig. 19 Crossing NAND gadget in Pull-1FG allowing traversal either from
the top-left to the bottom-right, or from the top-right to the bottom-
left. After being traversed once, the entire gadget becomes impass-
able in any direction.

NAND gadget from Ref. [2]. A crossing NAND gadget is a
three-state gadget with two crossing tunnels, where traversing ei-
ther tunnel permanently closes the other tunnel. 1-player planar
motion planning with the crossing NAND gadget is shown NP-
hard in Ref. [2], Lemma 4.9, based on the constructions in
Refs. [5], [12] which originally reduce from Planar 3-Coloring.
Theorem 4.1. Pull?-1FG is NP-hard.

Proof. We reduce from 1-player planar motion planning with
the crossing NAND gadget [2], Lemma 4.9. First we first con-
struct a “single-use” one-way gadget, shown in Fig. 18. This
gadget can initially can be crossed in one way, but then becomes
impassable in both directions.

Figure 19 shows our construction of the crossing NAND gad-
get. Single-use one-way gadgets enforce that the agent must en-
ter through one of the top paths. The agent must pull two blocks
to enter the gadget; these blocks end up stacked in the vertical
tunnel on top of the block below. The agent cannot exit via the
bottom tunnel underneath its entry tunnel: the agent can pull one
block into the slot on the bottom, and then can pull one block one
square, but that still leaves the third block of the stack blocking
off the exit path. The agent cannot exit via the other top path,
because it is blocked by the single-use one-way gadget. The only
path remaining is for the agent to cross diagonally by pulling the
single block in the lower layer into the slot, revealing a path to
the exit opposite where the agent entered. After leaving, both the

entry tunnel and exit tunnel are impassable because the single-use
one-way gadgets have become impassable. If the agent later en-
ters via the other entry tunnel, the agent will be trapped, because
it will not be able to leave via the tunnel that was “collapsed” in
the initial entry. �

We leave open the question of whether Pull?-1FG is in NP or
PSPACE-hard.

5. Open Problems

There are several open problems remaining related to the
pulling-block problems considered in this paper.
(1) What is the complexity of Pull?-1FG (the last remaining

problem in Table 1)? We leave a gap between NP-hardness
and containment in PSPACE.

(2) What is the complexity of pulling-block puzzles without
fixed blocks (say, on a rectangular board)? With block push-
ing, one can generally construct effectively fixed blocks by
putting enough blocks together. This technique no longer
works in the block-pulling context.

(3) Do all of these variants remain PSPACE-hard when we ask
about storage (can the player place blocks covering some
set of squares?) or reconfiguration (where blocks are distin-
guishable and must reach a desired configuration) instead of
reachability? The storage question for Pull?-kFG for k ≥ 1
and Pull?-∗FG has been proved PSPACE-hard [14].

(4) What about the studied variants applied to PushPull (where
blocks can be pushed and pulled) and PullPull (where
blocks must be pulled maximally until the robot backs
against another block)? Standard versions are proved
PSPACE-complete in Refs. [7], [14], but variations with
mandatory pulling, gravity, and/or no fixed blocks all remain
open.

Acknowledgments This work was initiated during open
problem solving in the MIT class on Algorithmic Lower Bounds:
Fun with Hardness Proofs (6.892) in Spring 2019. We thank the
other participants of that class for related discussions and pro-
viding an inspiring atmosphere. We also thank the anonymous
referees for helpful comments.

References

[1] Aloupis, G., Demaine, E.D., Guo, A. and Viglietta, G.: Classic
Nintendo Games are (Computationally) Hard, Theoretical Computer
Science, Vol.586, pp.135–160 (2015).

[2] Ani, J., Bosboom, J., Demaine, E.D., Diomidov, Y., Hendrickson, D.
and Lynch, J.: Walking through Doors is Hard, even without Stair-
cases: Proving PSPACE-hardness via Planar Assemblies of Door Gad-
gets, Proc. 10th International Conference on Fun with Algorithms
(FUN 2020), Favignana, Italy (2020).

[3] Canny, J.: Some algebraic and geometric computations in PSPACE,
Proc. 20th Annual ACM Symposium on Theory of Computing, pp.460–
469 (online), DOI: 10.1145/62212.62257 (1988).

[4] Culberson, J.: Sokoban is PSPACE-complete, Proc. International
Conference on Fun with Algorithms, pp.65–76 (1998).

[5] Demaine, E.D., Demaine, M.L., Hoffmann, M. and O’Rourke, J.:
Pushing Blocks is Hard, Computational Geometry: Theory and Ap-
plications, Vol.26, No.1, pp.21–36 (2003).

[6] Demaine, E.D., Demaine, M.L. and O’Rourke, J.: PushPush and Push-
1 are NP-hard in 2D, Proc. 12th Annual Canadian Conference on
Computational Geometry (CCCG 2000), pp.211–219 (2000).

[7] Demaine, E.D., Grosof, I. and Lynch, J.: Push-Pull Block Puzzles are
Hard, Proc. 10th International Conference on Algorithms and Com-
plexity, Lecture Notes in Computer Science, Vol.10236, pp.177–195

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

(2017).
[8] Demaine, E.D., Grosof, I., Lynch, J. and Rudoy, M.: Computational

Complexity of Motion Planning of a Robot through Simple Gadgets,
Proc. 9th International Conference on Fun with Algorithms (FUN
2018), pp.18:1–18:21 (2018).

[9] Demaine, E.D., Hearn, R.A. and Hoffmann, M.: Push-2-F is PSPACE-
Complete, Proc. 14th Canadian Conference on Computational Geom-
etry, pp.31–35 (2002).

[10] Demaine, E.D., Hendrickson, D. and Lynch, J.: Toward a General
Theory of Motion Planning Complexity: Characterizing Which Gad-
gets Make Games Hard, Proc. 11th Conference on Innovations in The-
oretical Computer Science, Seattle, Washington, arXiv:1812.03592
(2020).

[11] Demaine, E.D., Hoffmann, M. and Holzer, M.: PushPush-k is
PSPACE-Complete, Proc. 3rd International Conference on Fun with
Algorithms (FUN 2004), pp.159–170 (2004).

[12] Friedman, E.: Pushing blocks in gravity is NP-hard, Unpub-
lished manuscript (2002), available from 〈https://www2.stetson.edu/
˜efriedma/papers/gravity.pdf〉.

[13] Hearn, R.A. and Demaine, E.D.: Games, Puzzles, and Computation,
A K Peters/CRC Press (2009).

[14] Pereira, A.G., Ritt, M. and Buriol, L.S.: Pull and PushPull are
PSPACE-complete, Theoretical Computer Science, Vol.628, pp.50–61
(2016).

[15] Reif, J.H.: Complexity of the mover’s problem and generalizations,
Proc. 20th Annual Symposium on Foundations of Computer Science,
pp.421–427 (online), DOI: 10.1109/SFCS.1979.10 (1979).

[16] Ritt, M.: Motion planning with pull moves, arXiv:1008.2952 (2010),
available from 〈https://arXiv.org/abs/1008.2952〉.

[17] Savitch, W.J.: Relationships between nondeterministic and determin-
istic tape complexities, Journal of Computer and System Sciences,
Vol.4, No.2, pp.177–192 (1970).

[18] Viglietta, G.: Partial Searchlight Scheduling is Strongly
PSPACE-complete, Proc. 25th Canadian Conference on Com-
putational Geometry, Waterloo, Canada (online), available from
〈http://cccg.ca/proceedings/2013/papers/paper 2.pdf〉 (2013).

[19] Wikipedia: Sokoban, available from 〈https://en.wikipedia.org/wiki/
Sokoban〉.

[20] Wilfong, G.: Motion planning in the presence of movable obsta-
cles, Annals of Mathematics and Artificial Intelligence, Vol.3, No.1,
pp.131–150 (1991). Originally appeared at SoCG 1988.

Fig. A·1 3-port self-closing door simulating the gadget on the right, where each port opens the door of
the same color (the top and third-from-top open the top door, and the others open the bottom
door).

Appendix

A.1 3-port Self-Closing Door

Ani et al. [2] proved PSPACE-completeness of 1-player planar
motion planning with many types of self-closing door gadgets
and all of their planar variations. For completeness, we give a
proof specific to the 3-port self-closing door gadget in this sec-
tion. Our proof is more succinct because it does not consider
other variants of the gadget. The reduction is from 1-player mo-
tion planning with the door gadget from Ref. [1].
Theorem A.1.1. 1-player planar motion planning with the 3-port

self-closing door is PSPACE-hard.

Proof. We will show that the 3-port self-closing door planarly
simulates a crossover, which lets us ignore planarity. We will
then show that the 3-port self-closing door simulates the door
gadget. Because 1-player motion planning with the door gad-
get is PSPACE-hard [1], so is 1-player motion planning with the
3-port self-closing door, and because it simulates a crossover, so
is 1-player planar motion planning with the 3-port self-closing
door. Along the way, we will construct a self-closing door with
multiple door and opening ports as well as a diode.

Diode. We can simulate a diode (one-way tunnel which is al-
ways traversable) by connecting the opening port to the input of
the self-closing tunnel. The agent can always go to the opening
port and then through the self-closing tunnel, but can never go the
other way because the self-closing tunnel is directed.

Port Duplicator. The construction shown in Fig. A·2 simu-
lates a self-closing door with two equivalent opening ports. If the
agent enters from the top, it can open only one of the upper gad-
gets, then open the lower gadget, and then must exit the same way
it came. Note, this same idea can be used to construct more than
two ports, which will be needed later.

We use these to simulate an intermediate gadget composed of

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. A·3 3-port self-closing door simulating a crossover.

Fig. A·2 3-port self-closing door simulating a version of it that has 2 open-
ing ports. Opening ports are shown in green. A dotted self-closing
tunnel is closed, and a solid self-closing tunnel is open.

two of self-closing doors each connected to two opening ports in
a particular order arrangement, shown in Fig. A·1. If the agent
enters from port 1 or 4, it will open door E or F, respectively, and
then leave. If the agent enters from port 2, it can open doors A,
B, and C. If it then traverses door B and opens door E, it will get
stuck because both B and D are closed. So the agent cannot open
door E and exit. Instead, it can traverse doors B and A, ending
up back at port 2 with no change except that door C is open. En-
tering port 2 or 3 always gives the agent an opportunity to open
door C, so leaving door C open does not help. So the only useful
path after entering port 2 is to traverse door C. The agent is then
forced to go right and can open door F. Then it is forced to tra-
verse door B. Again if the agent opens door E, it will be stuck, so
the agent traverses door A instead and returns to port 2, leaving
door F open. Similarly, if the agent enters from port 3, the only
useful thing it can do is open door E and return to port 3.

Crossover. This intermediate gadget can simulate a directed
crossover, shown in Fig. A·3. If the agent enters at the top left,
it can open the left door on the top gadget, open both doors on
the bottom gadget, and then exit the bottom right while closing
all three opened doors. If the agent opens both doors on the top
gadget it will get stuck. Similarly if the agent enters the bottom

Fig. A·4 Directed crossover simulating an undirected crossover.

Fig. A·5 3-port self-closing door simulating a gadget with 2 self-closing
tunnels.

left, all it can do is exit the top right. The directed crossover
can simulate an undirected crossover, as in Fig. A·4 and shown in
Ref. [6].

Door Duplicator. Now, we use this crossover to simulate a
gadget with two self-closing doors controlled by the same open-
ing port, as shown in Fig. A·5. This gadget has two states, open
and closed. Both doors are either open or closed and going

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. A·6 Simulation of the door gadget in Ref. [1] using a gadget with 3
opening ports and 2 self-closing tunnels.

through either door closes both of them. The construction is sim-
ilar to the construction for the port duplicator, but goes through a
tunnel instead.

Door Gadget. Finally, we triplicate the opening port by adding
a third entrance to the construction in Fig. A·2 similar to the other
two, and use these ports to simulate a door gadget as shown in
Fig. A·6. Recall the whole three-port two-door gadget has only
two states, open and closed. The agent can open both doors from
any of the open ports and going across either self-closing door
will close both doors. If the agent enters from port O, it can open
the doors and leave. If the agent enters from port T0 and the gad-
get is open, the agent can traverse the door and then reopen it
using the third port. The agent then leaves at port T1. If the agent
enters from port C0, it can open the gadget and then must traverse
the bottom tunnel and leave at port C1, closing the gadget. �

Joshua Ani is an undergraduate student
at MIT studying computer science, ex-
pecting to graduate in 2021. His research
interests are computer graphics and com-
putational complexity of motion planning.

Sualeh Asif is an undergraduate student
at MIT expecting to graduate in 2022. His
research interests include computational
complexity, efficient computing and top-
ics at the intersection of computing and
number theory.

Erik D. Demaine received a B.Sc. de-
gree from Dalhousie University in 1995,
and M.Math. and Ph.D. degrees from
the University of Waterloo in 1996 and
2001, respectively. Since 2001, he has
been a professor in computer science at
the Massachusetts Institute of Technol-
ogy. His research interests range through-

out algorithms, from data structures for improving web searches
to the geometry of understanding how proteins fold to the com-
putational difficulty of playing games. In 2003, he received a
MacArthur Fellowship as a “computational geometer tackling
and solving difficult problems related to folding and bending—
moving readily between the theoretical and the playful, with a
keen eye to revealing the former in the latter”. He cowrote a book
about the theory of folding, together with Joseph O’Rourke (Geo-

metric Folding Algorithms, 2007), and a book about the computa-
tional complexity of games, together with Robert Hearn (Games,

Puzzles, and Computation, 2009). With his father Martin, his in-
terests span the connections between mathematics and art.

Yevhenii Diomidov is a graduate student
in computer science at MIT studying com-
putational geometry and origami, and the
computational complexity of games and
puzzles under Erik Demaine. Yevhenii re-
ceived a B.Sc. degree in mathematics and
physics from MIT in 2019.

Dylan Hendrickson is a graduate stu-
dent in computer science at MIT studying
the computational complexity of motion
planning problems under Erik Demaine.
Dylan received a B.Sc. degree in mathe-
matics and physics from MIT in 2019.

Jayson Lynch received a Ph.D. from
MIT 2020 for work on the computational
complexity of motion planning problems
under Erik Demaine. Jayson is now a
Postdoctoral Researcher at the Univer-
sity of Waterloo continuing to do work
on computational geometry and origami,
graph algorithms, resource efficient com-

puting, and the computational complexity of games and puzzles.

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Sarah Scheffler is a graduate student
studying cryptography at Boston Univer-
sity working with Prof. Mayank Varia.
Her research interests include zero-
knowledge proofs, secure messaging, and
topics at the intersection of computer sci-
ence and law.

Adam Suhl received a B.S. in Mathematics from MIT in 2016
and is currently a Ph.D. student at UC San Diego. His interests
include cryptography, complexity, and theoretical computer sci-
ence.

c© 2020 Information Processing Society of Japan

