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Abstract: An associative magic square is a magic square such that the sum of any 2 cells at symmetric positions with
respect to the center is constant. The total number of associative magic squares of order 7 is enormous and thus, it
is not realistic to obtain the number by simple backtracking. As a recent result, Ripatti reported the number of semi-
magic squares of order 6 (the magic squares of 6 × 6 without diagonal sum conditions) in 2018. In this research, with
reference to Ripatti’s method of enumerating semi-magic squares, we have calculated the total number of associative
magic squares of order 7. There are exactly 1,125,154,039,419,854,784 associative magic squares of order 7 excluding
symmetric patterns.
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1. Introduction

A magic square of order n is an n × n square grid such that the
sums of the numbers in each row, column, and diagonal are equal.
The semi-magic square and associative magic square are special
kinds of magic squares. A semi-magic square is a magic square
without the diagonal sum condition. An associative magic square
is a magic square such that the sum of any 2 cells at symmetric
positions with respect to the center is constant. Figure 1 shows
examples of these squares.

The known numbers of these squares are summarized in Ta-
ble 1. These squares remain of the same kind even after rotating
and reflecting their entries. Thus, the table represents numbers
of essentially different squares relative to these operations. The
history of magic squares is long. It is said that a magic square of
order 3, called lo shu, was described in China around 2200 BC.
880 magic squares of order 4 were found by Bernard Frenenicle
de Bessy in 1693 [2], and Kathleen Ollerenshaw and Hermann
Bondi proved that no other magic square of order 4 exists [4]. The
number of magic squares of order 5 was calculated by Richard
Schroeppel by using a backtracking algorithm in 1973, and the
results were published by Martin Gardner in 1976 [5]. The num-
ber of magic squares of order 5 was calculated in 1973, but even
after more than 40 years, the number of magic squares of order 6
remains unknown.

According to Walter Trump’s website [7], Mutsumi Suzuki cal-
culated the number of associative magic squares of order 5 to be
48,544. In 1919, Charles Planck proved that there are no associa-
tive magic squares of order 6 [3]. Although it is known that there
are many associative magic squares of order 7, the exact number
was not known until this report.

The number of 7×7 associative magic squares was estimated to
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Fig. 1 Example of magic squares.

Table 1 Number of magic squares.

n semi-magic magic associative magic
3 9 1 1
4 68,688 880 48
5 579,043,051,200 275,305,224 48,544
6 94,590,660,245,399,996,601,600 (unsolved) 0
7 (unsolved) (unsolved) (this research)

be within the range of (1.125151± 0.000051)× 1018 with a prob-
ability of 99% by Walter Trump, who used a method combining
Monte Carlo and backtracking [7]. Since there are approximately
1018 associative squares of order 7, we cannot calculate the exact
number in a realistic amount of time with simple backtracking
algorithms, which require a computational time at least propor-
tional to the number of solutions.

On the other hand, Ripatti recently reported the number of
semi-magic squares of order 6 in 2018 [1]. Ripatti divided the
square into two parts and enumerated each part. Then, he com-
bined the enumerations of each part. This method proved to be
faster than simple backtracking.

In this paper, we extend Ripatti’s method for semi-magic
squares to associative magic squares and propose an algorithm
to calculate the number of associative magic squares of order 7.
Section 2 describes the properties of associative squares. Next,
Section 3 outlines Ripatti’s method of counting 6× 6 semi-magic
squares. Section 4 describes our algorithm to enumerate associa-
tive magic squares of order 7, and Section 5 shows the results of

We have reported an extended abstract of this paper at JCDCG3 2019 in
Tokyo
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the calculation.

2. Preliminary

In this paper, we refer to an n×n matrix such that natural num-
bers 1, 2, · · · , n2 appear once only as a square (of order n). Let Xi j

be the i-th row, j-th column element of the square. An associa-
tive magic square of order 7 is a magic square such that the sum
of any 2 cells at symmetric positions from the center equals 50.
An example of a 7×7 associative magic square is shown in Fig. 2.

The sum of the numbers in each row of an associative magic
square is (1+2+· · ·+49)/7 = 175. Each associative magic square
represents exactly 8 associative magic squares under rotation and
reflection. We can calculate the total number of associative magic
squares and then divide it by 8 to get the number of associative
magic squares up to a reflection or rotation.

2.1 Properties of Associative Squares
A 7 × 7 square (not necessarily a magic square) such that the

sum of any two elements at symmetrical positions from the cen-
ter element is constant (Xi j + X(8−i)(8− j) = 72 + 1 = 50) has the
following properties.
( 1 ) The central element X44 is always 25.
( 2 ) The element at the counterpart position can be determined as

follows:
Xi j = 50 − X(8−i)(8− j)(i, j = 1, 2, · · · , 7)

( 3 ) The sum of the numbers on each diagonal must be 175.∑7
i=1 Xii =

∑7
i=1 X(8−i)i = 175

( 4 ) The sums of the 4-th row and column must each be 175.∑7
i=1 Xi4 =

∑7
i=1 X4i = 175

( 5 ) The sum of the k-th row is 175 if and only if the sum of the
(8 − k)-th row is 175.∑7

i=1 Xki = 175⇔ ∑7
i=1 X(8−k)i = 175(k = 1, 2, 3)

From ( 1 ) and ( 2 ), all elements of the square are determined
once we have decided on the values of the 24 cells shown in

Fig. 2 Example of an associative magic square of order 7.

Fig. 3 24 key cells of associative magic squares.

Fig. 3. The sums of all the rows, columns, and diagonals should
be 175 in order for a square X satisfying the above symmetry to
be a magic square. Moreover, for X to be a magic square, it is suf-
ficient that only 1st, 2nd, 3rd rows and columns of X from ( 3 ),
( 4 ) and ( 5 ) satisfy the constraints.

3. Previous Method

In this section, we outline the method [1] that Ripatti used for
counting semi-magic squares of order 6. A semi-magic square of
order 6 is a 6 × 6 square grid such that the sums of the numbers
in any row or column (not necessarily a diagonal) are equal. An
example of a 6 × 6 semi-magic square is shown in Fig. 4. The
sum of the numbers of each row or column of a 6× 6 semi-magic
square is (1 + 2 · · · + 36)/6 = 111. The number of semi-magic
squares of order 6 is 94,590,660,245,399,996,601,600, and as in
the case of associative magic squares of order 7, it is not realistic
to count them with backtracking.

A semi-magic square can be transformed into 6! × 6! =
518, 400 different semi-magic squares by rearranging the rows
and columns. There are 6! arrangements of rows and 6! arrange-
ments of columns.

Ripatti defined canonical semi-magic squares as representa-
tives of these 518,400 semi-magic squares. We can count the
canonical semi-magic squares and then multiply the number by
518,400 to get the total number of semi-magic squares.

Next, Ripatti divided the square into the upper half and lower
half as shown in Fig. 5.

Let the pro f ile of the upper half of the square be:
⎛⎜⎜⎜⎜⎜⎜⎝

3∑

i=1

Xi1,

3∑

i=1

Xi2,

3∑

i=1

Xi3, · · · ,
3∑

i=1

Xi6

⎞⎟⎟⎟⎟⎟⎟⎠

Let the pro f ile of the lower half of the square be:
⎛⎜⎜⎜⎜⎜⎜⎝111 −

6∑

i=4

Xi1, 111 −
6∑

i=4

Xi2, · · · , 111 −
6∑

i=4

Xi6

⎞⎟⎟⎟⎟⎟⎟⎠

Fig. 4 Example of a 6 × 6 semi-magic square.

Fig. 5 Division of a 6 × 6 square.
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Fig. 6 Profile of a semi-magic square.

For example, the profile of the upper half of Fig. 6 is
(70, 42, 57, 47, 53, 64), while that of the lower half is (111 −
41, 111 − 69, 111 − 54, 111 − 64, 111 − 58, 111 − 47) =

(70, 42, 57, 47, 53, 64). In accordance with these definitions, the
combination of the upper half and lower half is a square such
that the sum of the elements of each column is 111 when the two
halves have the same profile. Therefore, the combination of the
upper half and lower half squares is a semi-magic square if and
only if the combination satisfies all of the following conditions.
• Each of the upper half and lower half squares satisfies the

semi-magic row constraints (the sum of the elements of each
row is equal to 111).

• The profiles of the upper and lower squares are the same.
• Each element appears only once in the combination of the

upper half and lower half.
It is possible to count the number of semi-magic squares accord-
ing to the following procedure.
( 1 ) Create all sets (U, L) (U is a set of 18 elements in the up-

per half of the square, and L is a set of the 18 elements of
the lower half). Perform the following procedure for each
(U, L). (U ∪ L = {1, 2, · · · , 36})

( 2 ) Prepare an array of counters NU [p] for a respective profile p,
and initialize its elements to 0. Generate all the upper halves
of the square such that the sum of the elements of each row
is 111 using U numbers; then compute the profile value p

and increment NU [p] for each of the upper half. Thus, we
can calculate that there are NU [p] patterns for the upper half
satisfying the constraints for each profile.

( 3 ) As well as ( 2 ), prepare an array of counters NL[p] for a re-
spective profile p, and initialize its elements to 0. Generate
all the lower halves of the square such that the sum of each
row is 111 using L numbers; then compute the profile value
p and increment NL[p] for each of the lower half.

( 4 ) The number of semi-magic squares of order 6 for one pair
(U, L) is

∑
p(NU [p] × NL[p]).

In this way, we can divide the problem of enumerating semi-
magic squares into two problems: counting the upper half of the
squares and counting the lower half. If we use simple backtrack-
ing without splitting the square, we need to count NU [p] × NL[p]
semi-magic squares one by one. However, when counting sepa-
rately, we count only NU [p] upper halves and NL[p] lower halves
in order to count NU [p] × NL[p] semi-magic squares.

Straightforwardly, the number of pairs (U, L) is 36C18, but by
considering constraints such as

∑
x∈U x =

∑
x∈L x = 111 × 3,

Ripatti suggested that it is sufficient to consider only 9,366,138

(U, L) pairs.
According to Ripatti, we can efficiently count the upper halves

of the squares and lower halves by using the family of sets
of numbers that fit on individual lines of semi-magic squares,
S = {s | s ⊂ {1, 2, · · · , 36}, |s| = 6,

∑
a∈s a = 111}.

It is possible to calculate efficiently if we count only the com-
binations of the upper half squares and lower half squares which
become canonical semi-magic squares. Ripatti also used other
speed-up techniques and handled corner cases but we will omit
them here.

Speeding up the calculations by parallelization is effective
since this counting method is completely independent for each
(U, L) pair. Ripatti’s method took over 5 months on 10 threads
to report that the number of semi-magic squares of order 6 was
94,590,660,245,399,996,601,600.

4. Our Method

4.1 Overview
We extend the existing method described in Section 3 so that it

can be used to count associative magic squares of order 7. First,
we describe row and column rearrangements that transform asso-
ciative magic squares into different ones. Next, we propose one
division of the 7× 7 square to count parts separately. We define a
profile well suited for the division and show that we can divide up
the problem of counting associative magic squares into two. Fi-
nally, we present the detailed calculation procedure for counting
associative magic squares of order 7.

4.2 Associative Magic Square Transformations
Associative magic squares of order 7 can be transformed into

other associative magic squares by symmetrical swapping of rows
and columns with respect to the center. Such swappings are
shown below.
( 1 ) Swap the 1st and 7th rows.
( 2 ) Swap the 2nd and 6th rows.
( 3 ) Swap the 3rd and 5th rows.
( 4 ) Swap the 1st and 2nd rows, and swap 6th and 7th rows.
( 5 ) Swap the 2nd and 3rd rows, and swap 5th and 6th rows.
( 6 ) Swap the 1st and 7th columns.
( 7 ) Swap the 2nd and 6th columns.
( 8 ) Swap the 3rd and 5th columns.
( 9 ) Swap the 1st and 2nd columns, and swap 6th and 7th

columns.
( 10 )Swap the 2nd and 3rd columns, and swap 5th and 6th

columns.
For example, as shown in Fig. 7, the associative magic square on
the right is obtained by swapping rows ( 4 ) of the left square.

Since the above rearrangements are symmetrical replacements
of rows and columns, two elements in the symmetrical position
before swapping remain symmetrical after swapping. As stated
in ( 3 ) in Section 2.1, the sums of the numbers on the diagonals
equal 175 when the sum of any two symmetrical elements is con-
stant. The sum of each row and each column after transformation
is the same as before, since the set of seven numbers in each row
and each column remains the same before and after the replace-
ments. Therefore, associative magic squares remain associative
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Fig. 7 Swapping rows (4) of an associative magic square.

Fig. 8 48 permutations of rows in associative magic squares of order 7.

after symmetrical rearrangements of rows and columns such as
given above.

Figure 8 shows how symmetric squares are transformed by
the above row swapping. Here, (r1, r2, r3, · · · , r7) represents an
associative magic square such that the i-th row is replaced by
the ri-th row of the original associative magic square. The orig-
inal associative magic square is represented by (1, 2, 3, 4, 5, 6, 7).
Here, (r1, r2, r3, · · · , r7) equals (r1, r2, r3, 4, 8 − r3, 8 − r2, 8 − r1),
because the two rows in the symmetrical position remain sym-
metrical with row swapping ( 1 ) through ( 5 ), and the fourth
row doesn’t move. Thus, three pairs (1, 7), (2, 6), (3, 5) are as-
signed to one of r1, r2, r3, respectively. There are 23 ways to
choose which of the two numbers of each pair is assigned to
r1, r2, r3, which is expressed as the vertical transformations shown

Fig. 9 Examples of dividing the square.

in Fig. 8. There are 3! ways to choose pairs to be assigned to one
of (r1, r7), (r2, r6), (r3, r5), which is expressed as the horizontal
transformations shown in Fig. 8. Therefore, an associative magic
square can be transformed 23 × 3! = 48 ways by rearranging the
rows. We can also transform an associative magic square into
48 associative magic squares by rearranging the columns. Thus,
an associative magic square of order 7 can be transformed into
48 × 48 = 2304 associative magic squares in total.

In Section 4.5.2, we defined a canonical associative magic
square of order 7 that represents the 2304 associative magic
squares made by such transformations. We can count all the asso-
ciative magic squares by calculating the number of only canonical
associative magic squares and multiplying that number by 2304.

4.3 Square Division
Since there are 49 cells in the 7 × 7 square, there are 249 ways

to divide the square into two. Some examples are shown below.
If we divide the square into an upper half and lower half like

the semi-magic square division shown in Fig. 9 (a) to count as-
sociative magic squares, it is difficult to consider the upper half
and lower half squares independently because the arrangement of
elements in the upper half complexly affects the arrangement of
elements in the lower half, wherein Xi j + X(8−i)(8− j) = 50. There-
fore, it is preferable to divide up a square so that two cells at
symmetrical positions are included in the same group.

If we divide the square into two alternating groups, A and B,
as shown in Fig. 9 (b), two cells at symmetrical positions are put
into the same group. However, each row and each column of
the square are divided into two groups. It is difficult to consider
groups A and B independently because the arrangement of ele-
ments in group A has a complicated effect on the arrangement of
elements in group B such that the sum of the elements of each
row and column is equal to 175. Therefore it is better to avoid
dividing the rows and columns in the two groups as much as pos-
sible.

As shown in Fig. 9 (c), when dividing the square into one cen-
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Fig. 10 Profiles of 7 × 7 associative magic square.

ter row and six outer rows, symmetrical cells are included in the
same group, and the rows are not divided. However, the number
of cells in the six outer rows is too large. Therefore, there is little
difference in problem size between counting associative squares
of order 7 directly and counting 6 outer rows that satisfy some
constraints. As a result, we cannot efficiently calculate with such
divisions. We should mostly divide the square into two halves
in order to reduce the sizes of the two counting subproblems ob-
tained by the division.

From the above, the division shown in Fig. 9 (d) is superior to
many of the other divisions. Therefore, we will consider count-
ing associative magic squares of order 7 by dividing up the square
into 3 center rows and 4 outer rows.

4.4 Profiles of Divided Groups
Considering the arrangements of the numbers in the center part

and outer part such that the sums of any two symmetrical cells are
the same, from the considerations given in Section 2.1, a combi-
nation of arrangements of the center part and the outer part be-
comes an associative magic square if and only if the sums of the
elements of the individual 1st, 2nd, and 3rd rows and columns are
175, and each element appears only once in the combination. In
the existing method of the semi-magic squares of order 6, it was
necessary to define the profile as a vector of 6 partial sums of the
columns, however we can define the profiles of associative magic
squares as a vector of 3 partial sums for the left three columns
because of their symmetric constraints. We define the profile of
the center parts as
⎛⎜⎜⎜⎜⎜⎜⎝

5∑

i=3

Xi1,

5∑

i=3

Xi2,

5∑

i=3

Xi3

⎞⎟⎟⎟⎟⎟⎟⎠

and define profile of the outer parts as

(175 − X11 + X21 + X61 + X71,

175 − X12 + X22 + X62 + X72,

175 − X13 + X23 + X63 + X73)

For example, the profile of the center part of the square shown in
Fig. 10 (a) is (102, 86, 65), and the profile of the outer part of the
same square shown in Fig. 10 (b) is (175−73, 175−89, 175−110).
The sums of the 1st, 2nd and 3rd columns of a combination of
center and outer rows are each 175 if and only if the combination
consists of center and outer parts that have the same profile.

Therefore, a combination of the center part and outer part of a
square is an associative magic square if and only if it satisfies all
of the following conditions.

• For each center part and outer part of the square, the sum of
any 2 symmetrical elements is constant.

• The sum of the elements of the 3rd row of the square is equal
to 175.

• The sums of the elements of the 1st and 2nd rows of the
square are each equal to 175.

• The center part and the outer part of the square have the same
profile.

• Each element appears exactly once in the combination.

4.5 Procedure for Counting Associative Magic Squares of
Order 7

From the discussion in Section 4.4, we can calculate the to-
tal number of associative magic squares by using the following
procedure.
( 1 ) Create all sets (S A, S B) (S A is a set of 21 elements in the

center parts of the square, and S B is a set of 28 elements in
the outer parts.). Perform the following procedure for each
(S A, S B). (S A ∪ S B = {1, 2, · · · , 49})

( 2 ) Prepare an array of counters NA[p] for the respective profile
p, and initialize its entries to 0. Using S A numbers, gener-
ate all the center parts of the square such that the sum of the
elements of the 3rd row of the square is 175 and the sum
of any two symmetrical elements is 50, satisfying canonical
associative magic square constraints. For each of the gener-
ated center parts of the square, compute the profile value p

and increment NA[p]. Thus, we can calculate that there are
NA[p] patterns for the center part satisfying the constraints
for each profile.

( 3 ) The same as in ( 2 ) above, prepare an array of counters
NB[p] for respective profile p, and initialize its entries to 0.
Using S B numbers, generate all the outer parts of the square
such that the sums of the elements of the 1st and 2nd rows
are each 175 and the sum of any two symmetrical elements
is 50, satisfying the canonical associative magic square con-
straints. For each of the outer parts, compute the profile
value p and increment NB[p].

( 4 ) The number of canonical associative magic squares of order
7 for one pair (S A, S B) is

∑
p(NA[p] × NB[p]).

The details of ( 1 ) are in Section 4.5.1, while the definitions of
canonical associative magic squares are in Section 4.5.2. More-
over, the details of ( 2 ) are in Section 4.5.3, and the details of ( 3 )
are described in Section 4.5.4.

In this way, we can divide the problem of enumerating asso-
ciative magic squares of order 7 into two problems: counting
the center parts of the square and counting the outer parts. If
we enumerate them with simple backtracking without splitting
the square, we need to explore NA[p] × NB[p] patterns of as-
sociative magic squares one by one. However, when counting
halves separately, we explore only NA[p]+NB[p] patterns to count
NA[p] × NB[p] associative magic squares.
4.5.1 Number of (SA, SB) Pairs

We will discuss the number of (S A, S B) pairs in the procedure
of ( 1 ) in Section 4.5. Considering simply, the number of pairs
(S A, S B) is 49C21 (about 3.9 × 1013). But, there are 48C20 ways,
if we consider that X44 must be 25. Since the sum of any two
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symmetrical elements about the center is constant, if S A includes
x, then S A must include 50 − x. Therefore, it is sufficient to di-
vide 24 numbers 1, 2, · · · , 24 into (S A, S B). Thus, we only have
to calculate 24C10 = 1, 961, 256 (S A, S B) pairs.
4.5.2 Canonical Associative Magic Squares of Order 7

As described in Section 4.2, we define a canonical associa-
tive magic square of order 7 that represents the 2304 associative
magic squares made by the transformations, and count only the
canonical associative magic squares. We can calculate the num-
ber of associative magic squares by multiplying the number of
canonical squares by 2304 and thus reduce the number of squares
that need to be counted by a factor of 2304.

In the procedure shown in Section 4.5, it takes much more
computation time to count the outer parts than the center parts
because of the difference in the number of included cells. There-
fore, we face a bottleneck in counting the outer parts that sat-
isfy some conditions. We can prune the search to count the outer
parts efficiently by imposing the constraints of canonical associa-
tive magic squares as much as possible on the outer parts. From
the above, we define canonical associative magic squares as those
that satisfy all of the following conditions.
( 1 ) X11 < X17, X12 < X16, X13 < X15

( 2 ) X11 < X12 < X13

( 3 ) row1 < row7, row2 < row6, row3 < row5

( 4 ) row3 < row1 < row2

However, rowi = min{Xi1, Xi2, · · · , Xi7}.
( 1 ) and ( 2 ) are restrictions on column swapping, and these

restrictions constrain the first row. ( 3 ) and ( 4 ) are restrictions
on row swapping, but it is not possible to put all these restrictions
on the four outer rows. We make row3 small instead, and the
following formula holds:

row3 = min{row1, row2, row3, row5, row6, row7}
The 3rd row of the canonical squares always contains the smallest
number, except for numbers in the 4th row. Thus, the center parts
always contain the element one. The number of (S A, S B) pairs
that need to be calculated as described in Section 4.5.1, is found
to be 23C9 = 817, 190 using this property of canonical squares.
By defining the canonical associative magic squares in this way,
the counting of the outer parts becomes approximately 384 times
faster, and the number of (S A, S B) pairs that need to be calculated
is approximately 0.4 times the total.
4.5.3 Counting the Center Parts

Here, we describe the ( 2 ) of the procedure in Section 4.5.
From Fig. 3 in Section 2.1, if the numbers in the 3rd row of the
square and X41, X42, X43 are determined, the remaining elements
in the center part are also determined.

We define R, a family of sets of 7 numbers that can be put in
rows other than the 4th row of the associative magic of order 7,
as

R = {r | r ⊂ {1, 2, · · · , 24, 26, 27, · · · , 49}, |r| = 7,∑

a∈r
a = 175,∀x, y ∈ r, x + y � 50}

We have generated R in preparation for counting the center parts.
The family size of R is 452,188. When we use S A numbers, R3,

the family of possible sets of 7 numbers in the 3rd row of an as-
sociative square of order 7, can be easily calculated as

R3 = {r | r ∈ R, r ⊂ S A}

For each r ∈ R3, there are 7! ways for all permutations of r

to choose the elements of the 3rd row, and the elements in the
5th row are determined by the elements in the symmetrical 3rd
row. But, we exclude the row3 < row5 arrangement from the
constraints of the canonical form. There are 6 × 4 × 2 ways to
choose the elements of X41, X42, X43 from the unused numbers in
S A. We generate all the arrangements of elements in the center
parts, calculate of profile p for each arrangement, and increment
NA[p].
4.5.4 Counting the Outer Parts

Here, we describe ( 3 ) of the procedure in Section 4.5. From
Fig. 3 in Section 2.1, if the elements in the 1st and 2nd rows are
determined, the remaining elements in the outer parts are also de-
termined.

Besides counting the center parts, R1, we can easily calculate
the family of sets of 7 elements in the first row of the associative
magic square,

R1 = {r | r ∈ R, r ⊂ S B}

Next, we define R26, a family of 14-number subsets of S B exclud-
ing the numbers in the 1st and 7th rows, as

R26 = {r | r ⊂ {1, 2, · · · , 24, 26, 27, · · · , 49}, |r| = 14,

∀x ∈ r, ∃y ∈ r, x + y = 50}

Furthermore, we can pre-generate R2 for each S 26 ∈ R26, a fam-
ily of 7-number subsets of S 26 that can be put on the 2nd row of
the associative magic square of order 7, defined as

R2 = {r | r ⊂ S 26, |r| = 7,
∑

a∈r
a = 175,

∀x, y ∈ r, x + y � 50}

By pre-generating R2 for all S 26 ∈ R26, it is possible to count the
outer parts by the following procedure. For each r ∈ R1, there
are 7! ways for all permutations of r to choose the elements of
the 1st row, and the elements in the 7th row are determined by the
elements in the symmetrical 1st row. But, we exclude arrange-
ments violating the constraints of the canonical form. Let S 26 be
the set of unused numbers of S B (excluded r and the numbers in
the 7th row). For each r′ ∈ R2 calculated from S 26 ∈ R26, there
are 7! ways for all permutations of r′ to choose the elements of
the 2nd row, and the elements in the 6th row are determined by
the elements in the symmetrical 2nd row. We generate all the ar-
rangements of elements in the outer parts, calculate the profile p

for each arrangement, and increment NB[p].

5. Experimental Results

5.1 Results
We wrote a C++ program implementing the procedure de-

scribed in section 4. We assigned 1, 2, · · · , 817190 ID numbers
to each pair of (S A, S B). Our program counts associative magic
squares of order 7 for each (S A, S B) designated with ID numbers.
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Table 2 Calculation results.

(S A, S B) ID number of associative magic calc. time computer
1–50000 100798108317305280 14.5 days 2

50001–100000 91535720218951104 14.4 days 1
100001–150000 88372685889123552 14.2 days 1
150001–200000 83733351186221856 14.1 days 1
200001–250000 81588443264793504 14.0 days 2
250001–300000 79361704382078592 13.8 days 1
300001–350000 68614934779440864 13.9 days 1
350001–400000 60333826371280992 13.9 days 1
400001–450000 58972609900819872 13.6 days 2
450001–500000 56989665917916192 13.6 days 1
500001–550000 58076327642080032 13.6 days 1
550001–600000 58605580160376480 13.7 days 1
600001–650000 56406391669618560 12.9 days 2
650001–700000 56103389221682304 13.5 days 1
700001–750000 54683346217110336 13.0 days 1
750001–817190 70977954281055264 14.8 days 1

Table 3 Known numbers of squares including the results of this research [7].

n semi magic magic associative magic
3 9 1 1
4 68,688 880 48
5 579,043,051,200 275,305,224 48,544
6 94,590,660,245,399,996,601,600 (1.775399(42) × 1019) 0
7 (4.2848(17) × 1038) (3.79809(50) × 1034) 1,125,154,039,419,854,784
8 (1.0806(12) × 1059) (5.2225(18) × 1054) (2.5228(14) × 1027)
9 (2.9008(22) × 1084) (7.8448(38) × 1079) (7.28(15) × 1040)

10 (1.4626(16) × 10115) (2.4149(12) × 10110) 0
* 1.775399(42) × 1019 and other estimated values signifies that the exact number of the squares is

within range (1.775399 ± 0.000042) × 1019 with a probability of 99%.

As the experimental environment, two computers were used: a
PC with an Intel Core i7-4960X 3.6GHz CPU and 64GB RAM
running 64bit Windows 7 is computer 1, and an Intel Core i5
1.8GHz CPU and 8GB RAM running 64bit macOS High Sierra
is computer 2.

The calculation can be speeded up by parallelization because
the counting method is completely independent for each (S A, S B)
pair. We divided 817,190 (S A, S B) pairs into 16 groups and cal-
culated all associative magic squares of order 7 of one group in
one thread. The calculation was executed on 12 threads on the
Windows computer and 4 threads on the Mac computer. The cal-
culation took about 2 weeks, and the results are shown in Table 2.

We found that the number of associative magic squares of order
7 is 1,125,154,039,419,854,784 up to a reflection or rotation.

We did not spend much time worrying about how to to divide
the 817,190 problems into 16 groups, but we did achieve an ef-
fective distribution, because the maximum calculation time was
14.8 days and the minimum calculation time was 12.9 days.

Additionally, we submitted our results to the On-Line Ency-
clopedia of Integer Sequences (OEIS), and it was accepted on
December 10, 2018. It is currently posted on the website [6].

5.2 Verification
Walter Trump [7] estimated the number of associative magic

squares of order 7 to be within the range (1.125151 ±
0.000051) × 1018 with a probability of 99%. Our result,
1,125,154,039,419,854,784, is within the range of this estimate.

Walter Trump confirmed the number of 7×7 associative magic
squares of one (S A, S B) with backtracking. Trump also confirmed
our results with his own program based on our method.

As described in Section 4.2, a certain associative magic square

can be transformed into 2304 associative magic by swapping
rows and columns. When we add a 90-degree rotation to it, a
certain associative magic can be transformed to 2304 × 2 = 4608
associative magic squares. Therefore, the number of associative
magic squares of order 7 up to a reflection or rotation is a multiple
of 576(= 4608/8). Our result also has this property.

Our results have been confirmed by a probabilistic estimation,
Trump’s implementation, and the properties of associative magic
squares.

6. Concluding Remarks

We propose a method to count the total number of associative
magic squares of order 7 by extending Ripatti’s method of count-
ing 6 × 6 semi-magic squares to 7 × 7 associative squares. The
proposed method divides the 7 × 7 square into two and divides
the problem into two smaller ones. It is important to divide the
7 × 7 matrix into a center part and outer part and consider them
independently. The proposed method counts only canonical as-
sociative magic squares which are representative of 2304 other
associative magic squares and these canonical associative magic
squares depend on how the square is divided up. Our calculation
shows that the total number of associative magic squares of order
7 is 1,125,154,039,419,854,784, up to a reflection or rotation.

Table 3 summarizes results on known squares up to n = 10,
including our own. Charles Planck proved that there is no asso-
ciative magic square of order N (N is even number that is not a
multiple of 4) [3]. The table includes number of squares estimated
by Walter Trump for squares whose exact number is unknown [7].

Topics for future work include calculating the number of
higher-order associative magic squares and other magic squares
whose total number is unknown. However, the number of asso-
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ciative magic squares of higher order would be too large to count
with our method. The exact number of 6×6 magic squares is very
interesting, but counting may prove difficult by just using a sim-
ple extension of our method. We may also consider other kinds
of number assignment or constraint satisfaction problems.
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