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Abstract: We utilize the hardness of the Unambiguous-SAT problem under randomized polynomial time reductions
(Valiant & Vazirani; Theoret. Comput. Sci., Vol.47, 1986) to probe the required properties of counterexamples to open
non-existence conjectures for uniquely Hamiltonian graphs under various topological constraints. Concerning our-
selves with a generalization of Sheehan’s 1975 conjecture that no uniquely Hamiltonian graphs exist in the class of
(r ∈ 2N>1)-regular graphs (for 4 ≤ r ≤ 22), Bondy & Jackson’s 1998 conjecture that no uniquely Hamiltonian graphs
exist in the class of planar graphs having at most one vertex of degree ≤ 2, and Fleischner’s 2014 conjecture that no
uniquely Hamiltonian graphs exist in the class of 4-vertex-connected graphs, we prove that each conjecture is false
if and only if there exists a parsimonious reduction from #SAT to counting Hamiltonian cycles on each graph class
in question. As the existence of such a reduction allows for the encoding of arbitrary Unambiguous-SAT problem
instances, by the Valiant-Vazirani theorem we have that hypothetical sets of counterexamples for each non-existence
conjecture cannot belong to any graph class with a polynomial time testable property implying tractability for the
Hamiltonian cycle decision problem (unless NP = RP).

Keywords: Hamiltonian cycle, uniquely Hamiltonian graph, Sheehan conjecture, Bondy & Jackson conjecture,
Fleischner conjecture, Valiant-Vazirani theorem, Unambiguous-SAT

1. Introduction

The question as to whether the members of a given graph
class can be uniquely Hamiltonian (i.e., possess exactly one
Hamiltonian cycle) has been the subject of considerable research
in graph theory and related fields over the prior few decades. In-
terest in this question appears to have originated from a proof
of C. A. B. Smith, reported by Tutte in 1946 [20], that the
set of Hamiltonian cycles flowing through any edge of a cu-
bic (i.e., 3-regular) graph must have even cardinality, and there-
fore, that any Hamiltonian cubic graph must have at least three
Hamiltonian cycles. After a bit of an incubation period, in the
1970’s Thomason [18] extended the result of C. A. B. Smith to all
graphs whose vertices uniformly have odd degree, and Entringer
and Swart [6] proved ∀(n = 2k; k ≥ 11) that there exists a nearly

cubic uniquely Hamiltonian graph on n vertices with two ver-
tices of degree 4 and with all remaining vertices of degree 3 (see
“Theorem 5” of Ref. [6]). Briefly jumping ahead in time, we re-
mark that in 2016 Gordon Royle [16] was able to establish that the
smallest uniquely Hamiltonian graph of minimum degree 3 is of
order 18 and nearly cubic, and that Goedgebeur et al. [11] shortly
thereafter extended this result to prove the existence of nearly cu-
bic uniquely Hamiltonian graphs on n = 2k vertices ∀k ≥ 9.

In the 1970’s Sheehan also posed his famous conjecture [17]
that no uniquely Hamiltonian 4-regular graphs can exist, which,
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in observation of the fact that every (r ∈ 2N>0)-regular graph
is the union of edge-disjoint spanning 2-factors, can be gener-
alized to the statement that no r-regular uniquely Hamiltonian
graphs exist ∀(r ∈ 2N>1). While there has been significant
progress since this time on a proof of Sheehan’s conjecture —
e.g., in 1998 Thomassen [19] proved the conjecture holds for
r ≥ 300, Ghandehari and Hatami subsequently reduced this
bound to r ≥ 48 (unpublished; personal communication cited
in Ref. [12]), and most recently in 2006, Haxell et al. [12] proved
that the conjecture holds true ∀(r > 22) — the conjecture remains
open to this day. This is similarly the case for a still open con-
jecture of Bondy & Jackson from 1998 [4], whereupon proving
that any planar uniquely Hamiltonian graph must have at least
two vertices of degree ≤ 3, the authors put forth the supposi-
tion that no uniquely Hamiltonian planar graph exists having at
most one vertex of degree ≤ 2. Much more recently in 2014,
after constructing an explicit and rather stunning example of a 3-
vertex-connected uniquely Hamiltonian graph having minimum
degree 4, and providing a method of constructing infinite families
of such graphs, we additionally remark that Fleischner [8] posed
the still open conjecture that no 4-vertex-connected uniquely
Hamiltonian graph exists.

In this work, we examine the topological structure of sets
of counterexamples, should they exist, to the open nonexis-
tence conjectures of Sheehan [17], Bondy & Jackson [4], and
Fleischner [8]. In Theorem 1 through Theorem 4 we show that
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each of the aforementioned conjectures is false if and only if
there exists a parsimonious reduction from #SAT to the prob-
lem of counting Hamiltonian cycles on each of the relevant graph
classes — (r ∈ 2N>1)-regular graphs (∀r s.t. 4 ≤ r ≤ 22) in
the case of Sheehan’s generalized conjecture [17], planar graphs
having at most one vertex of degree ≤ 2 in the case of Bondy
& Jackson’s conjecture [4], and 4-vertex-connected graphs in the
case of Fleischner’s conjecture [8]. To briefly clarify our mean-
ing of the term parsimonious reduction, when reducing one in-
teger function problem f to another integer function problem h

via a many-one counting reduction (sometimes referred to as a
“weakly parsimonious” reduction), one typically has two polyno-
mial time compatible functions R1: Σ∗ −→ Σ∗ and R2: N −→ N,
such that f (x) = R2(h(R1(x))). If R2 is the identity function we
call the counting reduction a parsimonious reduction.

Here, the existence of a parsimonious reduction from #SAT in
each case allows us to efficiently encode arbitrary instances of a
variant of satisfiability known as Unambiguous-SAT [22], where
we are promised the existence of at most one satisfying assign-
ment to a given Boolean formula. As a consequence, in The-
orem 5 we are able to use the Valiant-Vazirani theorem, which
establishes that no polynomial time algorithm for Unambiguous-
SAT can exist unless we have that NP = RP (somewhat analo-
gous to the notion that P = NP), to show no set of hypotheti-
cal counterexamples for any of the aforementioned non-existence
conjectures can be contained (i.e., as a not necessarily proper
subset) in any graph class with a polynomial time recognizable
property implying an efficient solution for the Hamiltonian cycle
decision problem. This subsequently allows us to exclude con-
tainment of hypothetical counterexample sets for each of the con-
jectures from at least 335 graph classes in the (July 7th, 2016) In-
formation System on Graph Classes and their Inclusions (ISGCI)
database [13] where we have that a cliquewidth bound both exists
and can be detected in polynomial time.

2. Complexity Theoretic Consequences for
Counterexamples to the Three Nonexis-
tence Conjectures

Theorem 1. Sheehan’s non-existence conjecture for uniquely

Hamiltonian 4-regular graphs is false if and only if there exists

a parsimonious reduction from #SAT to the problem of counting

Hamiltonian cycles on 4-regular graphs.

Proof. Our proof strategy will be to first show that the exis-
tence of a counterexample to Sheehan’s non-existence conjecture
for uniquely Hamiltonian 4-regular graphs [17] necessarily im-
plies the existence of a special type of Exclusive-OR (XOR) gad-
get [10]. With this gadget in hand, we will then modify a reduc-
tion developed in 1976 by Garey et al. [10] — originally to reduce
SAT to the Hamiltonian cycle decision problem on cubic ∩ planar
∩ 3-vertex-connected graphs — to achieve a parsimonious reduc-
tion from #3SAT (for which there exists a parsimonious reduction
from #SAT) to the problem of counting Hamiltonian cycles on 4-
regular graphs.

To begin, we can understand Garey et al. Exclusive-OR (XOR)
gadget [10] as a generalization of what we denote here as a spe-
cial case of a quadrapole graph. We define this latter object, and

a slight generalization of this object denoted a meta-quadrapole,
as follows:
Definition 1: Quadrapole (variation on Kelmans [14] “four-
pole”). Let G be an arbitrary undirected simple graph with vertex
set VG and edge set EG, and let Q be an induced subgraph of G

with vertex set VQ ⊂ VG and edge set EQ ⊂ EG. We define Q

as a quadrapole if and only if there exists a set of exactly four
edges e1, e2, e3, e4 ∈ Ecut where Ecut ⊂ EG \ EQ, each with one
end at a (not necessarily distinct) vertex vi ∈ Vcut denoted a pole

vertex, where Vcut ⊂ VQ. With regard to a notion for quadrapole
connectivity, let Q∗ correspond to a graph construction where we
create a clique C having the same cardinality as Vcut, and sub-
sequently add an edge between each pole vertex vi ∈ Vcut and a
vertex in C unique to vi. Here, we call the quadrapole Q κ-vertex-
connected (resp. κ-edge-connected) if and only if the vertex con-
nectivity (resp. edge connectivity) of Q∗ is equal to κ.
Definition 2: Meta-quadrapole. A meta-quadrapole is a gener-
alization of the definition of a quadrapole, wherein we allow pole
vertices to correspond to a set of one or more vertices collectively
referred to as a meta-vertex. Here, an edge with one end at a given
meta-vertex of a meta-quadrapole, and one end outside the meta-
quadrapole at an arbitrary vertex vq, implies the existence of a
set of edges joining vq to all vertices composing the meta-vertex.
With regard to a definition of κ-vertex-connectivity (resp. κ-edge-
connectivity) for meta-quadrapoles, we proceed exactly as in the
case of a quadrapole, though here allowing all vertices composing
each meta-vertex to correspond to pole vertices.

In Fig. 1 we illustrate all 9 possible manners in which a
Hamiltonian cycle can traverse a quadrapole graph (i.e., perform
an injective and surjective walk on the vertices of the quadrapole
graph). However, note here that a meta-quadrapole may admit ad-
ditional traversals types where, for instance, a Hamiltonian cycle
ingresses and egresses once or multiple times via the same meta-
vertex. We can now define an Exclusive-OR (XOR) gadget as a
quadrapole or meta-quadrapole which strictly and only allows for
a subset of the Fig. 1 Hamiltonian cycle traversals — specifically,
either the “Pole 1”↔ “Pole 2” or “Pole 3”↔ “Pole 4” traversals:
Definition 3: Exclusive-OR (XOR) gadget (based on the proper-
ties of a gadget originally described by Garey et al. [10]). Let Q

be a quadrapole with pole vertices “Pole 1”, “Pole 2”, “Pole 3”,
and “Pole 4”, where any desired pole vertex “label” bijection is
permissible and any two or more pole vertices may be equivalent.
We call Q an Exclusive-OR (XOR) gadget if and only if: (require-
ment 1) there exist H1,2 > 0 manners in which a Hamiltonian cy-
cle can traverse Q (i.e., perform an injective and surjective walk
on the vertices of Q) ingressing and egressing once via “Pole 1”
and “Pole 2”; (requirement 2) there exist H3,4 > 0 manners in
which a Hamiltonian cycle can traverse Q ingressing and egress-
ing once via “Pole 3” and “Pole 4”; (requirement 3) we have that
H1,2 = H3,4; (requirement 4) there exist no other possible types
of Hamiltonian cycle traversals for Q.

To provide explicit examples to accompany Definition 3, in
Fig. 2 (a.1) we show the original Garey et al. XOR gadget [10]
used to reduce SAT to the Hamiltonian cycle decision problem
on cubic ∩ planar ∩ 3-vertex-connected graphs, in Fig. 2 (b.1) we
show a variation on this XOR gadget used by Liśkiewicz et al. to
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Fig. 1 Illustration of the 9 possible manners in which a Hamiltonian cycle may be permitted to traverse
(i.e., perform an injective and surjective walk on the vertices of) a quadrapole graph.

reduce #SAT to the problem of counting Hamiltonian cycles on
cubic ∩ planar ∩ 2-vertex-connected graphs, and in Fig. 2 (c.1)
we show a novel XOR gadget. To see that all of the aforemen-
tioned XOR gadgets satisfy Definition 3, we can observe in the
Fig. 2 (e) table — which lists the number of ways a Hamiltonian
cycle can perform the traversals illustrated in Fig. 1 for each of the
listed XOR gadgets — that Hamiltonian cycles can only ingress
and egress these gadgets via a “Pole 1”↔ “Pole 2” or a “Pole 3”
↔ “Pole 4” traversal. We can also observe in the Fig. 2 (e) table
entry for the Fig. 2 (c.1) XOR gadget that it is possible for there to
be exactly one manner in which a Hamiltonian cycle can flow be-
tween “Pole 1”↔ “Pole 2” or “Pole 3”↔ “Pole 4”. To formalize
this, we observe the following definition:
Definition 4: Unique Hamiltonian cycle traversal (unique HC

traversal). A unique Hamiltonian cycle traversal (unique HC

traversal) is an injective and surjective walk on the vertices of
a subgraph or gadget — possibly ingressing or egressing the sub-
graph or gadget one or multiple times — which if permitted, will
not destroy the property of the graph containing the subgraph or
gadget from being uniquely Hamiltonian.

If we are to modify the Garey et al. [10] reduction to obtain
a parsimonious reduction from #3SAT to counting Hamiltonian
cycles on 4-regular graphs, it is clear that we will require an
XOR gadget corresponding to an induced subgraph of a 4-regular
graph, where, like the Fig. 2 (c.1) XOR gadget, we additionally
have that both the “Pole 1” ↔ “Pole 2” or “Pole 3” ↔ “Pole 4”

traversals are unique HC traversals. Accordingly, following the
scheme illustrated in Fig. 3, we detail a method of transforming
an arbitrary instance of a 4-regular uniquely Hamiltonian graph
into an XOR gadget having these properties.

As shown in Fig. 3 (a), we begin by selecting an instance of
a not-necessarily-induced P3 subgraph where we have that ex-
actly one edge of the subgraph (Bolded) is traversed by the
unique Hamiltonian cycle in the graph, then delete both edges
of the P3 subgraph to generate quadrapole (α). We can observe
that the unique HC traversals of quadrapole (α) correspond to
a Hamiltonian cycle ingressing and egressing via “Pole 1” and
“Pole 2” (“Pole 1” ↔ “Pole 2”), or ingressing and egressing via
“Pole 1” and “Pole 4” (“Pole 1”↔ “Pole 4”). Alternative, though
not necessarily possible or unique HC traversals of quadrapole
(α), correspond to a Hamiltonian cycle ingressing and egressing
via “Pole 1” and “Pole 3” (“Pole 1” ↔ “Pole 3”), or a two-pass
traversal where the Hamiltonian cycle ingresses and egresses via
“Pole 1” and “Pole 3” and also ingresses and egresses via “Pole 2”
and “Pole 4” (“Pole 1”↔ “Pole 3” & “Pole 2”↔ “Pole 4”).

Next, as illustrated in Fig. 3 (b), we connect three copies of
quadrapole (α), where (Bolded) edges in the assembly indicate
all possible trajectories for ingressing and egressing Hamiltonian
cycles, to generate quadrapole (β) with a more restricted set of
allowed Hamiltonian cycle traversals. Specifically, we observe
that quadrapole (β) can be traversed only by a Hamiltonian cycle
ingressing and egressing via “Pole 1” and “Pole 2” (“Pole 1”↔
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Fig. 2 Variants of XOR and OR gadgets compatible with the Garey et al. [10] reduction: (a.1) & (a.2) the
original XOR and 3-literal OR gadgets used by Garey et al. [10]; (b.1), (b.2.1), & (b.2.2) XOR,
3-literal OR, and 1-literal OR gadgets used by Liśkiewicz et al. [15]; (c.1) & (c.2) novel XOR
and 3-literal OR gadget variants allowing for a parsimonious reduction from #SAT to the problem
of counting Hamiltonian cycles on planar ∩ subcubic graphs where we have that every vertex of
degree 3 is adjacent to a single vertex of degree 2 (white colored vertices) and no two degree 2
vertices are adjacent; (d) novel 3-literal OR gadget used in parsimoniously reducing #SAT to the
problem of counting Hamiltonian cycles on graphs which are 4-regular and/or 4-vertex-connected.
Table (e) lists “HC Traversal Flow Counts” for XOR gadgets, corresponding to the number of
ways a Hamiltonian cycle can traverse each of the listed XOR gadgets by ingressing and egressing
each gadget once or twice via the vertices labeled “Pole 1” (abbreviated as “P1”), “Pole 2” (“P2”),
“Pole 3” (“P3”), and “Pole 4” (“P4”). Table (f) lists “HC Traversal Flow Counts” for OR gadgets,
corresponding to the number of ways a Hamiltonian cycle can traverse each OR gadget for each
possible truth assignment to the gadget’s encoded literals.
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Fig. 3 Construction used in the proof argument for Theorem 1 to transform an arbitrary instance of a
4-regular uniquely Hamiltonian graph into an XOR gadget that can be used to parsimoniously
reduce #SAT to the problem of counting Hamiltonian cycles on 4-regular graphs. In step (a) we
select an instance of a not-necessarily-induced P3 subgraph of a 4-regular uniquely Hamiltonian
graph where we have that exactly one edge of the subgraph (Bolded) is traversed by the unique
Hamiltonian cycle in the graph, then delete both edges of the P3 subgraph to generate quadrapole
(α) allowing for the listed types of Hamiltonian cycle traversals (i.e., injective and surjective walks
on the quadrapole’s vertices). In step (b) we connect three copies of quadrapole (α) as shown,
where (Bolded) edges in the assembly indicate all possible trajectories for ingressing and egressing
Hamiltonian cycles, to generate quadrapole (β) with a more restricted set of allowed Hamiltonian
cycle traversals. Finally, in step (c) we connect six copies of quadrapole (β) together to form
the desired XOR gadget, where (Bolded) edges in the assembly indicate one of the two possible
(reflectionally symmetric) traversals for ingressing and egressing Hamiltonian cycles.
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“Pole 2”), or ingressing and egressing via “Pole 1” and “Pole 3”
(“Pole 1”↔ “Pole 3”), that no alternate manners of traversal are
possible, and that both traversal types are unique HC traversals.

For the last step, as illustrated in Fig. 3 (c), we connect six
copies of quadrapole (β) together to form the desired XOR gad-
get, where (Bolded) edges in the assembly indicate one of the
two possible (reflectionally symmetric) traversals for ingressing
and egressing Hamiltonian cycles. We observe that this XOR
gadget can be traversed by a Hamiltonian cycle ingressing and
egressing via “Pole 1” and “Pole 2” (“Pole 1” ↔ “Pole 2”), or
by a Hamiltonian cycle ingressing and egressing via “Pole 3” and
“Pole 4” (“Pole 3” ↔ “Pole 4”), that no alternate manners of
traversal are possible, and that both traversal types are unique HC
traversals.

We will now address how to use the XOR gadget we have
just created to modify the Garey et al. reduction [10] to achieve a
parsimonious reduction from #3SAT to the problem of counting
Hamiltonian cycles on 4-regular graphs. Here, let RGJT be an in-
stance of a graph generated by the Garey et al. reduction, and let
R
′
GJT be an instance of RGJT where we make the following four

modifications:
• (m1.1) we substitute the original Fig. 2 (a.1) and Fig. 2 (a.2)

XOR and 3-literal OR gadgets with the novel XOR gadget
we have just constructed (i.e., via the scheme illustrated in
Fig. 3) and the novel Fig. 2 (d) 3-input OR gadget;

• (m1.2) in lieu of using a 2-input OR gadget as described on
“pg. 710” of Garey et al. [10] — the purpose of this gadget
originally being to ensure 3-vertex-connectivity of the graph
generated by the reduction, which we remark can instead by
ensured by “padding” any instance of a 3SAT formula be-
ing reduced with a tautological clause — we simply use two
edges to connect vertices {v11, w11} and {vn4, wm6}, respec-
tively (see “pg. 709” of Garey et al. [10] for an elaboration
on the nature of these vertices);

• (m1.3) we do not perform the XOR “line crossing” pla-
narization surgery detailed in “Fig. 4” of Garey et al. [10];

• (m1.4) in reference to the “variable” gadget vertices
{vi1, vi2, vi3, vi4} for 1 ≤ i ≤ n, initially joined by “skele-
tal” edges of RGJT as detailed on “pg. 708–709” of Garey
et al. [10], we add the edges vi1 ↔ vi2 and vi3 ↔ vi4 for all
1 ≤ i ≤ n.

We can observe the following three lemmas concerning R
′
GJT :

Lemma 1. R
′
GJT will be 4-regular graph.

Proof. Observe that modification (m1.1) of RGJT replaces all
XOR and 3-literal OR gadgets with variants that correspond to
induced subgraphs of 4-regular graphs. Observe that modifica-
tions (m.1) through (m.3) yield a graph where all vertices are of
degree 3 or 4, and where the vertices of degree 3 strictly and
only correspond to “variable” gadget vertices {vi1, vi2, vi3, vi4} for
1 ≤ i ≤ n. Finally, observe that the introduction of the edges
vi1 ↔ vi2 and vi3 ↔ vi4 for all 1 ≤ i ≤ n, as per modification
(m.4), will increase the degree of each “variable” gadget vertex
by exactly one, making R

′
GJT a 4-regular graph. �

Lemma 2. For a given instance of R
′
GJT encoding an instance φ

of the 3SAT decision problem, there will be a distinguishable set

of Hamiltonian cycles corresponding to each satisfying instance

of φ, and each Hamiltonian cycle in a fgiven set will ingress and

egress each XOR and 3-input OR gadget in the same manner.

Proof. This lemma follows directly from the description of the
reduction given in Garey et al. [10]. Each 3-input OR gadget in
the Garey et al. reduction corresponds to a specific 3-literal
clause in the instance φ of the 3SAT, and the manner in which a
Hamiltonian cycle ingress and egresses the gadget corresponds to
a specific assignment of “True” and “False” values to the clause’s
literals. Furthermore, a specific set of traversals of each 3-input
OR gadget in R

′
GJT correspondingly forces a specific set of traver-

sals of each XOR gadget in R
′
GJT .

To elaborate, observe either the Fig. 2 (a.2) embedding of
the original Garey et al. 3-input OR gadget, or the Fig. 2 (b.2.1)
embedding of the 3-input OR construct created by Liśkiewicz et
al. [15] to obtain a many-one counting (“weakly parsimonious”)
reduction from #SAT to the problem of counting Hamiltonian cy-
cles on cubic ∩ planar ∩ 2-vertex-connected graphs. During the
reduction each of the three (thick black) edges on the right-hand-
side of these 3-input OR gadgets are deleted and the resulting
degree 1 vertices are identified as indicated with “Pole 1” and
“Pole 2” of a distinct instance of an appropriate XOR gadget.
Here, each pair of edges connecting the 3-input OR to an instance
of an XOR gadget corresponds to a clause literal.

We now remark that the global topology of the graph pro-
duced by the reduction, in this case R

′
GJT , will act to force all

Hamiltonian cycles to ingress and egress a given 3-input OR
gadget via the (thin dashed) edges at the top and bottom of the
gadget (with respect to the illustrated embedding), and if the
Hamiltonian cycle does not traverse (resp. traverses) a pair of
edges connecting the 3-input OR gadget to an XOR we call the
corresponding literal “True” (resp. “False”). Observing this cor-
respondence between Hamiltonian cycle traversals of 3-input OR
gadgets and literal truth assignments, in the Fig. 2 (f) table we
provide counts for the number of ways a Hamiltonian cycle can
perform each type of traversal of the illustrated OR gadgets in
Fig. 2 (including the Fig. 2 (b.2.2) illustration of a 1-input OR
gadget created by Liśkiewicz et al. [15]). Here, to provide a spe-
cific example, for the Fig. 2 (a.2) 3-input OR gadget we have that
there are exactly 288 manners in which a Hamiltonian cycle can
traverse this OR gadget in a manner that sets the literals corre-
sponding to the bottom, middle, and top pairs of edges to dis-
tinct XOR gadgets (with respect to the illustrated embedding) to
“True”, “False”, and “True”, respectively.

A specific set of traversals of the 3-input OR gadgets in R
′
GJT ,

corresponding to a specific truth assignment for the literals be-
ing encoded by each gadget, will in turn force Hamiltonian cycle
flows through the “variable” gadgets of R

′
GJT — pairs of loops

connected by XOR gadgets shown, for example, along the right-
hand-side of the “Fig. 7” example construct in Garey et al.’s pa-
per [10] — encoding truth assignments to variables that are con-
sistent with the truth assignments to the aforementioned literals.
It can accordingly be observed that a specific set of traversals of
each 3-input OR gadget in R

′
GJT forces a specific set of traversals

of each XOR gadget in R
′
GJT .

Putting everything together, we have that there will be a set of
Hamiltonian cycles corresponding to each satisfying instance of
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φ distinguishable by their manner of traversal of each 3-input OR
gadget in R

′
GJT , and furthermore, that each Hamiltonian cycle in

a given set will traverse each XOR gadget in R
′
GJT in the same

manner. This establishes the lemma. �
Lemma 3. For a given instance of R

′
GJT encoding an instance

φ of the 3SAT decision problem, if all possible XOR and 3-input

OR gadget Hamiltonian cycle traversals are unique HC traver-

sals, then there will be exactly one Hamiltonian cycle in R
′
GJT per

satisfying instance of φ.

Proof. From Lemma 2 we have that there will be a distinguish-
able set of Hamiltonian cycles in R

′
GJT corresponding to each sat-

isfying instance of φ, and that each Hamiltonian cycle in a given
set will ingress and egress each XOR and 3-input OR gadget in
the same manner. By a careful examination of either RGJT or
R
′
GJT , it can furthermore be observed that forcing a specific set of

traversals of each XOR and 3-input OR gadget will correspond-
ingly force the specific set of edges used to traverse vertices exter-
nal to either type of gadget. Accordingly, the set of Hamiltonian
cycles in R

′
GJT corresponding to each satisfying instance of φ can

be computed by simply multiplying together the number of ways
in which a Hamiltonian cycle can perform each specified traversal
of an XOR and 3-input OR gadget. Therefore, if all such gadget
traversals are unique HC traversals, then there will be exactly one
Hamiltonian cycle in R

′
GJT per satisfying instance of φ.

As we earlier established that the XOR gadget from modifi-
cation (m1.1) used to construct R

′
GJT allows for only unique HC

traversals, it remains to show that the same is true of the Fig. 2 (d)
3-literal OR gadget exchanged in place of the Fig. 2 (a.2) Garey et
al. 3-literal OR gadget. Here, observing the Fig. 2 (f) table we can
see that, with the exception of exactly one case where exactly two
literals are “True”, the Fig. 2 (d) 3-literal OR gadget permits only
unique HC traversals. As we can parsimoniously reduce #3SAT to
variants where this pathological permutation of truth assignments
in a clause never occurs (see e.g., Ref. [21]), this establishes the
lemma. �

To finish the proof of the theorem at hand, observe by Lemma
1 that the modified graph R

′
GJT will be 4-regular, and by Lemma 3

that there will be exactly one Hamiltonian cycle in R
′
GJT per sat-

isfying assignment for the encoded instance of #3SAT. Accord-
ingly, we have a method of using an arbitrary counterexample
to Sheehan’s nonexistence conjecture [17] for 4-regular uniquely
Hamiltonian graphs to reduce #3SAT to the problem of counting
Hamiltonian cycles on this class of graphs. �
Theorem 2. Sheehan’s generalized non-existence conjecture for

uniquely Hamiltonian (r ∈ 2N>1)-regular graphs (∀r s.t. 4 ≤
r ≤ 22) is false if and only if there exists a parsimonious reduc-

tion from #SAT to the problem of counting Hamiltonian cycles on

(r ∈ 2N>1)-regular graphs.

Proof. Let RGJT be an instance of a graph generated by the Garey
et al. reduction [10] (as in the Theorem 1 proof argument), and let
R̂GJT be an instance of this graph where we make the following
four modifications:
• (m2.1) we substitute the original Fig. 2 (a.1) and Fig. 2 (a.2)

XOR and 3-literal OR gadgets with the novel XOR
and 3-literal OR gadgets in Fig. 2 (c.1) and Fig. 2 (c.2),
respectively;

• (m2.2) we perform a procedure identical to (m1.2) in the
Theorem 1 proof argument with the added step that we sub-
sequently subdivide the edge v11 ↔ w11;

• (m2.3) concerning the XOR “line crossing” planarization
scheme illustrated in “Fig. 4” of Garey et al. [10], we ev-
erywhere perform the variation of this surgery illustrated in
Fig. 5 — where XOR “lines” correspond to the Fig. 2 (c.1)
XOR in the manner shown in Fig. 5 (a), we perform the
surgery to resolve all pairs of XOR “line crossings” (an ex-
ample of which is shown in Fig. 5 (b)), and an explicit exam-
ple of the result of the surgery is illustrated in Fig. 5 (c);

• (m2.4) in reference to the “variable” gadget vertices
{vi1, vi2, vi3, vi4} for 1 ≤ i ≤ n, initially joined by “skele-
tal” edges of RGJT as detailed on “pg. 708–709” of Garey et
al. [10], we subdivide every edge vi2 ↔ vi3 for all 1 ≤ i ≤ n

and every edge vi4 ↔ vi+1 for all 1 ≤ i ≤ n − 1.
It is straightforward to observe that R̂GJT will be a subcubic

graph having the special property that every vertex of degree 3 is
adjacent to a single vertex of degree 2 and that no two vertices
of degree 2 will be adjacent. Here, see for instance the posi-
tions of the (white colored) degree 2 vertices in the Fig. 2 (c.1)
and Fig. 2 (c.2) illustration of the XOR and 3-input OR gadget
variants used for modification (m2.1), and observe that the vari-
ation of the XOR “line crossing” planarization surgery we em-
ploy as per modification (m2.3) (illustrated in Fig. 5) preserves
the aforementioned properties. Accordingly, we can construct
an (r ∈ 2N>1)-regular quadrapole gadget simulating the traversal
properties of a subdivided edge of a subcubic graph and substitute
this gadget in place of every subdivided edge in R̂GJT to make the
graph (r ∈ 2N>1)-regular. Furthermore, if all possible traversals
through this quadrapole are unique HC traversals, we can do so
without introducing additional Hamiltonian cycles per satisfying
instance of the encoded instance of #SAT.

To construct such a quadrapole, we begin by following the pro-
cedure in the Theorem 1 proof argument, though in this con-
text starting with an (r ∈ 2N>1)-regular graph. This yields
a quadrapole (α) having exactly the same types of unique HC
traversals and alternative Hamiltonian cycle traversals as in the
Theorem 1 reduction. As shown in Fig. 4 (b), we then diverge
from the Theorem 1 proof argument in using three copies of
quadrapole (α) to create a quadrapole (β) having the same traver-
sal properties for Hamiltonian cycles as the illustrated subdi-
vided edge of a subcubic graph. Specifically, we observe that
quadrapole (β) can be traversed by a Hamiltonian cycle ingressing
and egressing via “Pole 1” and “Pole 2” (“Pole 1” ↔ “Pole 2”),
“Pole 1” and “Pole 4” (“Pole 1” ↔ “Pole 4”), “Pole 2” and
“Pole 3” (“Pole 2” ↔ “Pole 3”), or “Pole 3” and “Pole 4”
(“Pole 3” ↔ “Pole 4”), that no alternate manners of traversal
are possible, and that all of these traversal types are unique HC
traversals.

We can now substitute quadrapole (β) in place of any subdi-
vided edge. To do so, let va ↔ vb ↔ vc be a subdivided edge of
a subcubic graph G where va and vb have degree 3 and vb has de-
gree 2, let e(a,1) and e(a,2) be the two edges with one endpoint at va
and one endpoint at a vertex other than vb, and let e(c,1) and e(c,2) be
the two edges with one endpoint at vc and one endpoint at a vertex
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Fig. 4 Construction used in the proof argument for Theorem 2 to transform an arbitrary instance of
an r-regular uniquely Hamiltonian graph into a graph gadget which can be used to simulate the
Hamiltonian cycle traversal properties of a subdivided edge of a subcubic graph. In step (a) we
select an instance of a not-necessarily-induced P3 subgraph of an (r ∈ 2N>1)-regular uniquely
Hamiltonian graph where we have that exactly one edge of the subgraph (Bolded) is traversed by
the unique Hamiltonian cycle in the graph, then delete both edges of the P3 subgraph to generate
quadrapole (α) allowing for the listed types of Hamiltonian cycle traversals. In step (b) we con-
nect three copies of quadrapole (α) as shown, where (Bolded) edges in the assembly indicate all
possible trajectories for ingressing and egressing Hamiltonian cycles, to generate a quadrapole (β)
having the same traversal properties for Hamiltonian cycles as the illustrated subdivided edge of a
subcubic graph.

other than vb. Here, when we substitute an instance of quadrapole
(β) in place of this subdivided edge, we delete va, vb, and vc, re-
connect e(a,1) and e(a,2) to “Pole 1” and “Pole 3” of quadrapole (β)
in any order, and reconnect e(c,1) and e(c,2) to “Pole 2” and “Pole 4”
of quadrapole (β) in any order. Performing this procedure at ev-
ery subdivided edge of G will yield an (r ∈ 2N>1)-regular graph
having the same Hamiltonian cycle count as the original subcubic
graph.

Putting everything together, we have that a uniquely
Hamiltonian (r ∈ N>1)-regular graph implies the existence
of a parsimonious reduction from #SAT to the problem of
counting Hamiltonian cycles on the same class of r-regular
graphs. �
Theorem 3. Bondy & Jackson’s non-existence conjecture for

uniquely Hamiltonian planar graphs having at most one vertex

of degree ≤ 2 is false if and only if there exists a parsimonious re-

duction from #SAT to the problem of counting Hamiltonian cycles

on planar graphs having at most one vertex of degree ≤ 2.

Proof. We begin by observing that Bondy & Jackson’s
non-existence conjecture for uniquely Hamiltonian planar graphs

having at most one vertex of degree ≤ 2 is false if and only if the
conjecture that the class of planar ∩ minimum degree 3 graphs
contains no uniquely Hamiltonian graphs is false (see “Theo-
rem 3.5” of Ref. [11]). The forward direction is a straightfor-
ward consequence of the fact that the class of planar ∩ minimum
degree 3 graphs is a strict subset of the class of planar graphs
having at most one vertex of degree ≤ 2. Furthermore, as noted
by Goedgebeur et al. [11], we can subdivide any edge traversed
by the Hamiltonian cycle in the uniquely Hamiltonian planar ∩
minimum degree 3 graph to create a uniquely Hamiltonian planar
graph having exactly one vertex of degree 2. In the other direc-
tion, let G1 and G2 be two isomorphic copies of a counterexam-
ple to Bondy & Jackson’s non-existence conjecture, each having
a single vertex of degree 2. Let va and wa be the vertices of de-
gree 2 in G1 and G2, respectively, let va be adjacent to a pair of
vertices {vb, vc} of degree ≥ 3, and let wa be adjacent to a pair of
vertices {wb, wc} of degree ≥ 3. Here, we can construct a uniquely
Hamiltonian planar ∩minimum degree 3 graph by deleting va and
wa, then adding edges between the pairs of vertices {vb, wb} and
{vc, wc}.
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Fig. 5 Variation on the XOR “line crossing” planarization scheme from “Fig. 4” of Garey et al. [10], used
in the proof argument for Theorem 2. (a) illustration of how an XOR gadget (the Fig. 2 (c.1)
XOR is shown) can be abstracted as an “XOR line”; (b) illustration of an XOR “line crossing”;
(c) scheme for planarizing XOR “line crossings” using the Fig. 2 (c.1) XOR gadget which pre-
serves the property of each degree 3 vertex being adjacent to exactly one degree 2 vertex (white
colored vertices) and no two degree 2 vertices being adjacent.

Putting everything together, it now suffices to show that Bondy
& Jackson’s non-existence conjecture is false if and only if there
exists a parsimonious reduction from #SAT to the problem of
counting Hamiltonian cycles on planar ∩ minimum degree 3
graphs. To do so, we can simply observe that any planar ∩
minimum degree 3 uniquely Hamiltonian graph must possess a
not-necessarily-induced P3 subgraph, that the Fig. 2 (d) 3-input
OR gadget can exist as an induced subgraph of a planar ∩ mini-

mum degree 3 graph, and that none of the procedures performed
in the Theorem 1 reduction prevent the final graph generated by
the reduction from being a planar ∩ minimum degree 3 graph.
Accordingly, we can follow along exactly the lines of the Theo-
rem 1 proof argument — though in this context using a planar ∩
minimum degree 3 uniquely Hamiltonian graph to construct the
XOR gadget — to parsimoniously reduce #SAT to the problem
of counting Hamiltonian cycles on planar ∩ minimum degree 3
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graphs, yielding the theorem. �
Theorem 4. Fleischner’s non-existence conjecture for 4-vertex-

connected uniquely Hamiltonian graphs is false if and only if

there exists a parsimonious reduction from #SAT to the problem

of counting Hamiltonian cycles on 4-vertex-connected graphs.

Proof. We can observe that the XOR gadget constructions used
in the proof arguments of Theorem 1 and Theorem 2 (illus-
trated in Fig. 3 and Fig. 4, respectively) fail to preserve 4-vertex-
connectivity for the trivial reason that quadrapole (α) from both
Fig. 3 (a) and Fig. 4 (a) only has three distinct pole vertices (i.e.,
one pole vertex is joined to two outgoing edges). As a conse-
quence, any graph having this quadrapole as an induced subgraph
will be at most 3-vertex-connected.

We instead proceed to build an XOR gadget via the construc-
tion shown in Fig. 6. Let G be an arbitrary instance of a 4-vertex-
connected uniquely Hamiltonian graph with vertex set VG. We
first create quadrapole (α) by deleting an arbitrary vertex vq ∈ VG,
then denoting the vertices formerly adjacent to vq as quadrapole
(α) pole vertices in the manner illustrated in Fig. 6 (a). To address
the case where the degree of vq is ≥ 5, we allow quadrapole (α)
to be a meta-quadrapole where the (white) colored pole vertex
(i.e., “Pole 4”) corresponds to a set of vertices of arbitrary car-
dinality, though under the constraint that none of the vertices in
this set are allowed to be adjacent to either of the two edges orig-
inally used by the unique Hamiltonian cycle to ingress and egress
the vertex vq. We observe here that as a consequence of the al-
lowed traversals for the vertex vq in the uniquely Hamiltonian
graph G, the (meta-)quadrapole (α) only allows for the traversal
types listed in Fig. 6 (a). In particular, this consists of a single
type of unique HC traversal where the (meta-)quadrapole is in-
gressed and egressed once via “Pole 1” and “Pole 2” (“Pole 1”
↔ “Pole 2”), and all possible types of traversals, which may or
may not be possible and which may or may not be unique HC
traversals, where a Hamiltonian cycle ingresses and egresses the
(meta-)quadrapole more than once (e.g., via pairs of vertices cor-
responding to a Pole 4 meta-vertex).

As illustrated in Fig. 6 (b), we next create a new quadrapole
(β) where only a unique HC traversal via “Pole 1” and “Pole 2”
(“Pole 1” ↔ “Pole 2”) is permitted. Here, simply observe
that none of the copies of quadrapole (α) can be ingressed and
egressed by a Hamiltonian cycle more than once in the Fig. 6 (b)
construction. Subsequently, as illustrated in Fig. 6 (c), we cre-
ate an XOR gadget which will be 4-vertex-connected if and only
if G is 4-vertex-connected. As in the Theorem 1 proof argu-
ment, we observe that this XOR gadget can be traversed by a
Hamiltonian cycle ingressing and egressing via “Pole 1” and
“Pole 2” (“Pole 1” ↔ “Pole 2”), or by a Hamiltonian cycle in-
gressing and egressing via “Pole 3” and “Pole 4” (“Pole 3” ↔
“Pole 4”), that no alternate manners of traversal are possible, and
that both traversal types are unique HC traversals.

We can now observe that the XOR gadget we have just con-
structed is a 4-vertex-connected quadrapole, and furthermore,
that the Fig. 2 (d) 3-input OR gadget can exist as an induced
subgraph of a 4-vertex-connected graph. Here, letting R

′
GJT

be an instance of graph produced by the modification of the
Garey et al. reduction [10] detailed in Theorem 1, and letting

R
′′
GJT be a variation of R

′
GJT where we use the 4-vertex-connected

quadrapole we have just constructed instead of the XOR from
the proof argument for Theorem 1, we can observe the following
lemma:
Lemma 4. R

′′
GJT is 4-vertex-connected.

Proof. “On “pg. 711” of Garey et al. [10], the authors write
the following concerning their reduction:” “. . . We leave to the

reader the straightforward but tedious verification that the graph

is cubic and triply connected. Basically, all one need do is ver-

ify that our special subgraphs have these properties (or would if

their external edges were connected by external paths) and that

the overall superstructure does also. . . ”. Performing this analy-
sis, it is likewise straightforward to determine that any graph pro-
duced by the Garey et al. reduction will be essentially-4-vertex-
connected — meaning that the cardinality of the minimum ver-
tex cut whose removal decomposes the graph into two connected
components, each consisting of at least two vertices, is of size at
least 4 — if we substitute the original Fig. 2 (a.1) and Fig. 2 (a.2)
XOR and 3-literal OR gadgets with the novel XOR gadget we
have just constructed via the scheme illustrated in Fig. 6 and the
novel Fig. 2 (d) 3-input OR gadget. Now observe that the pro-
cedure to construct R

′
GJT given in the Theorem 1 proof argument

ensures that the graph has minimum degree 4, and that our modifi-
cation of R

′
GJT to create R

′′
GJT will not reduce the minimum vertex

degree. Accordingly, we have that this procedure will eliminate
all essential 3-vertex cuts, leaving R

′′
GJT 4-vertex-connected. �

Observing Lemma 4, we can now follow along exactly the lines
of the Theorem 1 proof argument — though in this context using
the XOR gadget given by the construction in Fig. 6 — to parsi-
moniously reduce #SAT to the problem of counting Hamiltonian
cycles on 4-vertex-connected graphs. �
Corollary 1. If a uniquely Hamiltonian 4-regular ∩ 4-vertex-

connected graph exists, then there exists a parsimonious reduc-

tion from #SAT to the problem of counting Hamiltonian cycles on

4-regular ∩ 4-vertex-connected graphs.

Proof. Observing Lemma 1, that the only difference between the
reductions in the Theorem 1 and Theorem 4 proof arguments con-
cerns the use of a distinct XOR gadget, and finally that the XOR
constructed in the Theorem 4 proof argument will be 4-regular
∩ 4-vertex-connected if the initial uniquely Hamiltonian graph is
4-regular ∩ 4-vertex-connected, we have the corollary. �
Theorem 5. Unless NP = RP, any set of counterexamples to

the following non-existence conjectures cannot be contained in

a graph class with a polynomial time recognizable property im-

plying polynomial time tractability of the Hamiltonian cycle de-

cision problem: (1) Sheehan’s generalized non-existence conjec-

ture [17] for uniquely Hamiltonian (r ∈ 2N>1)-regular graphs

(∀r s.t. 4 ≤ r ≤ 22); (2) Bondy & Jackson’s non-existence con-

jecture [4] for planar graphs having at most one vertex of degree

≤ 2; (3) Fleischner’s non-existence conjecture [8] for 4-vertex-

connected uniquely Hamiltonian graphs.

Proof. By the Valiant-Vazirani theorem [22] we have that
no polynomial time procedure can exist for solving arbi-
trary instances of Unambiguous-SAT unless NP = RP, where
Unambiguous-SAT is once again a variant of SAT where we
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Fig. 6 Construction used in the proof argument for Theorem 4 to transform an arbitrary instance of a
4-vertex-connected uniquely Hamiltonian graph into an XOR gadget. In step (a) we select an ar-
bitrary vertex, vq, of a 4-vertex-connected uniquely Hamiltonian graph, where we necessarily have
that exactly two edges (Bolded) are traversed by the unique Hamiltonian cycle in the graph, and
delete vq to generate quadrapole (α) allowing for the listed types of Hamiltonian cycle traversals.
Here, to address the case where the degree of vq is ≥ 5, we allow quadrapole (α) to be a meta-
quadrapole (see Definition 2) where the (white) colored pole vertex (i.e., “Pole 4”) corresponds to
a set of vertices of arbitrary cardinality. In step (b) we use four new vertices to wire together three
copies of quadrapole (α) — (Bolded) edges in the assembly indicate all possible trajectories for
ingressing and egressing Hamiltonian cycles — to generate quadrapole (β) which allows for only
one unique manner of Hamiltonian cycle traversal. Finally, in step (c) we use eight new vertices to
assemble four copies of quadrapole (β) together to form the desired XOR gadget, where (Bolded)
edges in the assembly indicate one of the two possible (reflectionally symmetric) traversals for
ingressing and egressing Hamiltonian cycles.
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are tasked with deciding the satisfiability of a Boolean formula
with the promise that at most one solution can exist. Here,
from the constructions in Theorem 1 through Theorem 4, we
have a method of parsimoniously reducing #SAT to the problem
of counting Hamiltonian cycles on: (r ∈ 2N>1)-regular graphs
(∀r s.t. 4 ≤ r ≤ 22) in the case of Sheehan’s generalized non-
existence conjecture [17] (Theorem 1 and Theorem 2); planar
graphs having at most one vertex of degree ≤ 2 in the case of
Bondy & Jackson’s non-existence conjecture [4] (Theorem 3);
and 4-vertex-connected graphs in the case of Fleischner’s non-
existence conjecture [8] (Theorem 4). Accordingly, we have an
explicit method of parsimoniously reducing Unambiguous-SAT
to the problem of deciding the existence of a unique Hamiltonian
cycle on each of these graph classes.

It is now straightforward to observe that a polynomial time
algorithm for Unambiguous-SAT is implied by the combination
of: (1) the existence of a set of one or more counterexamples to
any of the aforementioned non-existence conjectures; and (2) the
containment of this set in a graph class with an efficiently rec-
ognizable property implying polynomial time tractability of the
Hamiltonian cycle decision problem. Consider that we can sim-
ply encode an arbitrary instance of Unambiguous-SAT in an in-
stance of the Hamiltonian cycle decision problem on the rele-
vant graph class and test for the property in question. If this
property exists, we have a polynomial time algorithm for the
Unambiguous-SAT instance, and if not, we can determine that
the Unambiguous-SAT instance is unsatisfiable. As no poly-
nomial time algorithm for Unambiguous-SAT can exist unless
NP = RP [22], the theorem follows. �

3. The Structure of Hypothetical Counterex-
amples to Sheehan’s, Bondy & Jackson’s,
and Fleischner’s Non-existence Conjectures

By Theorem 5, we have that any set of counterexamples to
Sheehan’s [17], Bondy & Jackson’s [4], and Fleischner’s [8] non-
existence conjectures for uniquely Hamiltonian graphs cannot be
contained in any graph class having a polynomial time recogniz-
able property implying an efficient algorithm for the Hamiltonian
cycle decision problem (unless NP = RP). Observing the exis-
tence of cliquewidth parameterized “slice-wise polynomial” (XP)
algorithms for the Hamiltonian cycle decision problem [7], [9]
(which have time complexities of the form O(n f (k)) where k is
the cliquewidth), we are accordingly able to exclude containment
of counterexamples for the aforementioned conjectures from any
graph class having a polynomial time recognizable cliquewidth
bound. By the following proposition, this includes at least 335
classes of bounded cliquewidth graphs in the (July 7th, 2016) ver-
sion of the ISGCI database [13]:
Proposition 1. With the exception of the class of cliquewidth 4
graphs, there are known polynomial time algorithms for deciding

if a graph has cliquewidth ≤ k on all 335 remaining graph classes

listed as having bounded cliquewidth in the (July 7th, 2016) In-

formation System on Graph Classes and their Inclusions (ISGCI)
database [13].

Proof. Of the 336 graph classes in the (July 7th, 2016) ISGCI
database [13] listed as having bounded cliquewidth, polynomial

time recognition algorithms are either directly provided or cited
for all but the following four classes of graphs: binary tree ∩
partial grid graphs, chordal ∩ hamiltonian ∩ planar graphs, thick
tree graphs, and cliquewidth 4 graphs. In the case of binary tree ∩
partial grid graphs, the trouble is that recognizing partial grids is
NP-complete [1]. However, for our purposes it suffices to observe
that the class of binary tree graphs is of bounded cliquewidth
and polynomial time recognizable [13]. In the case of chordal
∩ hamiltonian ∩ planar graphs, where the complexity of recog-
nition is listed as “Unknown” in the ISGCI [13], it suffices to ob-
serve that this graph class has bounded treewidth (hence, bounded
cliquewidth) and that there exists a linear time algorithm to decide
if a graph has treewidth ≤ k [3]. In the case of thick tree graphs,
where the complexity of recognition is again listed as “Un-
known” in the ISGCI [13], we can observe that this graph class
is contained in the class of bounded cliquewidth (Cn+4, gem)-free

graphs, which can trivially be recognized in polynomial time via
its finite forbidden subgraph characterization. Finally, regarding
the pathological case of the class of cliquewidth 4 graphs, we re-
mark that while there exists a O(n2m) algorithm due to Corneil et
al. [5] for deciding if a graph has cliquewidth ≤ 3, the complex-
ity of deciding if a graph has cliquewidth ≤ 4 appears to be an
open problem. Putting everything together yields the proposition
at hand. �

As an example of a conclusion that can be drawn from these
results, we briefly remark that while it was previously under-
stood that Bondy & Jackson’s non-existence conjecture [4] held
for outerplanar graphs (which necessarily have at least two de-
gree 2 vertices [8]), by Proposition 1 we have that any set of
counterexamples for this conjecture cannot be contained in the
class of k-outerplanar graphs for any fixed value of k (unless
NP = RP). This is a consequence of the class of k-outerplanar
graphs having bounded treewidth, which is again polynomial time
detectable [3], or alternatively, a consequence of the combination
of k-outerplanar graphs having bounded cliquewidth and being
recognizable in polynomial time [2].

References

[1] Bhatt, S.N. and Cosmadakis, S.S.: The complexity of minimizing wire
lengths in VLSI layouts, Inf. Process. Lett., Vol.25, No.4, pp.263–267
(1987).

[2] Bienstock, D. and Monma, C.L.: On the complexity of embedding
planar graphs to minimize certain distance measures, Algorithmica,
Vol.5, No.1-4, pp.93–109 (1990).

[3] Bodlaender, H.L.: A linear-time algorithm for finding tree-
decompositions of small treewidth, SIAM J. Comput., Vol.25, No.6,
pp.1305–1317 (1996).

[4] Bondy, J.A. and Jackson, B.: Vertices of small degree in uniquely
Hamiltonian graphs, J. Combin. Theory Ser. B, Vol.74, No.2, pp.265–
275 (1998).

[5] Corneil, D.G., Habib, M., Lanlignel, J.M., Reed, B. and Rotics, U.:
Polynomial-time recognition of clique-width ≤ 3 graphs, Discrete
Appl. Math., Vol.160, No.6, pp.834–865 (2012).

[6] Entringer, R.C. and Swart, H.: Spanning cycles of nearly cubic graphs,
J. Combin. Theory Ser. B, Vol.29, No.3, pp.303–309 (1980).

[7] Espelage, W., Gurski, F. and Wanke, E.: How to solve NP-hard graph
problems on clique-width bounded graphs in polynomial time, Proc.
27th International Workshop on Graph-Theoretic Concepts in Com-
puter Science (WG), pp.117–128 (2001).

[8] Fleischner, H.: Uniquely Hamiltonian graphs of minimum degree 4, J.
Graph Theory, Vol.75, No.2, pp.167–177 (2014).
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