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Abstract: Let G be a nontrivial connected graph of order n. Let k be an integer with 2 ≤ k ≤ n. A strong k-rainbow
coloring of G is an edge-coloring of G having property that for every set S of k vertices of G, there exists a tree with
minimum size containing S whose all edges have distinct colors. The minimum number of colors required such that
G admits a strong k-rainbow coloring is called the strong k-rainbow index srxk(G) of G. In this paper, we study the
strong 3-rainbow index of comb product between a tree and a connected graph, denoted by Tn �o H. Notice that the
size of Tn �o H is the trivial upper bound for srx3(Tn �o H), which means we can assign distinct colors to all edges
of Tn �o H. However, there are some connected graphs H such that some edges of Tn �o H may be colored the same.
Therefore, in this paper, we characterize connected graphs H with srx3(Tn �o H) = |E(Tn �o H)|. We also provide a
sharp upper bound for srx3(Tn �o H) where srx3(Tn �o H) � |E(Tn �o H)|. In addition, we determine the srx3(Tn �o H)
for some connected graphs H.
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1. Introduction

All graphs in this paper are simple, finite, and connected. We
follow the terminology and notation of Diestel [12]. For two in-
tegers a and b, we define [a, b] as a set of all integers x with
a ≤ x ≤ b. Given an edge-colored graph G of order n ≥ 3, where
adjacent edges may be colored the same. A tree T in G is called
a rainbow tree, if every edge of T has distinct colors. For fur-
ther discussion, we always let k be an integer with k ∈ [2, n] and
S ⊆ V(G) with |S | = k. A rainbow tree containing the vertices
of S is called a rainbow S -tree. If S = {u, v}, then the rainbow
S -tree is called the rainbow u− v path [8]. The minimum number
of colors needed in an edge-coloring of G such that there exists
a rainbow S -tree for every set S in G is called the k-rainbow

index rxk(G) of G. These concepts were introduced by Char-
trand et al. [10]. If S = {u, v}, then the 2-rainbow index of G

is called the rainbow connection number rc(G) of G [8]. Such
a graph G is called a rainbow-connected graph, i.e., G contains
a rainbow u − v path for every two vertices u and v of G [8]. It
follows, for every nontrivial connected graph G of order n, that
rc(G) = rx2(G) ≤ rx3(G) ≤ ... ≤ rxn(G). Chartrand et al. [9]
also introduced the generalization of rainbow connection number
called the rainbow l-connection number rcl(G) of G, that is the
minimum number of colors needed in an edge-coloring of G such
that there exist l ≥ 1 internally disjoint rainbow u − v paths for
every two vertices u and v of G.
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Caro et al. [6] conjectured that deciding whether a graph G

has rc(G) = 2 is NP-Complete, in particular, computing rc(G)
is NP-Hard. In Ref. [7], Chakraborty et al. confirmed this con-
jecture. They also proved that it is NP-Complete to decide
whether a given edge-colored graph is rainbow-connected. How-
ever, Li et al. [19] showed that deciding whether rc(G) = 2
becomes easy when G is a bipartite graph, whereas deciding
whether rc(G) = 3 is still NP-Complete, even when G is a
bipartite graph. Many authors also investigated bounds, algo-
rithms, and computational complexity of the rainbow connec-
tion number of graphs (see Refs. [21], [22]). Other known re-
sults about rainbow connection number of graphs can be found in
Refs. [4], [8], [9], [14], [18], [25], [26], [28], [29], [30].

The k-rainbow index has an interesting application for the se-
cure transfer of information between some people in a communi-
cation network, which can be modeled by a graph. Ericksen [13]
stated that the attacks on September 11, 2001, happened because
some agencies cannot access the information and communicate
with each other safely. In order to solve this problem, we can as-
sign a large enough number of passwords to the line which con-
nects these agencies so that no password is repeated. The min-
inum number of passwords which allows one secure line between
every k agencies in a communication network (which may have
other agencies as intermediaries) so that the passwords along the
line are distinct is represented by the k-rainbow index of a graph.

The minimum size of a tree containing S is called the Steiner

distance d(S ) of S . The k-Steiner diameter sdiamk(G) of G

is the maximum Steiner distance of S among all sets S in G.
If S = {u, v}, then d(S ) = d(u, v) (d(u, v) is the distance be-
tween u and v, i.e., the length of a shortest u − v path in G) and
sdiam2(G) = diam(G) (diam(G) is the diameter of G, i.e., the
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largest distance between two vertices of G). Hence, diam(G) =
sdiam2(G) ≤ sdiam3(G) ≤ . . . ≤ sdiamn(G). In Ref. [10],
Chartrand et al. gave simple lower and upper bounds for rxk(G),
that is for every connected graph G of order n ≥ 3 and each in-
teger k with k ∈ [3, n], k − 1 ≤ sdiamk(G) ≤ rxk(G) ≤ n − 1.
They obtained the k-rainbow index of a cycle and a tree, where
rxk(Tn) = n − 1 which attains the upper bound for rxk(G). They
also showed that the k-rainbow index of a unicyclic graph is n−1
or n − 2. Therefore, Li et al. [20] characterized the graphs whose
3-rainbow index is n − 1 and n − 2. Liu and Hu [23] studied the
3-rainbow index with respect to three important graph product
operations and also other graph operations. Graph operations are
an interesting subject, which can be used to understand structures
of graphs. Some other results about k-rainbow index can be found
in Refs. [3], [5], [11], [17], [21], [22], [24].

In real life, one of the things that is being considered to make
a secure communication network is the time needed so that ev-
ery k people can access the information and communicate with
each other as quickly as possible. To model this problem, the
first and second authors generalized the concept of k-rainbow in-
dex [2]. A Steiner S -tree is a tree of size d(S ) which contains
the vertices of S . If S = {u, v}, then the Steiner S -tree is called
the u − v geodesic [8]. An edge-coloring of G is called a strong

k-rainbow coloring, if there exists a rainbow Steiner S -tree for
every set S in G. The strong k-rainbow index srxk(G) of G is the
minimum number of colors needed in a strong k-rainbow color-
ing of G. Hence, rxk(G) ≤ srxk(G) for every connected graph
G. If S = {u, v}, then the strong 2-rainbow index is called the
strong rainbow connection number src(G) of G [8]. Therefore,
src(G) = srx2(G) ≤ srx3(G) ≤ . . . ≤ srxn(G) for every con-
nected graph G of order n. Chartrand et al. [8] gave lower and
upper bounds for the strong rainbow connection number, that is
diam(G) ≤ rc(G) ≤ src(G) ≤ |E(G)|, where |E(G)| is the size of
G.

Note that the strong k-rainbow index is defined for every con-
nected graph, since every coloring that assigns distinct colors to
all edges of a connected graph is a strong k-rainbow coloring.
Thus, it is easy to see that

sdiamk(G) ≤ srxk(G) ≤ |E(G)|. (1)

There is a connected graph of order n ≥ 3 whose strong
k-rainbow index attains the upper bound in Eq. (1) for every
k ∈ [3, n]. To see this, let G be a connected graph which contains
bridges and admits a strong k-rainbow coloring. Let e = uv and
f = xy be two bridges of G. Then G−e− f contains three compo-
nents G1, G2, and G3. Without loss of generality, let u ∈ V(G1),
y ∈ V(G2), and v, x ∈ V(G3). If S is a set of k vertices contain-
ing u and y, then bridges e and f should be contained in every
rainbow Steiner S -tree. This gives us the following fact.
Fact 1.1. Let G be a connected graph of order n which con-

tains bridges. Let e, f ∈ E(G) be the bridges of G. For each

integer k ∈ [2, n], if c is a strong k-rainbow coloring of G, then

c(e) � c( f ).
The fact above implies the following theorem.

Theorem 1.1. [2] Let Tn be a tree of order n ≥ 3. For each

integer k ∈ [3, n], srxk(Tn) = |E(Tn)| = n − 1.

Note that a larger and complex communication network can
be obtained by extending the previous networks, which can be
done by doing some operation on the graphs. Therefore, we stud-
ied the srx3 of vertex-amalgamation and edge-amalgamation of
some graphs (see Refs. [1], [2]). In this paper, we study the srx3

of comb product of a tree and a connected graph. Let G be a graph
and H be a sequence of |V(G)| rooted graphs H1,H2, . . . ,H|V(G)|,
where each Hi has a root vertex oi. According to [15], the rooted

product of G by H , denoted by G(H), is a graph obtained by
identifying the root vertex oi of Hi with the i-th vertex of G for
all i ∈ [1, |V(G)|]. If Hi � H and oi = o for each i ∈ [1, |V(G)|],
then Saputro et al. called this notion by comb product of G and
H, denoted by G �o H [27]. The study of comb product is needed
when we have a communication network that contains some divi-
sions (the division is modeled by a connected graph H) and some
people in different divisions must pass through the head of their
division, which is represented by vertex o, in order to transfer
information to each other.

This paper is organized as follows. In Section 2, we first pro-
vide a connected graph H such that srx3(Tn �o H) = |E(Tn �o H)|
and characterize connected graphs H with srx3(Tn �o H) =
|E(Tn�o H)|. We also provide a sharp upper bound for srx3(Tn�o

H) where srx3(Tn �o H) � |E(Tn �o H)|. In Section 3, we deter-
mine the exact values of srx3(Tn�o H) for some connected graphs
H.

2. Sharp Upper Bound for srx3(Tn �o H)

Let n and m be two integers at least 3. Let G and H be
connected graphs of order n and m, respectively, with V(G) =
{u1, u2, . . . , un} and V(H) = {w1, w2, . . . , wm}. By the definition
of comb product, we can say that V(G �o H) = {(ui, wp) : ui ∈
V(G), wp ∈ V(H)} and (ui, wp)(u j, wq) ∈ E(G �o H) whenever
ui = u j and wpwq ∈ E(H), or uiu j ∈ E(G) and wp = wq = o [27].
For simplifying, we define vpi = (ui, wp) for i ∈ [1, n] and
p ∈ [1,m].

In this paper, we consider graphs Tn �o H. For further discus-
sion, let Hi denote the i-th copy of H for each i ∈ [1, n]. Given c

as a strong 3-rainbow coloring of Tn �o H. For X ⊆ E(Tn �o H),
let c(X) denote the set of colors assigned to the edges in X. By
using Theorem 1.1,

|c(E(Tn))| = n − 1. (2)

Following Eq. (1), |E(Tn �o H)| is the natural upper bound for
srx3(Tn �o H). In the next theorem, we determine the strong 3-
rainbow index of Tn �o Tm which is equal to its size.
Theorem 2.1. Let n and m be two integers at least 3. Let Tn and

Tm be trees of order n and m, respectively, and o be an arbitrary

vertex of Tm. Then srx3(Tn �o Tm) = nm − 1.
Proof. Note that Tn �o Tm is a tree, where |E(Tn �o Tm)| =
|E(Tn)| + n (|E(Tm)|). It follows by Theorem 1.1 that srx3(Tn �o

Tm) = |E(Tn �o Tm)| = |E(Tn)| + n (|E(Tm)|) = nm − 1. �
A natural thought is like this: Which connected graph H

of order m except a tree that has the strong 3-rainbow index
|E(Tn �o H)|? Since H is not a tree, H must contains cycles.
Let h ≥ 3 be the girth of H. Let Ch be a cycle of order h in H. We
relabel vertices of H such that V(Ch) = {w1, w2, . . . , wh}, E(Ch) =
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{wiwi+1 : i ∈ [1, h] and wh+1 = w1}, and d(o, w1) ≤ d(o, wi) for all
i ∈ [2, h]. We first provide the following observation.
Observation 2.1. There exists an edge of Ch that is not contained

in a shortest o − wi path for any i ∈ [1, h].
Proof. For i ∈ [1, h], let d(o, wi) = li. Recall that l1 ≤ li for
all i ∈ [2, h]. Thus, li ∈ [l1, l1 + i − 1] for i ∈ [1, � h

2 � + 1] and
li ∈ [l1, l1 + h − i + 1] for i ∈ [� h

2 � + 2, h]. Now, we consider two
cases.
Case 1. o ∈ V(Ch)

It means o = w1. Thus, li = i − 1 for i ∈ [1, � h
2 � + 1] and

li = h − i + 1 for i ∈ [� h
2 � + 2, h]. If h is odd, then w� h

2 �+1w� h
2 �+2

is not contained in a shortest o − wi path for any i ∈ [1, h]. If h

is even, then there are at least two shortest o − w� h
2 �+1 paths, one

path contains w� h
2 �w� h

2 �+1 and another path contains w� h
2 �+1w� h

2 �+2.
Therefore, we can choose w� h

2 �+1w� h
2 �+2 to be an edge that is not

contained in a shortest o−w� h
2 �+1 path. Furthermore, w� h

2 �+1w� h
2 �+2

is not contained in a shortest o − wi path for any i ∈ [1, h].
Case 2. o � V(Ch)

We first define the following sets.
– For odd h, let W1,1 be a set of pairs of two vertices (wi, w j)

such that wi, w j ∈ V(Ch) and li = l j for distinct i, j ∈ [1, � h
2 �+

1], and W1,2 be a set of pairs of two vertices (wi, w j) such that
wi, w j ∈ V(Ch) and li = l j for distinct i, j ∈ {1} ∪ [� h

2 � + 2, h].
– For even h, let W2,1 be a set of pairs of two vertices (wi, w j)

such that wi, w j ∈ V(Ch) and li = l j for distinct i, j ∈ [1, � h
2 �+

1], and W2,2 be a set of pairs of two vertices (wi, w j) such that
wi, w j ∈ V(Ch) and li = l j for distinct i, j ∈ {1} ∪ [� h

2 � + 1, h].
Hence, we have either Subcase 2.1 or Subcase 2.2 regardless of
the parity of h as follows.

Subcase 2.1. |Wp,q| ≥ 1 for some q ∈ [1, 2]
Choose a pair (wi, w j) ∈ Wp,q so that dCh (wi, w j) has the small-

est value. Thus, dCh (wi, w j) is 1 or 2, since if dCh (wi, w j) ≥ 3, then
there exists another pair (wi′w j′ ) ∈ Wp,q such that dCh (wi′ , w j′ ) <
dCh (wi, w j), contradicts the assumption.

If dCh (wi, w j) = 1, then wiw j is not contained in a shortest o−wi

path and a shortest o−w j path. Furthermore, wiw j is not contained
in a shortest o − wi path for any i ∈ [1, h].

If dCh (wi, w j) = 2, then there exists wk ∈ V(Ch) such that
wiwk, wkw j ∈ E(Ch) and lk = li + 1. Hence, there are at least
two shortest o − wk paths, one path contains wiwk and another
path contains wkw j. By using a similar argument as Case 1 for
even h, we can choose wiwk to be an edge that is not contained in
a shortest o − wi path for any i ∈ [1, h].

Subcase 2.2. |Wp,q| = 0 for all q ∈ [1, 2]
Since |Wp,q| = 0 for all q ∈ [1, 2], li = l1+i−1 for i ∈ [1, � h

2 �+1]
and li = l1 + h− i+ 1 for i ∈ [� h

2 �+ 2, h]. Thus, by using a similar
argument as Case 1, w� h

2 �+1w� h
2 �+2 is not contained in a shortest

o − wi path for any i ∈ [1, h]. �
The next theorem shows characterization of connected graphs

H with srx3(Tn �o H) = |E(Tn �o H)|.
Theorem 2.2. Let n and m be two integers at least 3. Let Tn be a

tree of order n, H be a connected graph of order m, and o be an

arbitrary vertex of H. Then srx3(Tn �o H) = |E(Tn �o H)| if and

only if H is a tree.

Proof. If H is a tree, then srx3(Tn �o H) = |E(Tn �o H)| by
Theorem 2.1.

Conversely, suppose H is a graph with srx3(Tn�oH) = |E(Tn�o

H)| but not a tree. Thus, H must contain cycles. Let h ≥ 3 be the
girth of H. Let Ch be a cycle of order h in H. We relabel vertices
of H such that V(Ch) = {w1, w2, . . . , wh}, E(Ch) = {wiwi+1 : i ∈
[1, h] and wh+1 = w1}, and d(o, w1) ≤ d(o, wi) for all i ∈ [2, h].

If o ∈ V(Ch), then o = w1. Thus, w� h
2 �+1w� h

2 �+2 is not contained
in a shortest o − wi path for all i ∈ [1, h] by Observation 2.1.

Therefore, by assigning color 1 to the edges v
� h

2 �+1
i v

� h
2 �+2

i for all
i ∈ [1, n] and colors 2, 3, . . . , |E(Tn �o H)| − n + 1 to the remain-
ing |E(Tn �o H)| − n edges of Tn �o H, we can find a rainbow
Steiner S -tree for every set S of three vertices of Tn �o H. Hence,
srx3(Tn �o H) ≤ |E(Tn �o H)| − n + 1, a contradiction.

If o � V(Ch), then observe that any choice of vertex o makes
the cycle Ch satisfy either Subcase 2.1 or Subcase 2.2 as given in
Observation 2.1. If Subcase 2.1 holds, then there exists an edge
of Ch, say e, which is not contained in a shortest o − wi path for
all i ∈ [1, h] by Observation 2.1. Thus, by using a similar edge-
coloring as case o ∈ V(Ch), we will obtain a contradiction. If
Subcase 2.2 holds, then w� h

2 �+1w� h
2 �+2 is not contained in a shortest

o−wi path for all i ∈ [1, h]. Thus, by using a similar edge-coloring
as case o ∈ V(Ch), we will obtain a contradiction. �

Following Theorem 2.2, an immediate question arises: What is
the sharp upper bound for srx3(Tn �o H) where srx3(Tn �o H) �
|E(Tn�o H)|? The answer of this question is given in Theorem 2.3.
Before we proceed to this theorem, we first verify the following
lemma.
Lemma 2.1. Let H1 and H2 be connected graphs which ad-

mit strong 3-rainbow colorings c1 and c2, respectively, so that

c1(E(H1)) ∩ c2(E(H2)) = ∅. Then for any two vertices u ∈ V(H1)
and v ∈ V(H2), the edge-coloring of the edge-colored graph G

obtained from H1 and H2 by identifying u and v is a strong 3-

rainbow coloring of G.

Proof. By the assumption, for any subset S with |S | = 3 which
is contained in V(H1) or V(H2), there exists a rainbow Steiner
S -tree. Thus, without loss of generality, we may assume that
S ∩ V(H1) = {x1} and S ∩ V(H2) = {x2, x3}. Observe that there
exist a rainbow u − x1 geodesic T1 in H1 and a rainbow Steiner
{v, x2, x3}-tree T2 in H2. Since u = v and c1(E(H1))∩c2(E(H2)) =
∅, the tree T = T1 ∪ T2 is a rainbow Steiner S -tree. �
Theorem 2.3. Let n and m be two integers at least 3. Let Tn be a

tree of order n, H be a connected graph of order m, and o be an

arbitrary vertex of H. Then

srx3(Tn �o H) ≤ n (srx3(H)) + n − 1.

Proof. We define an edge-coloring c : E(Tn �o H) →
[1, n (srx3(H)) + n − 1] as follows.
i. Assign colors 1, 2, . . . , n − 1 to the edges of Tn.
ii. For each i ∈ [1, n], assign srx3(H) colors which are not used

for E(Tn) to the edges of Hi, so that each edge-coloring of Hi

is a strong 3-rainbow coloring and c(E(Hi)) ∩ c(E(H j)) = ∅
for all j ∈ [1, n] with i � j.

By the definition and using Lemma 2.1 repeatedly, the edge-
coloring c is clearly a strong 3-rainbow coloring of Tn�o H. Thus,
the theorem holds. �

Now, let us prove the sharpness of the upper bound in The-
orem 2.3. Let m be an integer with m ≥ 3. A ladder Lm is a
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Cartesian product of a Pm and a P2, where Pm is a path of or-
der m. Let V(Lm) = {wi : i ∈ [1, 2m]} and E(Lm) = {wiwi+1 : i ∈
[1,m − 1] ∪ [m + 1, 2m − 1]} ∪ {wiwi+m : i ∈ [1,m]}. A triangu-

lar ladder [16] of order 2m, denoted by T Lm, is a graph obtained
from Lm by adding the edges wiwi+m+1 for i ∈ [1,m − 1]. In the
following theorem, we determine the strong 3-rainbow index of
T Lm.
Theorem 2.4. For m ≥ 3, let T Lm be a triangular ladder of order

2m. Then srx3(T Lm) = m.

Proof. It is easy to check that sdiam3(T Lm) = m. Hence,
srx3(T Lm) ≥ m by Eq. (1). Next, we show that srx3(T Lm) ≤ m

by defining a strong 3-rainbow coloring c : E(T Lm) → [1,m]
which can be obtained by assigning colors i to the edges wiwi+1

and wi+mwi+m+1 for i ∈ [1,m − 1] and color m to the edges wiwi+m

for i ∈ [1,m] and wiwi+m+1 for i ∈ [1,m − 1]. Now, we show that
c is a strong 3-rainbow coloring of T Lm. Let S be a set of three
vertices of T Lm. By symmetry, we consider two cases.
Case 1. S = {wi, w j, wk} for i, j, k ∈ [1,m] with i < j < k

Then a tree T with E(T ) = {wlwl+1 : l ∈ [i, k − 1]} is a rainbow
Steiner S -tree.
Case 2. S = {wi, w j, wk} for i, j ∈ [1,m], i < j, and k ∈ [m+1, 2m]

If k < i +m, then a tree T with E(T ) = {wkwk−m} ∪ {wlwl+1 : l ∈
[k − m, j − 1]} is a rainbow Steiner S -tree. If i + m ≤ k ≤ j + m,
then a tree T with E(T ) = {wkwk−m} ∪ {wlvl+1 : l ∈ [i, j − 1]}
is a rainbow Steiner S -tree. If k > j + m, then a tree T with
E(T ) = {wlwl+1 : l ∈ [i, k − m − 2]} ∪ {wkwk−m−1} is a rainbow
Steiner S -tree. �

Figure 1 gives an example of a strong 3-rainbow coloring of
T L5.

The degree dG(v) of a vertex v in G is the number of neigh-
bours of v. The next theorem shows that srx3(Tn �o T Lm) attains
the upper bound in Theorem 2.3.
Theorem 2.5. Let n and m be two integers at least 3. Let Tn be

a tree of order n, T Lm be a triangular ladder of order 2m, and o

be a vertex of T Lm with dT Lm (o) = 3. Then srx3(Tn �o T Lm) =
nm + n − 1.

Proof. By using Theorems 2.3 and 2.4, srx3(Tn �o T Lm) ≤
nm + n − 1.

Note that w1 and w2m are two vertices of T Lm which have
degree 3. By symmetry, we consider o = w1. Suppose that
srx3(Tn�o Lm) ≤ n+nm−2. Then there exists a strong 3-rainbow
coloring c : E(Tn�oT Lm)→ [1, n+nm−2]. For each i ∈ [1, n], let
Ai = {vpi vp+1

i : p ∈ [1,m− 1]} ∪ {v1i v1+m
i }. The following properties

hold.
(A1) c(Ai) ∩ c(E(Tn)) = ∅ for all i ∈ [1, n]

Suppose that there exist e ∈ Ai for some i ∈ [1, n] and
f ∈ E(Tn) such that c(e) = c( f ). Let e = xy and f = uv,
and assume that d(v1i , u) < d(v1i , v). Observe that the rain-
bow Steiner {x, y, v}-tree must contains edges e and f , but
c(e) = c( f ), a contradiction.

(A2) c(Ai) ∩ c(Aj) = ∅ for all i, j ∈ [1, n] with i � j

Suppose that there exists e ∈ Ai and f ∈ Aj for some
i, j ∈ [1, n], i � j, such that c(e) = c( f ). Let e = xy and
f = uv, and assume that d(v1j , u) < d(v1j , v). By using a
similar argument as in the proof of (A1), we will obtain a
contradiction.

Fig. 1 A strong 3-rainbow coloring of T L5.

Note that |c(Ai)| = m for each i ∈ [1, n]. Hence,
∑n

i=1 |c(Ai)| ≥
nm by (A2). It follows by (A1) that |c(E(Tn))| ≤ n−2, contradicts
Eq. (2). Thus, srx3(Tn �o T Lm) ≥ nm + n − 1. �

3. The Strong 3-rainbow Index of Tn �o H for
Some Connected Graphs H

The value of srx3(Tn �o H) is not only affected by the structure
or the size of Tn �o H, but also can be affected by the choice of
vertex o ∈ V(H). In this section, we provide some graphs Tn�o H

whose srx3 is affected or not affected by the choice of vertex o.

3.1 The Strong 3-rainbow Index of Tn �o Wm

Let m be an integer with m ≥ 3. A wheel Wm of order m + 1
is a graph constructed by joining a vertex to every vertex of a
cycle Cm. Let V(Wm) = {wi : i ∈ [1,m + 1]} such that E(Wm) =
{w1wi : i ∈ [2,m+1]}∪{wiwi+1 : i ∈ [2,m+1] and wm+2 = w2}. The
vertex w1 is called the center vertex of Wm. For each i ∈ [2,m+1],
edge w1wi is called the spoke of Wm. In Ref. [2], the first and
second authors studied the srx3 of Wm. The results are given in
Lemma 3.1 and Theorem 3.1. To make it easier for the readers,
we also provide the proof of these results.
Lemma 3.1. [2] For m ≥ 4, let Wm be a wheel of order m + 1
which admits a strong 3-rainbow coloring. Then any color is as-

signed to at most two spokes w1wi and w1w j where wiw j ∈ E(Wm).
Proof. Suppose that there are three spokes of Wm, w1wi, w1w j,
and w1wk, which are colored the same. Without loss of general-
ity, assume that dCm (wi, w j) ≥ 2. Observe that the rainbow Steiner
{w1, wi, w j}-tree must contain spokes w1wi and w1w j, but these two
spokes are colored the same, a contradiction. �
Theorem 3.1. [2] For m ≥ 3, let Wm be a wheel of order m + 1.

Then

srx3(Wm) =

⎧⎪⎪⎨⎪⎪⎩
3, for m = 4;

�m
2 �, otherwise.

Proof. For m = 3, sdiam3(W3) = 2. Thus, srx3(W3) ≥ 2 by
Eq. (1). Now, we show that srx3(W3) ≤ 2 by defining a strong
3-rainbow coloring of W3 as shown in Fig. 2.

For m = 4, suppose that srx3(W4) ≤ 2. Then there exists a
strong 3-rainbow coloring c : E(W4) → [1, 2]. Observe that we
need at least two colors to color all spokes of W4 by Lemma 3.1.
Thus, without loss of generality, let c(w1w2) = c(w1w3) = 1 and
c(w1w4) = c(w1w5) = 2. By considering {w1, w2, w3}, {w2, w3, w4},
and {w3, w4, w5}, successively, c(w2w3) = 2, c(w3w4) = 1, and
c(w4w5) = 2. However, there is no rainbow Steiner {w1, w4, w5}-
tree, a contradiction. Thus, srx3(W4) ≥ 3. Next, we show that
srx3(W4) ≤ 3 by defining a strong 3-rainbow coloring of W4 as
shown in Fig. 2.

Let m ≥ 5. Thus, srx3(Wm) ≥ �m
2 � by Lemma 3.1. Next, we

show that srx3(Wm) ≤ �m
2 � by defining a strong 3-rainbow color-

ing c : E(Wm)→ [1, �m
2 �] as follows.

i. Assign colors � i
2 � to the spokes w1wi for i ∈ [2,m + 1].
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Fig. 2 Strong 3-rainbow colorings of W3, W4, W6, and W7.

ii. Define c(wiwi+1) = c(w1wi+2) for even i ∈ [2,m + 1] and
c(wiwi+1) = c(w1wi) for odd i ∈ [2,m + 1].

Now, we show that c is a strong 3-rainbow coloring of Wm. Let S

be a set of three vertices of Wm. Let i, j, k ∈ [2,m + 1] with i � j,
i � k, and j � k. We consider two cases.
Case 1. The vertices of S belong to the cycle Cm

Without loss of generality, let S = {wi, w j, wk}. If d(S ) = 2,
then a path of length 2 which contains all vertices of S is a rain-
bow Steiner S -tree. If i is even (i � m+1 if m is odd), j = i+1, and
k = i + 3, then a tree T with E(T ) = {wiwi+1, wi+1wi+2, wi+2wi+3}
is a rainbow Steiner S -tree. If i is even, j = i+ 1, and k ≥ i+ 4 or
k ≤ i− 2 (or i = m+ 1 if m is odd, j = 2, and k = 4), then a tree T

with E(T ) = {w1wi, wiw j, w1wk} is a rainbow Steiner S -tree. For
other values of i, j, and k, a tree T with E(T ) = {w1wi, w1w j, w1wk}
is a rainbow Steiner S -tree.
Case 2. Two vertices of S belong to the cycle Cm

Without loss of generality, let S = {w1, wi, w j}. If i is even and
j = i + 1, then a tree T with E(T ) = {w1wi, wiwi+1} is a rain-
bow Steiner S -tree. For other values of i and j, a tree T with
E(T ) = {w1wi, w1w j} is a rainbow Steiner S -tree. �

Our first result in this subsection is the srx3(Tn �o Wm) where
o is the center vertex of Wm.
Theorem 3.2. Let n and m be two integers with n ≥ 3 and m ≥ 4.

Let Tn be a tree of order n, Wm be a wheel of order m + 1, and o

be the center vertex of Wm. Then srx3(Tn �o Wm) = n�m
2 �+ n− 1.

Proof. Let c be a strong 3-rainbow coloring of Tn �o Wm. First,
we verify two properties.
(B1) c(v1i v

p
i ) � c(E(Tn)) for all i ∈ [1, n] and p ∈ [2,m + 1]

Suppose that there exist v1i v
p
i ∈ E(Wi

m) for some i ∈ [1, n]
and p ∈ [2,m + 1] and f ∈ E(Tn) such that c(v1i v

p
i ) = c( f ).

Let f = uv and assume that d(v1i , u) < d(v1i , v). Observe that
the rainbow Steiner {v1i , vpi , v}-tree must contain edges v1i v

p
i

and f , but c(v1i v
p
i ) = c( f ), a contradiction.

(B2) c(v1i v
p
i ) � c(v1jv

q
j ) for all i, j ∈ [1, n], i � j, and p, q ∈

[2,m + 1]
By considering {v1i , vpi , vqj } for all i, j ∈ [1, n], i � j, and
p, q ∈ [2,m + 1], it is clear that c(v1i v

p
i ) � c(v1jv

q
j ).

Thus, by using Eq. (2), Lemma 3.1, (B1), and (B2), srx3(Tn �o

Wm) ≥ n�m
2 � + n − 1.

Next, we prove the upper bound. For m ≥ 5, srx3(Tn �o Wm) ≤
n�m

2 � + n − 1 by Theorems 2.3 and 3.1. For m = 4, we show that
srx3(Tn �o W4) ≤ 3n − 1 by defining a strong 3-rainbow coloring
c : E(Tn �o W4)→ [1, 3n − 1] as follows.
i. Assign colors 1, 2, . . . , n − 1 to the edges of Tn.
ii. For each i ∈ [1, n], assign colors n+2(i−1) to the edges v1i v

2
i ,

v1i v
3
i , and v4i v

5
i , and colors n + 1 + 2(i − 1) to the edges v1i v

4
i ,

v1i v
5
i , and v2i v

3
i .

iii. Assign colors n+2i to the edges v3i v
4
i and v5i v

2
i for i ∈ [1, n−1]

and color n to the edges v3nv
4
n and v5nv

2
n.

By the coloring above, it is easy to find a rainbow Steiner S -tree
for every set S of three vertices of Tn �o W4. �

Following the theorem above, we obtain that srx3(Tn �o Wm)
(o is the center vertex of Wm) attains the upper bound in Theorem
2.3 for m ≥ 5.

Now, consider graphs Tn�o Wm where o is not the center vertex
of Wm. Without loss of generality, we may assume that o = w2.
This assumption applies until the end of this subsection. First, we
verify the following observation.
Observation 3.1. Let n and m be two integers at least 3. Let

o = w2 ∈ V(Wm). If c is a strong 3-rainbow coloring of Tn �o Wm,

then

(i) c(v2i v
p
i ) � c(E(Tn)) for all i ∈ [1, n] and p ∈ {1, 3,m + 1};

(ii) c(v1i v
p
i ) � c(E(Tn)) for all i ∈ [1, n] and p ∈ [4,m];

(iii) c(v2i v
3
i ) � c(v2i v

m+1
i ) for all i ∈ [1, n] and m ≥ 4;

(iv) c(v2i v
p
i ) � c(v2jv

q
j ) for all i, j ∈ [1, n], i � j, and p, q ∈

{1, 3,m + 1};
(v) c(v1i v

2
i ) � c(v1jv

p
j ) for all i, j ∈ [1, n] and p ∈ [5,m − 1]; and

(vi) c(v1i v
p
i ) � c(v1jv

q
j ) for all i, j ∈ [1, n], i � j, and p, q ∈

[5,m − 1].
Proof. We distinguish several cases.
(i) Let f = uv be an arbitrary edge of Tn and assume that

d(v2i , u) < d(v2i , v). By considering {v2i , vpi , v} for p ∈ {1, 3,m+
1}, c(v2i v

p
i ) � c( f ). Furthermore, c(v2i v

p
i ) � c(E(Tn)).

(ii) An argument similar to that used in the proof of (i) will ver-
ify that c(v1i v

p
i ) � c(E(Tn)) for all i ∈ [1, n] and p ∈ [4,m].

(iii) By considering {v2i , v3i , vm+1
i } for all i ∈ [1, n], it is clear that

c(v2i v
3
i ) � c(v2i v

m+1
i ).

(iv) By considering {v2i , vpi , vqj } for all i, j ∈ [1, n], i � j, and
p, q ∈ {1, 3,m + 1}, c(v2i v

p
i ) � c(v2jv

q
j ).

(v) By considering {v1i , v2i , vpj } for all i, j ∈ [1, n] and p ∈ [5,m −
1], c(v1i v

2
i ) � c(v1jv

p
j ).

(vi) By considering {v2i , vpi , vqj } for all i, j ∈ [1, n], i � j, and
p, q ∈ [5,m − 1], c(v1i v

p
i ) � c(v1jv

q
j ). �

Theorem 3.3. Let n and m be two integers at least 3. Let Tn be

a tree of order n, Wm be a wheel of order m + 1, and o is not the

center vertex of Wm. Then

srx3(Tn �o Wm) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2n + 1, for m = 3;
3n, for m ∈ [4, 5];

�m−5
2 �n + 2n, for even m ≥ 6;

�m−5
2 �n + 2n + 1, for odd m ≥ 6.

Proof. Recall that we assume o = w2. We consider three cases.
Case 1. m = 3

Suppose that srx3(Tn�o W3) ≤ 2n. Then there exists a strong 3-
rainbow coloring c : E(Tn�o W3)→ [1, 2n]. By using Eq. (2) and
Observation 3.1 (i) and (iv), we need at least 2n−1 distinct colors
to color edges of Tn and edges v1i v

2
i for all i ∈ [1, n]. This implies

we have at most one color left, say color a. Next, consider edge
v21v

3
1. By using Observation 3.1 (i) and (iv), c(v21v

3
1) ∈ {c(v11v

2
1), a}.

If c(v21v
3
1) = a, then c(v22v

3
2) = c(v12v

2
2) by Observation 3.1 (i) and

(iv). By considering {v12, v32, v1i } for all i ∈ [1, n] with i � 2,
c(v12v

3
2) � c(E(Tn)) ∪ {c(v1i v

2
i )}. This forces c(v12v

3
2) = a. How-

ever, there is no rainbow Steiner {v12, v32, v31}-tree, a contradiction.
Thus, c(v21v

3
1) = c(v11v

2
1). Similarly, c(v21v

4
1) = c(v11v

2
1). Now, we
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have c(v11v
2
1) = c(v21v

3
1) = c(v21v

4
1). By considering {v11, vp1 , v1i } and

{v31, v41, v1i } for all i ∈ [2, n] and p ∈ [3, 4], we obtain c(v11v
3
1) =

c(v11v
4
1) = c(v31v

4
1) = a. However, there is no rainbow Steiner

{v11, v31, v41}-tree, a contradiction. Thus, srx3(Tn �o W3) ≥ 2n + 1.
Next, we show that srx3(Tn�oW3) ≤ 2n+1 by defining a strong

3-rainbow coloring c : E(Tn �o W3)→ [1, 2n+1]. We first assign
colors 1, 2, . . . , n−1 to the edges of Tn. For each i ∈ [1, n], assign
colors i + n − 1 to the edges v2i v

p
i for p ∈ {1, 3, 4}, color 2n to the

edges v1i v
p
i for p ∈ [3, 4], and color 2n + 1 to the edges v3i v

4
i . By

this coloring, it is easy to show that for every set S of three ver-
tices of Tn �o W3, there exists a rainbow Steiner S -tree. Figure 3
gives an example of a strong 3-rainbow coloring of P4 �o W3.
Case 2. m ∈ [4, 5]

Suppose that srx3(Tn �o Wm) ≤ 3n − 1. Then there exists
a strong 3-rainbow coloring c : E(Tn �o Wm) → [1, 3n − 1].
By using Eq. (2) and Observation 3.1 (i), (iii), and (iv), we
need at least 3n − 1 distinct colors to color edges of Tn and
edges v2i v

3
i and v2i v

m+1
i for all i ∈ [1, n]. This implies we have

used all available colors. For further steps, let i ∈ [2, n],
p ∈ [4,m], and q ∈ {3,m + 1}. Observe that the rainbow
Steiner {v11, vp1 , vqi }-tree must contains edges v11v

2
1, v11v

p
1 , and v2i v

q
i ,

which means {c(v11v
2
1), c(v11v

p
1 )} � c(E(Tn))∪ {c(v2i v

q
i )}. This forces

{c(v11v
2
1), c(v11v

p
1 )} ⊆ {c(v21v

3
1), c(v21v

m+1
1 )}, where c(v11v

2
1) � c(v11v

p
1 ).

If c(v11v
2
1) = c(v21v

3
1) and c(v11v

p
1 ) = c(v21v

m+1
1 ), then consider

{v11, v31, vqi }. We obtain that c(v11v
3
1) � c(E(Tn)) ∪ {c(v11v

2
1), c(v2i v

q
i )},

implying that c(v11v
3
1) = c(v21v

m+1
1 ). By considering {v31, v41, vqi }, we

also have c(v31v
4
1) = c(v21v

m+1
1 ). However, there is no rainbow

Steiner {v11, v31, v41}-tree since c(v11v
3
1) = c(v11v

4
1) = c(v31v

4
1), a con-

tradiction. Similarly, if c(v11v
2
1) = c(v21v

m+1
1 ) and c(v11v

p
1 ) = c(v21v

3
1),

then there is no rainbow Steiner {v11, vm1 , vm+1
1 }-tree, a contradic-

tion. Thus, srx3(Tn �o Wm) ≥ 3n.
Next, we show that srx3(Tn �o Wm) ≤ 3n by defining a strong

3-rainbow coloring c : E(Tn �o Wm) → [1, 3n]. We first assign
colors 1, 2, . . . , n − 1 to the edges of Tn. For m = 4 and each
i ∈ [1, n], assign colors n + 2(i − 1) to the edges v1i v

2
i , v1i v

3
i , v3i v

4
i ,

and v5i v
2
i , colors n + 1 + 2(i − 1) to the edges v1i v

4
i , v1i v

5
i , and v2i v

3
i ,

and color 3n to the edges v4i v
5
i . For m = 5 and each i ∈ [1, n],

assign colors n + 2(i − 1) to the edges v1i v
2
i , v2i v

3
i , and v5i v

6
i , colors

n+ 1+ 2(i− 1) to the edges v1i v
3
i , v1i v

4
i , v4i v

5
i , and v6i v

2
i , and color 3n

to the edges v1i v
5
i , v1i v

6
i , and v3i v

4
i . By this coloring, it is not hard to

find a rainbow Steiner S -tree for every set S of three vertices of
Tn�o Wm. Figure 4 gives examples of strong 3-rainbow colorings
of P4 �o W4 and P4 �o W5.
Case 3. m ≥ 6

For odd m, suppose that srx3(Tn �o Wm) ≤ �m−5
2 �n + 2n. Then

there exists a strong 3-rainbow coloring c : E(Tn �o Wm) →
[1, �m−5

2 �n + 2n]. By symmetry, we consider the following two
subcases.

– There exists a fixed i ∈ [1, n] such that c(v1i v
4
i ) = c(v1i v

5
i )

Without loss of generality, let i = 1. First, consider spokes
v11v

p
1 for p ∈ {2} ∪ [6,m − 1]. By using Lemma 3.1, these

spokes can not be colored with c(v11v
4
1) and c(v11v

2
1) � c(v11v

q
1)

for all q ∈ [6,m − 1]. Thus, we need at least �m−6
2 � + 2 =

�m−5
2 � + 2 (since m is odd) distinct colors to color spokes
v11v

p
1 for all p ∈ {2} ∪ [4,m − 1]. This implies we have at

Fig. 3 A strong 3-rainbow coloring of P4 �o W3.

Fig. 4 Strong 3-rainbow colorings of (a) P4 �o W4 and (b) P4 �o W5.

most �m−5
2 �n + 2n −

(
�m−5

2 � + 2
)
=
(
�m−5

2 � + 2
)

(n − 1) col-
ors left. Next, consider all edges of Tn and spokes v1i v

p
i for

all i ∈ [2, n] and p ∈ {2} ∪ [5,m − 1]. By using Observa-
tion 3.1, we need at least

(
�m−5

2 � + 2
)

(n − 1) new distinct
colors to color these edges, implying that we have used all
remaining colors. This forces for each i ∈ [2, n], we use ex-
actly �m−5

2 � colors to color spokes v1i v
p
i for all p ∈ [5,m − 1],

where every color is assigned to exactly two spokes. Now,
consider spoke v12v

4
2. By using Lemma 3.1 and Observa-

tion 3.1 (ii), c(v12v
4
2) � c(E(Tn)) and c(v12v

4
2) � c(v12v

p
2 ) for

all p ∈ {2} ∪ [5,m − 1]. This forces c(v12v
4
2) = c(v1jv

p
j ) for

some j ∈ [1, n] with j � 2 and p ∈ {2}∪ [5,m−1]. However,
there is no rainbow Steiner {v12, v42, vqj }-tree for q ∈ [5,m − 1]
since the tree must contain spokes v12v

4
2, v1jv

2
j , and v1jv

q
j , a con-

tradiction.
The subcase above implies the following subcase.

– c(v1i v
4
i ) � c(v1i v

5
i ) and c(v1i v

m
i ) � c(v1i v

m−1
i ) for all i ∈ [1, n]

By using Eq. (2) and Observation 3.1, we need at least
�m−5

2 �n + 2n − 1 distinct colors to color edges of Tn and
spokes v1i v

p
i for all i ∈ [1, n] and p ∈ {2} ∪ [5,m − 1]. This

implies we have at most one color left, say color a. Next,
consider spoke v11v

4
1. It follows by Lemma 3.1 and Observa-

tion 3.1 (ii) that c(v11v
4
1) � c(E(Tn)) and c(v11v

4
1) � c(v11v

p
1 ) for

all p ∈ {2} ∪ [6,m − 1]. This forces c(v11v
4
1) = a or c(v11v

4
1) =

c(v1jv
p
j ) for some j ∈ [2, n] and p ∈ {2} ∪ [5,m − 1]. If

c(v11v
4
1) = c(v1jv

p
j ), then there is no rainbow Steiner {v11, v41, vqj }-

tree for q ∈ [5,m−1] since the tree must contain spokes v11v
4
1,

v1jv
2
j , and v1jv

q
j . Hence, c(v11v

4
1) = a. Similarly, c(v11v

m
1 ) = a.

Therefore, c(v11v
4
1) = c(v11v

m
1 ) = a, contradicts Lemma 3.1.

Thus, srx3(Tn �o Wm) ≥ �m−5
2 �n + 2n + 1 for odd m. Similarly,

we can also prove the lower bound for even m.
Now, we prove the upper bound. Let x = �m−5

2 � + 1. For even
m, we define an edge-coloring c : E(Tn�o Wm)→ [1, �m−5

2 �n+2n]
as follows.
i. Assign colors 1, 2, . . . , n − 1 to the edges of Tn.
ii. For each i ∈ [1, n], assign colors � p

2 � + n − 1 + x(i − 1) to the
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Fig. 5 Strong 3-rainbow colorings of (a) P4 �o W6 and (b) P3 �o W7.

spokes v1i v
p
i for p ∈ [2,m − 1] and color n + xn to the spokes

v1i v
m
i and v1i v

m+1
i .

iii. For m = 6 and each i ∈ [1, n], define c(vpi v
p+1
i ) = c(v1i v

p+2
i )

for p ∈ {2, 4}, c(v6i v
7
i ) = c(v2i v

3
i ), and c(vpi v

p+1
i ) = c(v1i v

2
i ) for

p ∈ {3, 5, 7}.
iv. For m ≥ 8 and each i ∈ [1, n], define c(vpi v

p+1
i ) = c(v1i v

p+2
i )

for even p ∈ [2,m], c(vpi v
p+1
i ) = c(v1i v

p
i ) for odd p ∈ [3,m−1],

and c(vm+1
i v2i ) = c(vm−1

i vmi ).
For odd m, we define an edge-coloring c : E(Tn �o Wm) →

[1, �m−5
2 �n + 2n + 1] as follows.

i. Assign colors 1, 2, . . . , n − 1 to the edges of Tn.
ii. For each i ∈ [1, n], assign color n+ x(i−1) to the spokes v1i v

2
i ,

colors � p
2 �+n−2+x(i−1) to the spokes v1i v

p
i for p ∈ [5,m−1],

color n+ xn to the spokes v1i v
3
i and v1i v

4
i , and color n+ xn+ 1

to the spokes v1i v
m
i and v1i v

m+1
i .

iii. For each i ∈ [1, n], define c(vpi v
p+1
i ) = c(v1i v

p
i ) for even p ∈

[2,m−1], c(vm+1
i v2i ) = n+1+x(i−1), and c(vpi v

p+1
i ) = c(v1i v

p+2
i )

for odd p ∈ [3,m].
By the colorings above, it is not hard to show that there ex-
ists a rainbow Steiner S -tree for every set S of three vertices of
Tn�o Wm. Figure 5 gives examples of strong 3-rainbow colorings
of P4 �o W6 and P3 �o W7. �

Following Theorems 3.2 and 3.3, the choice of vertex o ∈
V(Wm) affects the value of srx3(Tn �o Wm). However, there are
some graphs H such that srx3(Tn�o H) is the same for any choice
of vertex o ∈ V(H). For example, srx3(Tn �o Tm) = |E(Tn �o Tm)|
for any vertex o ∈ V(Tm) by Theorem 2.1. Our next two results
also show that the choice of vertex o ∈ V(H) does not effect the
value of srx3(Tn �o H), where H is a ladder or a cycle.

3.2 The Strong 3-rainbow Index of Tn �o Lm

Before we proceed to the main result, we first provide the fol-
lowing theorem which has been studied in Ref. [2]. To make it
easier for the readers, we also provide the proof of this theorem.
Theorem 3.4. [2] For m ≥ 3, let Lm be a ladder of order 2m.

Then srx3(Lm) = m.

Proof. Since sdiam3(Lm) = m, srx3(Lm) ≥ m by Eq. (1). Now,
we show that srx3(Lm) ≤ m by defining a strong 3-rainbow color-
ing c : E(Lm)→ [1,m]. This coloring can be obtained by assign-
ing colors i to the edges wiwi+1 and wi+mwi+m+1 for i ∈ [1,m − 1]

and color m to the edges wiwi+m for i ∈ [1,m]. By using a similar
argument as in the proof of Theorem 2.4, we can show that there
exists a rainbow Steiner S -tree for every set S of three vertices of
Lm. �

Now, we determine the strong 3-rainbow index of Tn �o Lm.
Theorem 3.5. Let n and m be two integers at least 3. Let Tn be a

tree of order n, Lm be a ladder of order 2m, and o be an arbitrary

vertex of Lm. Then srx3(Tn �o Lm) = nm + n − 1.
Proof. By using Theorems 2.3 and 3.4, srx3(Tn �o Lm) ≤ nm +

n − 1.
Without loss of generality, let o = ws for some s ∈ [1,m]. For

each i ∈ [1, n], let Ai = {vpi vp+1
i : p ∈ [1,m − 1]} ∪ {vsi vs+m

i }. Let
c be a strong 3-rainbow coloring of Tn �o Lm. By using a similar
argument as in the proof of (A1) and (A2) in Theorem 2.5, we
obtain the following properties.
(C1) c(Ai) ∩ c(E(Tn)) = ∅ for all i ∈ [1, n]
(C2) c(Ai) ∩ c(Aj) = ∅ for all i, j ∈ [1, n] with i � j

Note that |c(Ai)| ≥ m for each i ∈ [1, n]. Hence, srx3(Tn �o Lm) ≥
nm + n − 1 by Eq. (2), (C1), and (C2). �

Following the theorem above, we obtain that srx3(Tn�o Lm) at-
tains the upper bound in Theorem 2.3. Recall that sdiam3(Tn �o

H) is the natural lower bound for srx3(Tn �o H) by Eq. (1). Con-
sider graphs Pn �o Lm where o ∈ V(Lm) with dLm (o) = 2. We can
check that sdiam3(Pn �o Lm) = 3m + n − 1 for n ≥ 3. Hence,
srx3(Pn �o Lm) = sdiam3(Pn �o Lm) for n = 3 by Theorem 3.5.

3.3 The Strong 3-rainbow Index of Tn �o Cm

For m ≥ 3, let V(Cm) = {wi : i ∈ [1,m]} such that E(Cm) =
{wiwi+1 : i ∈ [1,m] and wm+1 = w1}. Consider graphs Tn �o Cm

where o is an arbitrary vertex of Cm. Without loss of generality,
we may assume that o = w1. This assumption applies until the
end of this subsection. First, we verify the following observations
which will be used to prove the lower bound for srx3(Tn �o Cm).
Observation 3.2. For m = 7 or m ≥ 9, if c is a strong 3-rainbow

coloring of Cm, then no edge of Cm is colored the same.

Proof. Suppose that there are two edges of Cm, say v1v2 and
vpvp+1 for some p ∈ [2,m], which are colored the same. Note that
dCm (v1, vp) ≤ �m

2 �. Hence, we only consider when 1 ≤ p − 1 ≤
�m

2 �. Observe that the rainbow Steiner {v1, v� p+1
2 �, vp+1}-tree is a

tree T with E(T ) = {vlvl+1 : l ∈ [1, p]} where no edge of the tree
is colored the same, but c(v1v2) = c(vpvp+1), a contradiction. �
Observation 3.3. For m ≥ 4, let c be a strong 3-rainbow coloring

of Tn�o Cm. If e ∈ E(Ci
m) for each i ∈ [1, n], then c(e) � c(E(Tn)).

Proof. Suppose that c(e) ∈ c(E(Tn)). Then there exists f ∈
E(Tn) such that c(e) = c( f ). Let e = xy and f = uv, and as-
sume that d(v1i , u) < d(v1i , v). Observe that the rainbow Steiner
{x, y, v}-tree must contain edges e and f , but c(e) = c( f ), a con-
tradiction. �
Observation 3.4. Let m be an odd integer at least 3. Let c be

a strong 3-rainbow coloring of Tn �o Cm. For each i ∈ [1, n],
let Ai = E(Ci

m) \ {v� m
2 �

i v
� m

2 �+1
i }. Then c(Ai) ∩ c(Aj) = ∅ for all

i, j ∈ [1, n] with i � j.

Proof. By considering {v1i , vpi , vqj } for all i, j ∈ [1, n], i � j, and
p, q ∈ [�m

2 �, �m
2 � + 1], c(Ai) ∩ c(Aj) = ∅. �

Observation 3.5. Let m be an even integer at least 4. Let c be

a strong 3-rainbow coloring of Tn �o Cm. For each i ∈ [1, n], let
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Ai = E(Ci
m) \ {v m

2
i v

m
2 +1

i , v
m
2 +1

i v
m
2 +2

i }. Then c(Ai) ∩ c(Aj) = ∅ for all

i, j ∈ [1, n] with i � j.

Proof. By considering {v1i , vpi , vqj } for all i, j ∈ [1, n], i � j, and
p, q ∈ {m2 , m

2 + 2}, c(Ai) ∩ c(Aj) = ∅. �
Observation 3.6. Let m be an even integer at least 10. Let c

be a strong 3-rainbow coloring of T2 �o Cm. Then at least three

colors are needed to color edges v
m
2

1 v
m
2 +1

1 , v
m
2 +1

1 v
m
2 +2

1 , v
m
2

2 v
m
2 +1

2 , and

v
m
2 +1

2 v
m
2 +2

2 in T2 �o Cm.

Proof. Observe that the rainbow Steiner {v m
2

1 , v
m
2 +2

1 , v
m
2 +1

2 }-tree

must contains edges v
m
2

1 v
m
2 +1

1 , v
m
2 +1

1 v
m
2 +2

1 , and either v
m
2

2 v
m
2 +1

2 or

v
m
2 +1

2 v
m
2 +2

2 . Hence, we need at least three colors to color these
four edges in T2 �o Cm. �
Observation 3.7. Let m be an even integer at least 10. Let c be

a strong 3-rainbow coloring of Tn �o Cm. For each i ∈ [1, n], let

c(v
m
2

i v
m
2 +1

i ) = ai and c(v
m
2 +1

i v
m
2 +2

i ) = bi. Then {ai, bi} � {a j, b j} for

all i, j ∈ [1, n] with i � j.

Proof. An argument similar to that used in the proof of Obser-
vation 3.6 will verify that {ai, bi} � {a j, b j} for all i, j ∈ [1, n] with
i � j. �
Observation 3.8. Let n and r be two integers at least 3 and m be

an even integer at least 10. Let r be the minimum number such

that n ≤ r(r−1)
2 . If c is a strong 3-rainbow coloring of Tn �o Cm,

then r is the minimum number of colors needed to color edges

v
m
2

i v
m
2 +1

i and v
m
2 +1

i v
m
2 +2

i for all i ∈ [1, n].
Proof. Suppose that r − 1 is the maximum number of colors
needed to color edges v

m
2

i v
m
2 +1

i and v
m
2 +1

i v
m
2 +2

i for all i ∈ [1, n].
Following Observation 3.7, we have at most

(
r−1

2

)
color pairs to

color all pairs of two edges {v m
2

i v
m
2 +1

i , v
m
2 +1

i v
m
2 +2

i } for all i ∈ [1, n],
where

(
r−1

2

)
is the number of combinations of r − 1 colors taken

2 at a time. Note that
(

r−1
2

)
=

(r−1)!
2!(r−3)! =

(r−1)(r−2)
2 . How-

ever, n > (r−1)(r−2)
2 , this forces there are at least two pairs of

two edges {v m
2

i v
m
2 +1

i , v
m
2 +1

i v
m
2 +2

i } and {v m
2
j v

m
2 +1
j , v

m
2 +1
j v

m
2 +2
j } for some

i, j ∈ [1, n], i � j, such that {c(v
m
2

i v
m
2 +1

i ), c(v
m
2 +1

i v
m
2 +2

i )} =
{c(v

m
2
j v

m
2 +1
j ), c(v

m
2 +1
j v

m
2 +2
j )}, contradicts Observation 3.7. �

Now, we determine the strong 3-rainbow index of Tn �o Cm.
Theorem 3.6. Let n, m, and r be three integers at least 3. Let

Tn be a tree of order n, Cm be a cycle of order m, and o be an

arbitrary vertex of Cm. Let r be the minimum number such that

n ≤ r(r−1)
2 . Then

srx3(Tn �o Cm) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2n, for m = 3;
3n − 1, for m = 4;

n(m − 2), for m ∈ {5, 6, 8};
nm, for odd m ≥ 7;

nm − n + r − 1, for even m ≥ 10.

Proof. Recall that we assume o = w1. We distinguish several
cases based on m.
Case 1. m is odd

Subcase 1.1. m = 3
Suppose that srx3(Tn �o C3) ≤ 2n − 1. Then there exists a

strong 3-rainbow coloring c : E(Tn �o C3) → [1, 2n − 1]. For an
arbitrary i ∈ [1, n], consider edge v1i v

2
i . Let f = uv be an arbi-

trary edge of Tn and assume that d(v1i , u) < d(v1i , v). By consid-
ering {v1i , v2i , v}, c(v1i v

2
i ) � c( f ). Furthermore, c(v1i v

2
i ) � c(E(Tn)).

Fig. 6 A strong 3-rainbow coloring of P4 �o C5.

It follows by Eq. (2) and Observation 3.4 that we need at least
2n − 1 distinct colors to color edges of Tn and edges v1i v

2
i for all

i ∈ [1, n]. Next, observe that the rainbow Steiner {v21, v31, v2i }-tree
for all i ∈ [2, n] can be obtained by identifying vertex v11 in a
rainbow Steiner {v11, v21, v31}-tree and a rainbow v11 − v2i geodesic.
Hence, no edge of Steiner {v11, v21, v31}-tree is colored with c(v1i v

2
i )

and colors from c(E(Tn)). It means we only have one color, that
is c(v11v

2
1), to color two edges in Steiner {v11, v21, v31}-tree, which is

impossible. Thus, srx3(Tn �o C3) ≥ 2n.
Next, we show that srx3(Tn �o C3) ≤ 2n by defining a strong

3-rainbow coloring c : E(Tn �o C3) → [1, 2n]. We first assign
colors 1, 2, . . . , n−1 to the edges of Tn. For each i ∈ [1, n], assign
colors i+n−1 to the edges v1i v

2
i and v3i v

1
i and color 2n to the edges

v2i v
3
i . By this coloring, it is easy to find a rainbow Steiner S -tree

for every set S of three vertices of Tn �o C3.
Subcase 1.2. m = 5
By using a similar argument as in the proof of lower bound for

m = 3, it is easy to show that srx3(Tn�o C5) ≥ 3n. Now, we show
that srx3(Tn �o C5) ≤ 3n by defining a strong 3-rainbow coloring
c : E(Tn �o C5) → [1, 3n]. We first assign colors 1, 2, . . . , n − 1
to the edges of Tn. For each i ∈ [1, n], we assign colors i + n − 1
to the edges v1i v

2
i and v4i v

5
i , colors i + 2n − 1 to the edges v2i v

3
i and

v5i v
1
i , and color 3n to the edges v3i v

4
i . By this coloring, it is easy

to find a rainbow Steiner S -tree for every set S of three vertices
of Tn �o C5. Figure 6 gives an example of a strong 3-rainbow
coloring of P4 �o C5.

Subcase 1.3. m ≥ 7
Suppose that srx3(Tn �o Cm) ≤ nm − 1. Then there exists a

strong 3-rainbow coloring c : E(Tn �o Cm) → [1, nm − 1]. For
each i ∈ [1, n], let Ai = E(Ci

m)\{v� m
2 �

i v
� m

2 �+1
i }. By using Eq. (2), Ob-

servations 3.2, 3.3, and 3.4, we need at least nm−1 distinct colors
to color all edges of Tn �o Cm except edges v

� m
2 �

i v
� m

2 �+1
i for all i ∈

[1, n], which means we have used all available colors. Next, con-
sider {v� m

2 �
1 , v

� m
2 �+1

1 , v
p
i } for all i ∈ [2, n] and p ∈ {�m

2 �, �m
2 �+1}. Note

that edge v
� m

2 �
1 v

� m
2 �+1

1 should be contained in the rainbow Steiner

{v� m
2 �

1 , v
� m

2 �+1
1 , v

p
i }-tree, which implies this edge cannot be colored

with colors from c(E(Tn)) and c(Ai) for all i ∈ [2, n]. By using
Observation 3.2, edge v

� m
2 �

1 v
� m

2 �+1
1 also cannot be colored with col-

ors from c(A1). It means we need one new distinct color to color
this edge, which is impossible. Thus, srx3(Tn �o Cm) ≥ nm.

Next, we show that srx3(Tn �o Cm) ≤ nm by defining a strong
3-rainbow coloring c : E(Tn �o Cm)→ [1, nm] as follows.
i. Assign colors 1, 2, . . . , n − 1 to the edges of Tn.
ii. Assign color n to the edges v

� m
2 �

i v
� m

2 �+1
i for all i ∈ [1, n].

iii. Assign colors n + 1, n + 2, . . . , nm − 1, nm to the remaining
nm − n edges of Tn �o Cm.

By the coloring above, we obtain that all edges of Tn �o Cm

have distinct colors except edges v
� m

2 �
i v

� m
2 �+1

i for all i ∈ [1, n], that
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Fig. 7 A strong 3-rainbow coloring of P3 �o C7.

Fig. 8 A strong 3-rainbow coloring of P4 �o C4.

is c(v
� m

2 �
i v

� m
2 �+1

i ) = c(v
� m

2 �
j v

� m
2 �+1

j ) for all i, j ∈ [1, n] with i � j.
Hence, it is not hard to check that this coloring is a strong 3-
rainbow coloring of Tn �o Cm. Figure 7 gives an example of a
strong 3-rainbow coloring of P3 �o C7.
Case 2. m is even

Subcase 2.1. m = 4
Let c be a strong 3-rainbow coloring of Tn �o C4. Since

c(v1i v
2
i ) � c(v4i v

1
i ) for each i ∈ [1, n], it follows by Eq. (2), Ob-

servation 3.3 and 3.5 that srx3(Tn �o C4) ≥ 3n − 1.
Next, we show that srx3(Tn�oC4) ≤ 3n−1 by defining a strong

3-rainbow coloring c : E(Tn �o C4)→ [1, 3n− 1]. We first assign
colors 1, 2, . . . , n−1 to the edges of Tn. For each i ∈ [1, n], assign
colors i+n−1 to the edges v1i v

2
i and v3i v

4
i and colors i+2n−1 to the

edges v2i v
3
i and v4i v

1
i . By this coloring, it is easy to show that there

exists a rainbow Steiner S -tree for every set S of three vertices
of Tn �o C4. Figure 8 gives an example of a strong 3-rainbow
coloring of P4 �o C4.

Subcase 2.2. m = 6
Suppose that srx3(Tn�oC6) ≤ 4n−1. Then there exists a strong

3-rainbow coloring c : E(Tn �o C6) → [1, 4n − 1]. By consider-
ing {v1i , v3i , v6i } for each i ∈ [1, n], it is clear that no edge of path
v3i v

2
i v

1
i v

6
i is colored the same. It follows by Eq. (2), Observation

3.3 and 3.5 that we need at least 4n − 1 distinct colors to color
edges of Tn and edges v1i v

2
i , v2i v

3
i , and v6i v

1
i for all i ∈ [1, n]. Next

for all i ∈ [2, n] and p ∈ {3, 6}, consider {v31, v51, vpi }. By identifying
vertex v11 in a rainbow Steiner {v11, v31, v51}-tree and a rainbow v11−vpi
geodesic, we obtain the rainbow Steiner {v31, v51, vpi }-tree. Hence,
no edge of Steiner {v11, v31, v51}-tree is colored with c(v1i v

2
i ), c(v2i v

3
i ),

c(v6i v
1
i ), and colors from c(E(Tn)). It means we only have three

colors, c(v11v
2
1), c(v21v

3
1), and c(v61v

1
1), to color four edges in Steiner

{v11, v31, v51}-tree, which is impossible. Thus, srx3(Tn �o C6) ≥ 4n.
Next, we show that srx3(Tn �o C6) ≤ 4n by defining a strong

3-rainbow coloring c : E(Tn �o C6) → [1, 4n]. We first assign
colors 1, 2, . . . , n − 1 to the edges of Tn. For each i ∈ [1, n], as-
sign colors i + n − 1 to the edges v1i v

2
i , colors i + 2n − 1 to the

edges v2i v
3
i and v5i v

6
i , colors i + 3n − 1 to the edges v3i v

4
i and v6i v

1
i ,

and color 4n to the edges v4i v
5
i . By this coloring, it is not hard

to find a rainbow Steiner S -tree for every set S of three vertices
of Tn �o C6. Figure 9 gives an example of a strong 3-rainbow
coloring of P4 �o C6.

Fig. 9 A strong 3-rainbow coloring of P4 �o C6.

Fig. 10 A strong 3-rainbow coloring of P3 �o C8.

Subcase 2.3. m = 8
Suppose that srx3(Tn�oC8) ≤ 6n−1. Then there exists a strong

3-rainbow coloring c : E(Tn �o C8) → [1, 6n − 1]. For each
i ∈ [1, n], by considering {v1i , v3i , v7i }, no edge of path v3i v

2
i v

1
i v

8
i v

7
i

is colored the same. It follows by Eq. (2), Observations 3.3 and
3.5 that we need at least 5n − 1 distinct colors to color edges of
Tn and edges v1i v

2
i , v2i v

3
i , v7i v

8
i , and v8i v

1
i for all i ∈ [1, n]. This im-

plies we have at most n colors left. Let A be the set of these n

colors. Next, for an arbitrary i ∈ [1, n], consider edges v3i v
4
i and

v6i v
7
i . It is easy to prove that c(v3i v

4
i ) � {c(v1i v

2
i ), c(v2i v

3
i ), c(v8i v

1
i )}

and c(v6i v
7
i ) � {c(v1i v

2
i ), c(v7i v

8
i ), c(v8i v

1
i )}. Then by considering

{v1i , vpi , vqj } for all j ∈ [1, n], j � i, and p, q ∈ {4, 6}, it follows
by Observations 3.3 and 3.5 that c(v3i v

4
i ) ∈ {c(v7i v

8
i )} ∪ A and

c(v6i v
7
i ) ∈ {c(v2i v

3
i )} ∪ A, with condition, c(v3i v

4
i ) = c(v7i v

8
i ) if and

only if c(v6i v
7
i ) � c(v2i v

3
i ). It means we need n new distinct colors

to color edges v3i v
4
i and v6i v

7
i for all i ∈ [1, n]. Hence, we have

used all remaining colors. Without loss of generality, let i = 1.
If c(v31v

4
1) = c(v71v

8
1) and c(v61v

7
1) ∈ A, then consider {v31, v51, vpj } for

all j ∈ [2, n] and p ∈ {4, 6}. Since c(v41v
5
1) � c(E(Tn)) by Ob-

servation 3.3, this forces c(v41v
5
1) ∈ {c(v61v

7
1), c(v71v

8
1), c(v81v

1
1)}. But

c(v41v
5
1) � {c(v61v

7
1), c(v71v

8
1)}, which implies c(v41v

5
1) = c(v81v

1
1). How-

ever, there is no rainbow Steiner {v31, v51, v81}-tree, a contradiction.
Similarly, if c(v31v

4
1) ∈ A and c(v61v

7
1) = c(v21v

3
1), then we will ob-

tain a contradiction by considering {v51, v71, vpj } for all j ∈ [2, n] and
p ∈ {4, 6}. Thus, srx3(Tn �o C8) ≥ 6n.

Next, we show that srx3(Tn �o C8) ≤ 6n by defining a strong
3-rainbow coloring c : E(Tn �o C8)→ [1, 6n] as follows.
i. Assign colors 1, 2, . . . , n − 1 to the edges of Tn.
ii. For each i ∈ [1, n], assign colors i + n − 1 to the edges v1i v

2
i

and v5i v
6
i , colors i + 2n − 1 to the edges v3i v

4
i and v7i v

8
i , and

color 3n to the edges v4i v
5
i .

iii. Assign colors 3n + 1, 3n + 2 . . . , 6n − 1, 6n to the remaining
3n edges of Tn �o C8.

By the coloring above, it is not hard to find a rainbow Steiner S -
tree for every set S of three vertices of Tn �o C8. Figure 10 gives
an example of a strong 3-rainbow coloring of P3 �o C8.

Subcase 2.4. m ≥ 10
Let c be a strong 3-rainbow coloring of Tn �o Cm. For each

i ∈ [1, n], let Ai = E(Ci
m) \ {v m

2
i v

m
2 +1

i , v
m
2 +1

i v
m
2 +2

i }. Observe that for
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Fig. 11 A strong 3-rainbow coloring of P3 �o C10.

an arbitrary i ∈ [1, n], by using Observation 3.2 and considering
{v m

2
i , v

m
2 +2

i , v
p
j } for all j ∈ [1, n], j � i, and p ∈ {m2 , m

2 + 2}, edges

v
m
2

i v
m
2 +1

i and v
m
2 +1

i v
m
2 +2

i cannot be colored with colors from c(Aj)
for all j ∈ [1, n]. Hence, by using Eq. (2), Observations 3.2, 3.3,
3.5, and 3.8, we need at least (m−2)n+r+n−1 = nm−n+r−1 dis-
tinct colors to color all edges of Tn�o Cm. Thus, srx3(Tn�o Cm) ≥
nm − n + r − 1.

Next, we show srx3(Tn �o Cm) ≤ nm − n + r − 1. We define an
edge-coloring c : E(Tn �o Cm)→ [1, nm − n + r − 1] as follows.
i. Assign a list of combinations of r colors taken 2 at a time to

all pairs of two edges {v m
2

i v
m
2 +1

i , v
m
2 +1

i v
m
2 +2

i } for all i ∈ [1, n],

so that {c(v
m
2

i v
m
2 +1

i ), c(v
m
2 +1

i v
m
2 +2

i )} � {c(v
m
2
j v

m
2 +1
j ), c(v

m
2 +1
j v

m
2 +2
j )}

for all i, j ∈ [1, n] with i � j.
ii. Assign colors r + 1, r + 2, . . . , r + n − 1 to the edges of Tn.
iii. Assign colors r + n, r + n+ 1, r + n+ 2, . . . , r + nm− n− 1 to

the remaining (m − 2)n edges of Tn �o Cm.
By the coloring above, it is not hard to show that c is a strong
3-rainbow coloring of Tn �o Cm. Figure 11 gives an example of
a strong 3-rainbow coloring of P3 �o C10. �

It is easy to check that srx3(C4) = 2. Thus, following Theo-
rem 3.6, we obtain that srx3(Tn �o C4) attains the upper bound in
Theorem 2.3.
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