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Abstract: In this study, we consider a problem, for a given graph G = (V, E), of finding the minimum number of 3-
cliques (K3s) that cover all edges of G. Multiple covering or covering one edge by more than one 3-clique is allowed.
Moreover, in this problem, we allow “spilling-out,” i.e., a set of three vertices {x, y, z} can be covered by a 3-clique
even if the induced subgraph by them is not a clique. We call this problem K3 edge cover problem in a wide sense.
This problem is a kind of extension of the schoolgirl problem and finite projective planes, and it has applications on
experimental designs. Allowing spilling-out is useful for some applications: E.g., when we want to compare n items
through some tries of experiments, in which at most three items can be compared simultaneously, and pairs of items
that must be compared are given by a graph, finding the minimum number of tries is formalized as this problem. In
the known literature, there are many results that considered problems for covering vertices or edges by the minimum
number of cliques. However, there is no theoretical result that considers spilling-out. We obtain the following results:
(1) The problem is NP-hard even if graphs are restricted to planar, cubic, and C4,C5-free in a sense of subgraphs (i.e.,
not restricted to induced ones). (2) For the problem with a parameter k, which is the number of 3-cliques in G, there is
an O(mn + 2km)-time algorithm. (3) If a tree-decomposition of tree-width t is given, there is an O(22(t+1)(t+2)t2n)-time
algorithm.
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1. Introduction

In this study, we consider a problem, for a given graph G =

(V, E), for finding the minimum number of 3-cliques (K3s) that
cover all edges of G. Multiple covering or covering one edge by
more than one 3-clique is allowed. Moreover, in this problem,
we allow “spilling-out,” i.e., a set of three vertices {x, y, z} can be
covered by a 3-clique even if the induced subgraph by them is not
a clique. We call this problem K3 edge cover problem in a wide

sense. This problem is a kind of extension of the schoolgirl prob-
lem and finite projective planes, and it has applications on experi-
mental designs. Allowing spilling-out is useful for some applica-
tions: E.g., when we want to compare n items through some tries
of experiments, in which at most three items can be compared si-
multaneously, and pairs of items that must be compared are given
by a graph, finding the minimum number of tries is formalized as
this problem. In the known literature, there are many results that
considered problems for covering vertices or edges by the min-
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imum number of cliques [6], [7], [8], [10], [13], [16]. However,
there is no theoretical result that considers spilling-out.

1.1 Definition of K3 Edge Cover Problem in a Wide Sense
From the viewpoint of the experimental design, let us assume

that we have to compare a samples. For comparison, we can use
b machines. Each machine can compare c samples simultane-
ously. We must compare every pair d times. Block design is a
research on this problem in which a, b, c, and d are variables, and
it has been extensively investigated [17]. In many cases of actual
experiments, it is likely that there are pairs that do not need to
be compared, and in many cases there is no problem if a pair is
compared twice or more. For applying such applications we re-
lax the constraints of block design, that is, we consider a problem
for minimizing the number of trials under such conditions. In or-
der to formulate the problem, we first define terms. In this paper,
we consider only simple undirected graphs (graphs with no self-
loop and no parallel edge). For more details on block design and
graphs, see Refs. [2] and [14].

The number of edges of graph G is denoted as ||G||. We call
a subgraph (or its vertex set) that is a complete graph clique. A
clique consisting of k vertices is called a k-clique and denoted by
Kk. For a graph G = (V, E), a family X = {X1, . . . , Xp} of vertex
subsets is called Kk edge cover in a wide sense (or Kk edge cover

for short) if (1) |Xi| = k for any i ∈ {1, . . . , p} and (2) for any edge
(u, v) ∈ E, there is vertex subset Xi ∈ X such that u, v ∈ Xi. In
this case, we say that edge (u, v) is covered by Xi. We call p the
size of the Kk edge cover. The minimum size of a Kk edge cover
is denoted by γk(G). In Kk edge cover problem, if one edge e is
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contained in a clique in a solution set, then we say e is covered. In
this paper, we consider only the case of k = 3, i.e., K3 edge cover
problem in a wide sense. The problem is defined as follows.
Problem K3-edge-cover-in-a-wide-sense (K3EC)

Instance: A graph G = (V, E), and a positive integer
h ≥ 1.

Question: γ3(G) ≤ h?
On this problem we obtain the following results. C4 and C5 are

the cycles of length 4 and 5, respectively.
Theorem 1. K3EC is NP-complete even if graphs are restricted

to planar, cubic, and C4,C5-free in a sense of subgraphs (i.e., not

restricted to induced ones).

Theorem 2. For K3EC, there is an O(mn+ 2km)-time algorithm,

where k is the number of 3-cliques in G.

Theorem 3. For K3EC, if a tree-decomposition of tree-width t is

given, there is an O(22(t+1)(t+2)t2n)-time algorithm.

2. Previous Work

School girl problem, block design, and covering by cliques
have been extensively studied. The school girl problem is a clas-
sical combinatorial mathematical problem, and fast algorithms
for solving this problem have been studied [1]. Block design is
a well-known problem in the field of discrete mathematics, con-
crete patterns [11] and applications [15] have been considered.

K3EC has the following directly related problems. Problem
Partition-into-cliques, PIC for short, is a problem, given a graph
G = (V, E) and an integer K, for deciding whether or not V

can be partitioned into k(≤ K) cliques. Problem Covering by
cliques, CBC for short, is a problem, given a graph G = (V, E)
and an integer K, for deciding whether or not V can be cov-
ered by k(≤ K) cliques, which are subgraphs of G and cover
(include) all edges in E. PIC can be regarded as a problem cov-
ering vertices by cliques. CBC can be regarded as a problem
covering edges by cliques with edge repetitions allowed. These
two problems are known to be NP-complete [10], [16]. Regard-
ing PIC, polynomial-time algorithms are known for circular arc
graphs [7], for chordal graphs [6], for comparability graphs [8].
Regarding CBC, polynomial-time algorithms are known for in-
tersection graphs [10], and an FPT algorithm with parameter k

(the size of the solution) is given [3], [9]. K3EC differs from them
in the following two parts: (1) it allows spilling-out and (2) the
size of the clique is limited. There have been no studies on this
problem. Clearly, problems for covering by K1 or K2 are triv-
ial. For a problem for covering by P2, which is a path consisting
of two edges, a polynomial-time algorithm is easily obtained by
modifying our algorithm given in the proof of Lemma 5. If there
is no size restriction of cliques, the problem becomes trivial, since
covering by a |V |-clique is optimal.

3. NP-completeness

In this section, we show a proof of Theorem 1.
Theorem 1 (reshown). K3EC is NP-complete even if graphs are

restricted to planar, cubic, and C4,C5-free in a sense of sub-

graphs (i.e., not restricted to induced ones).
K3EC is clearly in NP. Thus we will show NP-hardness. It will

be done by reducing the Maximum Independent Set (IS), which is

Fig. 1 Reduction to K3EC from IS.

a well-known NP-complete problem [5].
Let H = (W, F) be a graph. A vertex subset V ′ ⊆ V such that

there is no edge between any vertices of V ′ is called an indepen-

dent set, and |V ′| is its size. The problem is defined as follows.
Problem Maximum Independent Set (IS)

Instance: A graph H = (W, F), a positive integer
h ≥ 1.

Question: Does H have an independent set with
size at least h?

Theorem 4. Ref. [4] IS is in NP-complete even if H is planar and

cubic.

We show how to reduce IS to K3EC. Let (H = (W, F), h) be
an instance of IS, where H is cubic and planar. We construct an
instance (G = (V, E), k) of K3EC as follows.

We obtain G from H by replacing a vertex w ∈ W with a K3

with vertices w0, w1, and w2; next, connecting the three edges e0,
e1, and e2 incident to w (note that H is cubic) to w0, w1, and w2 one
by one. See an example of this reduction in Fig. 1. Note that if H

is a cubic planar graph, then G is cubic, planar, and C4,C5-free.
Let k = 5

2 n − h, where n = |W |.
It is clear that this reduction can be done in polynomial-time.

Thus it is sufficient to show that H has an independent set with the
size h if and only if G has a K3 edge cover with the size k = 5

2 n−h.
Before showing it, we introduce some terms. Each K3 of G,

which corresponds to a vertex in W, is called a triangle. The
three edges in a triangle are called triangle-edges. On the other
hand, edges connecting distinct triangles are called link-edges. If
two distinct triangles are connected by a link-edge, then they are
called adjacent.

Let X be a K3 edge cover of G with the size p, where p is an
integer. If X ∈ X covers three edges, then X is called a delta. If
X ∈ X covers just two edges, then X is called an L. If X ∈ X cov-
ers only one edge, then X is called an I. If a triangle is covered by
a delta, then the triangle is called a delta-triangle. If a triangle is
covered by three Ls, then the triangle is called a 3L-triangle (see
Fig. 2).

If all triangles are covered by delta-triangles or 3L-triangles,
the K3 edge cover is called regular. If there is no pair of adja-
cent 3L-triangles in a regular K3 edge cover, the K3 edge cover is
called independent regular.
Lemma 1. If H has an independent set U ⊆ W with |U | = h, then

G has a K3 edge cover X with |X| = 5
2 n − h.

Proof : We construct X according to U as follows. For a trian-
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Fig. 2 Delta-triangle (left) and 3L-triangle (right).

Fig. 3 U (left) and the corresponding X (right): In the left figure, black
vertices are in U, the triangle covered by a 3L in X.

gle in G, if the corresponding vertex in H is in U, then we let
the triangle be covered by a 3L, and otherwise be covered by a
delta. The remaining edges in G are covered by Is. See Fig. 3 for
example.

We calculate the size of X: Let n = |W |. Since H = (W, F)
is cubic, |F| = 3

2 n. From this, it follows that the number of tri-
angles and link-edges in G are n and 3

2 n, respectively. Since the
number of 3L-triangles is h, the number of delta-triangles is n−h.
The number of link-edges covered by 3L is 3h, and the number of
link-edges covered by Is is 3

2 n − 3h by summing up the number
of deltas, 3Ls, and Is used in X, we get the following equations:

|X| = 3h + (n − h) +
3
2

n − 3h =
5
2

n − h (1)

Therefore X is the desired K3 edge cover. �
Note that the K3 edge cover X obtained above is independent

regular. To show the reverse of this lemma is a little more com-
plicated. We first show the following lemma.
Lemma 2. If G has a K3 edge cover X, then G has an indepen-

dent regular K3 edge cover X′ with |X′| ≤ |X|.
Proof : First we construct a regular K3 edge cover X′ with |X′| ≤
|X| from X. At the first step, let X′ be equal to X. If X′ is not
regular, we modify X′ to be regular by using the following oper-
ations.
• Operation I: If there is a pair X, X′ ∈ X′ such that all edges

covered by X′ are also covered by X, then remove X′ from
X′.

• Operation II: If there is X ∈ X′ that covers only one
triangle-edge and no link-edge, then X is replaced with a
delta covering the triangle-edge together with the other two
triangle-edges in the triangle.

• Operation III: If a triangle-edge e is covered by a delta and
an L, then the L is replaced with an I covering only e′, where

Fig. 4 Operation IV.

Fig. 5 Operation V.

e′ is the other edge covered by L.
• Operation IV: If the three edges of a triangle are covered by

more than three Ls, these Ls are changed to a 3L (At least
one L is removed. See Fig. 4).

An algorithm for changing X′ to be regular is the following.

procedure Regularize(X′)
begin

do while X′ is not regular;
if Operation I can be applied then apply Op-
eration I;

else if Operation II can be applied then apply
Operation II;

else if Operation III can be applied then apply
Operation III;

else if Operation IV can be applied then apply
Operation IV;

end if
enddo

end
end procedure

We show that the above procedure stops in finite steps for any
input X′. Each operation never increases the size of X′. More-
over, both the number of Ls and the number of X ∈ X′ that cover
only one triangle-edge are never increased also. Operations I and
IV decrease the size of X′, and thus they can be applied in finite
times. Operations II and III decrease the number of X ∈ X′ that
cover only one triangle-edge and the number of Ls, respectively,
and thus they can be applied in finite times. From these discus-
sions, Procedure Regularize stops in finite steps, totally. It is clear
that if Regularize(X′) stops, X′ is regular.

Now we obtain a regular K3 edge cover X′. We next change it
to be independent regular.
• Operation V: If there is a pair of adjacent 3L-triangles, then

replace one of the two Ls which share the same edge (e.g.,
the central edge of Fig. 5) with a delta-triangle, and apply
Operation III to the triangle (see Fig. 5).

Operation V does not increase the size of the cover. By apply-
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ing the above operation whenever possible, X′ finally becomes
independent regular. �

Now we show the reverse of Lemma 1.
Lemma 3. If G has a K3 edge cover X with |X| = 5

2 n− h, then H

has an independent set U ⊆ W with |U | = h.

Proof : Assume that G has a K3 edge cover X. From Lemma 2,
G has an independent regular K3 edge cover X′ with |X′| ≤ |X|.
Since there are no adjacent 3L-triangles in G,

U := { w ∈ W | the corresponding triangle in G

is a 3L-triangle in X′} (2)

becomes an independent set. From the discussion made in the
proof of Lemma 1, |X′| = 5

2 n − |U |. Thus if 5
2 n − |U | = |X′| ≤

|X| = 5
2 n − h, then |U | ≥ h. Therefore any U′ ⊆ U with |U′| = h

is the desired independent set of H. �
Now we establish the proof of Theorem 1.

Proof of Theorem 1: Follows directly from Lemmas 1 and 3.
�

4. FPT Algorithm with a Parameter of the
Number of K3

As shown by Theorem 1, K3EC is NP-hard even for planar and
cubic graphs. We show FPT algorithms for several parameters. In
this section, we prove the following theorem.
Theorem 2 (reshown). For K3EC, there is an O(mn + 2km)-time

algorithm, where k is the number of 3-cliques in G.

First, we prepare some lemmas as follows.
Lemma 4. If T = (V, E) is a tree, γ3(T ) = �|E|/2	.
Proof : If G is a path, γ3(P) = �||P||/2	 is trivial. We consider the
case where there is a vertex with degree 3 or more. We call such
a vertex a branching vertex (See Fig. 6 (a)).

Let v be a branching vertex. We divide T into a set of subtree
{T1, . . . , Tk} (where k is the degree of v) according to the follow-
ing rule: each Ti is a maximal subtree such that v is one of its
leaves (see Fig. 6 (b)). The size of a subtree Ti is defined as ||Ti||.
If the size is odd, the subtree is called an odd-subtree and other-
wise it is called an even-subtree. If there are two odd-subtrees, we
join them into one even-subtree. By applying this as far as pos-
sible, we finally get a set of subtrees {T ′1, . . . , Tk′ } which includes
at most one odd-subtree (See Fig. 6 (c)).

By applying this operation to each subtree recursively, we fi-
nally get a set of paths which consists of at most one path with
odd size. For each path P, γ3(P) = �||P||/2	. By summing them
up, we obtain the following upper bound.

Fig. 6 (a) example of tree (one of branch point is the white circle),
(b) branch point partition {T1, . . . , T6}, (c) ||Ti || is connected to
{T1
′, . . . , T4

′}.

γ3(T ) ≤ �||T ||/2	 (3)

Next, we show the lower bound. Since K3 is not included in the
tree, each X can cover at most two edges in any K3 edge cover
{X1, . . . , Xp}, and thus the following inequality holds.

γ3(T ) ≥ �||T ||/2	 (4)

From Eqs. (3) and (4), γ3(T ) = �|E|/2	 is obtained. �
Lemma 5. For any connected graph G = (V, E), the minimum

size of K3 edge cover in a wide sense without using deltas is

�|E|/2	.
For proving this lemma, we prepare an operation as follows.

Let G = (V, E) be a graph and v ∈ V be a vertex with a de-
gree of at least two. Delete v together with the edges adjacent
to v from G and add new two vertices v′ and v′′. New edges
are added as follows. The vertex set adjacent to v is denoted by
W = {w ∈ V | (v, w) ∈ E|}. Divide W into two non-empty subsets
X and Y such that X∪Y = W, X∩Y = ∅, and |X|, |Y | � ∅, and add
edge sets EX = {(v′, w) | w ∈ X} and EY = {(v′′, w) | w ∈ Y} to E.
The above operation is denoted by a vertex-division on v, i.e., it is
defined by getting G′ = (V ′, E′) such that V ′ = (V −{v|})∪{v′, v′′}
and E′ = (E − {(v, w) ∈ E | w ∈ W}) ∪ EX ∪ EY . Note that since
there is arbitrariness in the way of dividing W into X and Y , the
result of a vertex partition is not defined uniquely if the degree of
v is more than two.
Proof of Lemma 5: By applying an appropriate vertex-division
on an arbitrary vertex v on an arbitrary cycle of G = (V, E), the
resulting graph is still connected and the number of edges does
not change, and the number of cycles is decreased at least by one.
Thus by applying the finite number of vertex-division to G, we
get a tree that has the same number of edges as G. Let T be one
of these trees. From Lemma 4, γ3(T ) = �||T ||/2	 = �|E|/2	. Since
there is one to one correspondence between the edge set of T and
the edge set of G, and for any pair of adjacent edges in T , the
corresponding pair of edges are also adjacent in G, there is a K3

edge cover in G with the size of γ3(T ). On the other side, the size
of K3 edge cover in G without deltas is clearly at least �|E|/2	.
From the above discussion, this lemma is obtained. �

We prove Theorem 2 using this lemma as follows.
Proof of Theorem 2: We give an algorithm for solving the prob-
lem. The algorithm focuses on an arbitrary triangle of G. It
divides the case into two cases according to whether or not the
triangle is covered by a delta. If it is covered by a delta, the algo-
rithm deletes the three edges in the triangle from G. Otherwise,
the algorithm gives a label “not covered by a delta” to the trian-
gle. The algorithm recursively does the above operations as far
as a non-labeled triangle exists. The graph finally obtained is not
allowed to be covered by using any delta, and the solution can be
obtained from Lemma 5. From that, the calculation time of each
case is O(m) and the number of branches is at most k and the
algorithm requires enumerating all triangles and it needs O(mn)
time, O(mn + 2km). �

5. FPT Algorithm with Tree-width as a Pa-
rameter

Here we give another FPT algorithm, i.e., an FPT algorithm
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with tree-width as a parameter.
Theorem 3 (reshown). For K3EC, if a tree-decomposition of

tree-width t is given, there is an O(22(t+1)(t+2)t2n)-time algorithm.

First, we assume that all graphs considered here are connected,
otherwise, it is enough to manage each connected component one
by one *1. Under this assumption, we do not need to consider I

(K3 covering only one edge) as shown in the following.
Lemma 6. If G = (V, E) is connected and |V | ≥ 3, there is an

optimal solution that includes no I.

Proof : Since G is connected and |V | ≥ 3, every edge has at least
one adjacent edge. Hence if an edge is covered by an I, we can
replace this I with a delta or an L. The number of K3 edge covers
used does not change by this change. By applying this operation
whenever an I exists finally we obtain a solution that uses no I

with the same size. �
Next, we introduce some terms and prepare some other lem-

mas.
Definition 1. Ref. [12] (tree-decomposition) A tree-decomposi-

tion of a graph G = (V, E) is a pair D = (S ,T ) with a family

S = {B1, . . . , Br} of subsets of V and a tree T = (I, F) such that

I = {1, . . . , r} and the following three conditions are satisfied. For

every i ∈ I, i is called a node and Bi is called a bag.

( 1 )
⋃

i∈I Bi = V,

( 2 ) for every edge (v, w) ∈ E, there is at least one bag Bi such

that (v, w) ∈ Bi, and

( 3 ) for each vertex v the set of nodes {i ∈ I | v ∈ Bi} forms a

subtree of T .

Definition 2. Ref. [12] (tree-width) The width of a tree-decom-

position D = (S ,T ) is defined as maxi∈I(|Bi| − 1). The tree-width

of a graph G is the minimum possible width through all tree-

decompositions of G.

Definition 3. Ref. [12] (nice tree-decomposition) A tree-decom-

position D = (S ,T ) is called nice if the following four conditions

are satisfied:

( 1 ) T is a rooted tree and each node has at most two children.

( 2 ) If a node i has two children j and k, then Bi = Bj = Bk.

( 3 ) If node i has unique child j, then “|Bi| = |Bj|+1 and Bj ⊂ Bi

” or “|Bi| = |Bj| − 1 and Bi ⊂ Bj”.

( 4 ) Every bag corresponding to a leaf node of D consists of only

one vertex.

Definition 4. Ref. [12] (node types of a nice tree-decomposition)
In a nice tree-decomposition ({Bi| i ∈ I},T = (I, F)) every node is

one of the following four possible types.

Leaf: A node that is a leaf.

Introduce: A node i that has a child j and |Bi| > |Bj|.
Forget: A node i that has a child j and |Bi| < |Bj|.
Join: A node that has two children.

Lemma 7. Ref. [12] If a tree-decomposition with tree-width

k of graph G is given, a nice tree-decomposition of tree-

width k having O(|V(G)|) nodes can be obtained in O(k2 ·
max(|V(T )|, |V(G))|))-time.

Our algorithms use a nice tree-decomposition obtained by us-
ing Lemma 7. From here every tree-decomposition appearing
below is a nice tree-decomposition, unless otherwise stated. In

*1 This is valid for K3 edge cover. If we use K4, this strategy does not
necessarily work.

Fig. 7 An example of a graph and a nice tree-decomposition.

what follows T = (I, F) is the nice decomposition tree. Let i and
j be nodes in I and let Bi and Bj be bags of corresponding i and j,
respectively. If j is a descendant (an ancestor, resp.) of i, then Bj

is called a descendant (an ancestor, resp.) of Bi. The lower vertex

set B↓ of a bag B is defined as follows.

B↓ := {v ∈ B′ | B′ is a descendant of B} − {v ∈ B}. (5)

B+↓ := B↓ ∪ B. The upper vertex set B↑ of the bag B is B↑ =
V − B+↓ . Also, B+↑ := B↑ ∪ B. For an arbitrary K3 edge cover
X = {X1, . . . , Xp} on a graph G and an arbitrary vertex subset
W ⊆ V , XW := {Xi ∈ X | Xi ⊆ W}, which is a partial solution of
X for W. The edge set of the subgraph of G = (V, E) induced by
W ⊆ V is denoted by EW .

Let GB+↓ = (B+↓ , EB+↓ ) be the subgraph of G = (V, E) induced
by B+↓ . Let E−B+↓ ,X be the set of edges not covered by XB+↓ in EB+↓ .
X∗W is called an optimal partial solution for W if X∗ is an optimal
solution of K3 edge cover.

Our algorithm traces the rooted tree T in the postorder, and for
each bag B, constructs a set of partial solutions for B+↓ such that
one of them is the partial solution of an optimal solution. For
saving the memories, we compress the data of the partial solu-
tions and store them as a table. We will explain the details in the
following.

For an intuitive explanation, let us assume a bag B has k ver-
tices. For each bag B = {v1, v2, . . . , vk}, we create a table T [B],
which is a compressed representation of the partial solutions. Let
GB := (B, EB) be the subgraph of G induced by B. Let E+B be
E+B := {(v, w) ∈ EB+↓ | {v, w} ∩ B � ∅}, i.e., the set of edges in EB+↓
each edge of which is incident to at least one vertex in B. Let E′B
be E′B := E+B −EB , i.e., the set of edges in E+B each edge of which
is incident to just one vertex in B. Let h = |EB| be the number of
edges between vertices of B, and we give serial numbers to these
edges as e1, . . . , eh.

Let X j, j = {1, . . . , q} be the partial solutions stored in T [B].
X j is represented as row j of T [B]. Each row of T [B] is divided
into three parts, the first part consists of k(= |B|) columns, the
second part consists of h columns, and the third part is only one
column (See, Fig. 8 for an example of T [B]. Note that in this fig-
ure, the tree-decomposition is not nice so as to make it simple).
That is, T [B] consists of k+h+1 columns. The ith cell of the first
part of row j stores the number of edges between vi and vertices
in B↓ and uncovered by X j (Note that the set of these edges is

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

Fig. 8 An example of T [B]: (a) a tree-decomposition (note that it is not
nice), (b) a covering, (c) Table T [B] and the row corresponding to
the covering.

E−
B+↓ ,X j ∩ E′B). It will be shown later (in Lemma 10) that this num-

ber is enough to be 1 or 0. The ith column of the second part of
row j is 1 if ei is covered by X j; otherwise 0. The size |X j| of X j

is stored in the third part of row j. For notational simplicity, this
value |X j| is represented by ω in the following. The compressed
expression of a partial solution excluding the third part is called
the signature of the partial solution.

In the following, we show some lemmas necessary for support-
ing our algorithm.
Lemma 8. For any bag B of a tree-decomposition of a graph,

and two vertices u ∈ B↑ and v ∈ B↓, there is no edge between u

and v, i.e., (u, v) � E.

Proof : Since there is no bag containing both u and v, (u, v) � E

from the property of tree-decompositions (Condition 2 of Defini-
tion 1). �
Lemma 9. For any solution X and a bag B, all edges belonging

to E−B+↓ ,X are incident to vertices in B.

Proof : Assume that an edge (u, v) ∈ E−B+↓ ,X is not incident to any

vertex in B, i.e., u, v � B. From E−B+↓ ,X ⊆ EB+↓ it follows that
u, v ∈ B↓. Let X be an element of X that covers (u, v). Since
X � XB+↓ and (u, v) ∈ E−B+↓ ,X, X covers at least one edge besides

edge (u, v) *2. Let the edge be (v, w) without loss of generality.
Here, since there is no edge between B↑ and B↓, w ∈ B+↓ follows
from Lemma 8, contradicting X � XB+↓ . �
Lemma 10. If there is a solution X, then there is a solution X′
such that |X′| ≤ |X| and |{(v, w) ∈ E−B+↓ ,X′ | w ∈ B↓}| ∈ {0, 1} for any

bag B and any v ∈ B.

Proof : For any solution X, if there are X = {v, u, w}, X′ =
{v, u′, w′} ∈ X with v ∈ B, u, u′ ∈ B↑(u � u′) and w, w′ ∈ B↓, then
X and X′ can be replaced with Y = {v, u, u′} and Y ′ = {v, w, w′},
because there is no edge that is not covered by this replacement
from Lemma 8. By applying this procedure as far as possible,
the number of uncovered edges between v and B↓ becomes 0 or
1. �

Lemma 10 assures that each cell of the first part of each row is
1 or 0.
Lemma 11. For two solutions X and X′ and a bag B, assume

that the signatures of the two partial solutions XB+↓ and X′B+↓ are

the same. Then, there is a solution X′′ such that X′′B+↓ = XB+↓ and

|X′′| = |X′| − |X′B+↓ | + |XB+↓ |.
Proof : If E−B+↓ ,X = E−B+↓ ,X′ , the statement of this lemma holds

by letting X′′ = X from Lemma 9. Therefore, we assume that
E−B+↓ ,X � E−B+↓ ,X′ in the following part. Since X and X′ have

the same signature, every edge belonging to E−B+↓ ,X − E−B+↓ ,X′ or

E−B+↓ ,X′ − E−B+↓ ,X has one end vertex in B and the other in B↓.
Furthermore, for any v ∈ B, the number of edges belonging to
E−B+↓ ,X − E−B+↓ ,X′ and incident to v is equal to the number of edges

belonging to E−B+↓ ,X′ −E−B+↓ ,X and incident to v. Therefore, it is pos-
sible to give a one-to-one correspondence between these elements
(if exist). Assume that an element X′ of X′ − X covers an edge
(v, w) in E−B+↓ ,X′ − E−B+↓ ,X (where v ∈ B and w ∈ B↓). In this case,

X′ is not a delta: because if X′ = {v, w, u} is a delta, then from
X′ � X′B+↓ , u ∈ B↑ and (u, v), (w, u) ∈ E, but the existence of edge

(w, u) contradicts Lemma 8. Moreover X′ is not an I: otherwise,
X′ = {v, w} ∈ X′B+↓ , contradicts (v, w) ∈ E−B+↓ ,X′ . Therefore, X′ is an
L, and in addition to (v, w) the edge to be covered is (u, v) (where
u ∈ B↑) without loss of generality. Let the edge in E−B+↓ ,X − E−B+↓ ,X′
corresponding to (v, w) be (v, w′). If we replace X′ with {u, v, w′},
the signature does not change. We change X by every element
X′ of X′ − X, if it covers an edge in E−B+↓ ,X′ − E−B+↓ ,X replacing it
as above, otherwise leaving it in the set, and get the resulting set
X′′′. Here |X′′′| = |X′ − X| and X′′′ covers all edges in E−B+↓ ,X.

Therefore, by letting X′′ = X′′′ ∪ XB, we obtain the desired solu-
tion. �
Lemma 12. Let B be a forget node and B′ be its child node. Let

edge (u, w) satisfy u ∈ B′ − B and w ∈ B′↓. Let X be an arbitrary

solution. Then, there is an X ∈ X such that u, w ∈ X and X ⊆ B′+↓ .

Proof : Assume that for every X ∈ X containing u and w, X � B′+↓ .
Then there exists v ∈ B′↑ and X ∈ X such that X = {u, w, v}. Since
B is a forget node, B ⊂ B′ and hence v ∈ B↑. On the other hand
(u, v) ∈ E or (w, v) ∈ E must hold, because there is no I from

*2 X is an element of X and X � XB+↓ , it means that one of the vertices in
X is not in B+↓ . X should contain another vertex w other than u and v that
is not in B, because u, v ∈ B↓ ⊆ B+↓ . Therefore, we have that X covers
at least one edge besides (u, v), say, (u, w) or (v, w) (I does not exist from
Lemma 6).
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Table 1 Since GB = (B = {u}, EB = ∅) for leaf node B = {u}, XB = ∅ for
any solution X. Therefore, T [B] looks like what is shown.

u ω

0 0

Lemma 6, contradicting Lemma 8. �
Lemma 13. Let B be a join node and B′ and B′′ be its child

nodes. Then, B′↓ ∩ B′′↓ = φ.
Proof : From the definition of B′↓, any vertex belonging to B′↓
does not belong to B′. Therefore, from the definition of tree-
decomposition (Condition 3 of Definition 1), these vertices do
not belong to B′′↓ either and hence this lemma follows. �

5.1 Algorithm
When creating table T [B], if there are two or more partial so-

lutions whose signatures are the same we can remove these par-
tial solutions except one that has the minimum ω among them.
A strict proof of the correctness of this operation will be shown
after describing the algorithm (Lemma 14). We explain the algo-
rithm step by step as follows. This algorithm scans the tree of the
nice tree-decomposition in the postorder and creates a table T [B]
at each node (bag) B so that there is a partial optimal solution.
Finally, the solution of the table at the root node is the optimal
solution.

T [B] is created from the tables of the children of B. Since
the tree decomposition is nice, the number of children is at most
two. The basic strategy of creating T [B] is enumerating all pos-
sible partial solutions. That is, for each row (partial solution) X
in B′, which is one of the children of B, enumerating all possible
cases of covering or uncovering edges in E−B+↓ ,X. Since |E−B+↓ ,X| is
bounded by a constant number, the enumeration for them can be
done in constant-time. However since EB+↓ grows up to m when
the trace of the algorithm is close to the root of the decomposition
tree, the size of the number of different partial solutions becomes
exponential. This problem is resolved by using Lemma 14. That
is, from this lemma, keeping only partial solutions whose signa-
tures are different is sufficient.

The operation for constructing T [B] for each node (bag) B con-
sists of two stages: one is Enumerating Stage and the other is Re-
finement Stage. In Enumerating Stage, all possible partial solu-
tions are enumerated. In Refinement Stage, partial solutions that
are unnecessary (i.e., that are not partial solutions of optimal solu-
tions) are removed. In the following, these stages are illustrated.
First, Enumerating Stage for each type (leaf, introduce, forget,
and join) is shown. Since Refinement Stage is the same for every
type, it will be shown after explaining Enumerating Stages of all
types.
Enumerating Stage
( 1 ) Leaf nodes

Let B be a leaf node, and u be its (unique) element. Create
Table as shown in Table 1.

( 2 ) Introduce nodes
Let B = {u, v1, v2, . . . , vk} be an introduce node and B′ =
{v1, v2, . . . , vk} be its child. For each row of T [B′], create
some rows of T [B] according to the following operations.
Let XB+↓ be the partial solution corresponding to the row (of

Fig. 9 An example of making T [B] from T [B′], where B = {b, c, f } (intro-
duce node) and B′ = {c, f } (the child of B), on the graph and the
tree-decomposition shown in Fig. 7. Each row corresponds to a par-
tial solution of a K3 edge cover, e.g., the first row in Table (d) shows a
partial solution ∅ and the second row shows a partial solution {{c, f }}.
Furthermore, in Table (a), the first row shows a partial solution ∅ and
the third row shows a partial solution {{b, c, f }}. (i) Since there is no
non-zero cell in the first part of T [B′] in (d), the algorithm does noth-
ing in (i). (ii) List up all possible cases to cover edges in B. In this
case, we consider the combination of whether the two edges ((b, c)
and (c, f )) are covered or not, i.e., the first row of (b) means (b, c)
and (c, f ) are not covered, the second row means (b, c) is covered but
(c, f ) is not, the third row means both (c, f ) and (b, c) are covered by
one K3, and the fourth row means (c, f ) is covered but (b, c) is not.
(iii) Because the third row and the sixth row of (b) have the same
signature and the value of ω of the latter is larger than the former,
the latter (the sixth row) is deleted. Furthermore, because the fourth
and the fifth rows are completely the same, only one of them is left.
Consequently, the table of (a) is obtained.

T [B′]) (See Fig. 9).
Step 1. For each edge (vi, v j), apply the following opera-
tions: Let wi and w j be vertices adjacent to vi and v j in B′↓,
respectively, and are not covered by the partial solution that
corresponds to the currently focused row of T [B′] yet (if
exist). Note that vi (resp., v j) has at most one such ver-
tex from Lemma 10. List up all possible combinations of
the following cases and make a row corresponding to each
of the combinations: (1) {vi, v j, u} are covered by a K3, (2)
{vi, v j, wi} are covered by a K3, and (3) {vi, v j, w j} are cov-
ered by a K3. Create all cases of combinations of the above
three cases, i.e, at most 23 = 8 rows are created for a cur-
rently focused row in T [B′].

Step 2. For each row created in Step 1, update the values
in the cells of the first, the second and the third part.

( 3 ) Forget nodes
Let B = {v1, v2, . . . , vk} be a forget node and B′ =
{u, v1, v2, . . . , vk} be its child. For each row of T [B′], cre-
ate T [B] according to the following operations. Let XB+↓ be
the partial solution corresponding to the row (of T [B′]) (See
Fig. 10).
Step 1. For each edge (u, vi), apply the following opera-
tions: Let wu and wi be vertices adjacent to u and vi in B′↓,
respectively, and are not covered by the partial solution that
corresponds to the currently focused row of T [B′] yet (if
exist). Note that u (resp., vi) has at most one such vertex
from Lemma 10. Let v j be a vertex adjacent to at least one
of u or vi. List up all possible combinations of the following
cases and make a row corresponding to each of the combi-
nations: (1) {u, vi, v j} are covered by a K3, (2) {u, vi, wu} are
covered by a K3, and (3) {u, vi, wi} are covered by a K3. Cre-
ate all cases of combinations of the above three cases, i.e,
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Fig. 10 An example of making T [B] from T [B′], where B = {b, c} (forget
node) and B′ = {b, c, f } (the child of B), on the graph and the tree-
decomposition shown in Fig. 7. Each row corresponds to a partial
solution of a K3 edge cover, e.g., the first row in table (d) shows
a partial solution ∅ and the second row shows a partial solution
{{b, c, f }}. (i) Since there is no non-zero cell in the first part of T [B′]
in (e), the algorithm does nothing in (i). (ii) List up all possible
cases to cover edges in B. In this case, we consider the combina-
tion of whether the two edges ((b, c) and (c, f )) are covered or not,
i.e., the first row of (c) means (b, c) and (c, f ) are not covered, the
second row means (b, c) and (c, f ) are covered, the third row means
(c, f ) is covered but (b, c) is not. (iii) The value of the column cor-
responding to vertex c (the second column) is set to 1, because edge
(c, f ) and f do not exist in B. (iv) Because the second, the fourth,
the fifth, the sixth and the eighth row of (b) have the same signature
and the value of ω of the second is the smallest, the fourth, the fifth,
the sixth and the eighth row are deleted. Consequently, the table of
(a) is obtained.

at most 23 = 8 rows are created for a currently focused row
in T [B′].

Step 2. For each row of T [B], if edge (u, vi) is not covered
(i.e., the value of (u, vi) is 0 in the second part of T [B])
and vi has 1 in the cell of the first part of T [B′], {u, vi, wi}
are covered by a K3 and 0 is set as the value of vi in the
first part of T [B′] (Note that u does not exist in B′↑ from
Lemma 12).

Step 3. For each row created in Step 1 and Step 2, update
the values in the cells of the second and the third part.

( 4 ) Join nodes
Let B = {v1, v2, . . . , vk} be a join node and B′ = B′′ =
{v1, v2, . . . , vk} be its children. For each pair of a row in T [B′]
and a row in T [B′′], create a row in T [B] according to the fol-
lowing operations. Let X′B+↓ and X′′B+↓ be the partial solutions

corresponding to the row in T [B′] and the row in T [B′′],
respectively. Create a row in T [B], apply the following op-
erations to all pairs of rows in T [B′] and T [B′′].
Step 1. For each cell in the first part of the row, store the
logical sum of the values of the corresponding cells of X′B+↓
and X′′B+↓ (The correctness of this operation is supported by

the fact B′↓ ∩ B′′↓ = φ proved in Lemma 13).
Step 2. For each cell in the second part of the row, put 1 if
one of the values of the corresponding cells of X′B+↓ andX′′B+↓
have 1, and 0 otherwise.

Step 3. For the cell in the third part of the row, store the
sum of the values in the cells of the third part of X′B+↓ and

X′′B+↓ .
After Steps 1 to 3, apply the following operations.

Step 4. In Step 1, for each vi, if both of the correspond-
ing cells of T [B′] and T [B′′] are 1 (and the corresponding
cell in T [B] is 0 as a result of the logical summation), then
increase the value of the row in the third part of T [B] by 1.

Refinement Stage
After finishing creating columns of T [B] by the above opera-

tions, if there are two or more partial solutions (rows) that have
the same signature in T [B], then leave only one partial solution
that has the minimum ω among them (i.e., delete the others).

We prove the correctness and the computation time as follows.
Lemma 14. If T [B] includes a partial solution of an optimal

solution, then at least one of the kept solutions remains after Re-

finement Stage.

Proof : Assume that a partial solution of an optimal solution
X∗ was deleted in Refinement Stage of node B. We denote the
deleted optimal partial solution by X∗B+↓ . A partial solution XB+↓
that has the same signature must remain. From the rule of Re-
finement Stage,

|XB+↓ | ≤ |X∗B+↓ | (6)

By regarding X∗ and X as X′ and X, respectively, of Lemma 11,
X′′ constructed in the proof of Lemma 11 is also a solution. From
(6), |X′′| = |X∗| − |X∗B+↓ |+ |XB+↓ | ≤ |X∗|. Thus X′′ is also an optimal

solution. XB+↓ can be regarded as a partial solution of X′′. �
Lemma 15. For any bag B, the signature set of the partial solu-

tion stored in T [B] contains the signature of the optimal partial

solution.

Proof : This can be easily proved by induction. Hence the detail
is omitted here. �

Now we establish the proof of Theorem 3 as follows.
Proof of Theorem 3: From Lemma 15, since the optimal solu-
tion exists in the solution stored in the root node, the algorithm
correctly gives the optimal solution. Thus we estimate the com-
putation time. First we calculate the number of columns in a table
T [B] of a bag B. The number of columns in the first part, which
is equal to the number of the vertices in the bag, is at most t + 1,
the number of columns in the second part, which is equal to the
number of edges in the bag, is at most

(
t+1
2

)
= t(t + 1)/2 and there

is another column for the third part. Thus the number of columns
of a table is at most t+1+t(t+2)/2+1 = O(t2). Next, we calculate
the number of rows. The maximum number of rows in a table af-
ter finishing Refinement Stage is equal to the maximum possible
variations of signatures. Since there are at most 2t+1 variations for
the first part and 2t(t+1)/2 variations for the second part, the total
number of possible variations is at most 2t+12t(t+1)/2 = 2(t+1)(t+2)/2,
which is an upper bound of the number of rows of a table after
finishing the Refinement Stage. However, in Enumerating Stage,
more rows are created in general. In an introduce or forget node,
we may create at most 8 rows for each row of the table of the
child node. Thus a total of 8 · 2(t+1)(t+2)/2 rows may be created in
Enumerating Stage of an introduce or forget node. In a join node,
at most (2(t+1)(t+2)/2)2 = 2(t+1)(t+2) rows are created in Enumerat-
ing Stage. By comparing 8 · 2(t+1)(t+2)/2 and 2(t+1)(t+2), it follows
that the number of rows are O(2(t+1)(t+2)).
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In Refinement Stage we compare all pair of rows. Hence we
must compare O((2(t+1)(t+2))2) = O(22(t+1)(t+2)) rows in a node.
Comparing one pair of rows requires O(t2)-time, since the num-
ber of columns is O(t2). Therefore the computation time required
in a node is O(22(t+1)(t+2)t2).

Finally, from that the number of nodes of the tree is O(n), it
follows that the total computation time is O(22(t+1)(t+2)t2n). �

6. Conclusion

In this paper, we dealt with K3 edge cover problem in a wide
sense. We found that it is NP-complete even for planar and
cubic graphs. We also showed FPT algorithms for several pa-
rameters, i.e., one is O(mn + 2km)-time algorithm and the other
is O(22(t+1)(t+2)t2n)-time algorithm, where k is the number of 3-
cliques and t is the tree-width (under an assumption that a tree-
decomposition of tree-width t is given). Next, we discuss open
problems. From the NP-completeness of K3EC, it may be ex-
pected that Kk edge cover problem in a wide sense for k ≥ 4 is
also NP-complete. However, this is not trivially obtained from
the proof on K3EC. One of the difficulties is that K4 can cover
two non-adjacent edges simultaneously. This fact makes Kk edge
cover problem in a wide sense difficult to show the hardness or
give efficient algorithms.
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