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Abstract: Several methods described in the literature have proved that any convex pyramid can be continuously flat-
tened. Recently, the problem of continuous flattening of polyhedra having divisions, i.e., polyhedra in which some of
the edges are incident to three or more faces, has been proposed. However, for such multi-layered structures, continu-
ous flattening motions are unknown. In this study, under the assumption that every radial edge is rigid, we prove that a
continuous flattening motion exists for a pyramid with a convex base. Moreover, in a similar manner, we demonstrate
that a continuous flattening motion exists for a multi-layered pyramid having a common convex base, with each apex
having a common perpendicular foot. Finally, we illustrate an example of a multi-layered pyramid with a non-convex
base that cannot be continuously flattened while maintaining the rigidity of the radial edges.
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1. Introduction

We use the term polyhedron for a polyhedral surface in three-
dimensional Euclidean space R3 that is permitted to touch it-
self but without self-crossing. Furthermore, polyhedra of higher
genus are allowed here.

Flat folding of a polyhedron refers to its folding by creases,
without self-crossing, into a multi-layered flat folded state with a
finite number of creases. It is known that any polyhedron of genus
zero has a flat folded state [2], [6], [8]. The original problem of
continuous flattening of polyhedra was proposed in Ref. [5], and
the existence of a continuous motion has been demonstrated in
Refs. [1], [8] for any convex polyhedron. However, the existence
of a continuous motion from the surface down to a flat folded
state for any polyhedron is still an open problem.

Recently, the second author proposed the problem of flatten-
ing multi-layered structures [12] and provided flattening states for
some of them. However, for such structures, continuous flatten-
ing motions are unknown.

Now, we define the multi-layered structure discussed in this
paper.
Definition 1. Let Γ = Γn = B1B2 · · · Bn be an n-gon and O be

a point in the interior of Γn. Let A1, . . . , Ak be points on the line

passing through O and orthogonal to Γ. Then, we call the set

of �AiBjBj+1 (1 ≤ i ≤ k, 1 ≤ j ≤ n) a multi-layered pyramid,

which we denote by P = P(Γn; A1, . . . , Ak), where Bn+1 = B1.

The edges AiBj and BjBj+1 are called a radial edge and a hor-

izontally aligned edge, respectively, and Ai and Γ are called the
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Fig. 1 Multi-layered pyramid P(Γ3; A1, A2, A3, A4, A5) with A3 = O.

apexes and the base of P, respectively (Fig. 1).
Every multi-layered pyramid P(Γ; A1, . . . , Ak) can be consid-

ered in R3 with every apex on the z-axis and the base on the xy-
plane. We consider such multi-layered pyramids inR3 throughout
the paper. Note that some Ai may coincide with the origin O, that
is, Ai = O, in which case we consider the base to consist of the
triangular faces �AiBjBj+1 (1 ≤ j ≤ n).

An important constraint on continuous flattening is the Bel-
lows theorem [3]: the volume of any polyhedron with rigid faces
is invariant even if the polyhedron is flexible. Flattening a poly-
hedron necessarily changes the volume (from a nonzero value
to zero), which implies that some faces cannot be rigid; i.e.,
their shapes are continuously changed by infinitely many mov-
ing creases. This also implies that any multi-layered pyramid in
which all its edges are rigid cannot be continuously flattened. In
Ref. [13], the authors focused on the rigidity of radial edges of
the same length during the flattening motion. In this study, we
assume that all radial edges (not necessary of the same length)
of a multi-layered pyramid are rigid and that horizontally aligned
edges can be folded. Additionally, we demonstrate that a con-
tinuous flattening motion exists for multi-layered pyramids, as
depicted in Fig. 2.
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Fig. 2 (a) Multi-layered pyramid P(Γ3; A1, A2), (b) halfway-folded state,
and (c) flat folded state.

There are many ways to continuously flatten polyhedra; see
Refs. [1], [4], [7], [8], [9], [10], [11], [12], [13]. To the best
of the authors’ knowledge, a continuous flattening motion for a
multi-layered structure has not been described in the literature.
The main results in this paper concern the existence and non-
existence of a continuous flattening motion for a multi-layered
pyramid with rigid radial edges. The statements of the results
follow.
Theorem 1. There exists a continuous flattening motion for any

multi-layered pyramid with a convex base and rigid radial edges.

Theorem 2. There exists a multi-layered pyramid with a non-

convex base and rigid radial edges that cannot be continuously

flattened.

In this paper, we consider the continuous flattening of a multi-
layered pyramid P at time t from 0 to 2. The position of any
point P ∈ P at time t is denoted by P(t), where we omit (0) at
time 0. In particular, our flattening method for P can be divided
into two parts: (1) lifting the apexes (0 ≤ t ≤ 1) and (2) rotat-
ing the horizontally aligned edges (1 ≤ t ≤ 2). We call a structure
consisting of the edges ofP the 1-skeleton ofP. In Sections 2 and
3, we consider the motion of the 1-skeleton of P when P is the
simplest multi-layered pyramid in some sense. We show that two
processes (lifting the apexes and rotating the horizontally aligned
edges) produce a continuous flattening motion of the 1-skeleton.
In Section 4, the folded state of each face of P, which depends
on the folded state of the 1-skeleton, is precisely discussed. In
Section 5, the existence of a continuous flattening motion for any
multi-layered pyramid with a convex base is proved. In Section 6,
we present an example of a multi-layered pyramid with a non-
convex base for which no continuous flattening motions exist if
all the radial edges are rigid during the motion.

2. Lifting the Apexes

Let P(Γn; A1, A2) be a pyramid with Γn = B1 · · · Bn on the xy-
plane, A1 on the positive z-axis, and A2 = O (see Fig. 3). In

Fig. 3 Pyramid with 12 radial edges.

Fig. 4 (a) P(Γ6, A), (b) halfway-folded state of the horizontally aligned
edges, and (c) folded state at the end of the lifting motion (t = 1)
with |B6(1)O| + |B1(1)O| = |B1B6 |.

this section, we define a continuous motion of the 1-skeleton of
P(Γn; A1, A2) such that the radial edges are rigid and the hori-
zontally aligned edges, which move on the xy-plane, are folded
continuously to synchronize with the motion of the apexes.

First, we focus on P(Γn; A), which has radial edges BjO (1 ≤
j ≤ n) and apex A = O (see Fig. 4 (a)). We move A on the positive
z-axis and the horizontally aligned edges on the xy-plane, each of
which may be folded into two connected line segments at each t

(0 ≤ t ≤ 1) (see Fig. 4 (b)).
Let d be a real number with 0 ≤ d ≤ min1≤ j≤n |BjO|. We further

restrict d, which is defined as the distance from O to the perimeter
of Γn. Let

A(t) = (0, 0, td), 0 ≤ t ≤ 1

and let

l j(t) =
√
|BjO|2 − (td)2, 1 ≤ j ≤ n, 0 ≤ t ≤ 1.

Because l j(0)+ l j+1(0) = |BjO|+ |Bj+1O| > |BjBj+1| for 1 ≤ j ≤ n,
where Bn+1 = B1, we can assume that d satisfies the following
conditions:
(C1) For some j (1 ≤ j ≤ n)

l j(1) + l j+1(1) = |BjBj+1|.
(C2) For any t (0 ≤ t < 1) and any j (1 ≤ j ≤ n)

l j(t) + l j+1(t) > |BjBj+1|.
Note that we stop the lifting of A when the condition (C1) is

satisfied by some j (1 ≤ j ≤ n). Then, we fix j as any of such
j, and set t = 1 at that time. Let Hj be the foot of the per-
pendicular line from A (= O) to the edge BjBj+1. Then, since
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Fig. 5 (a) Tetragon ABCD and (b) folded state of ABCD.

∠A(1)OBj(1) = ∠A(1)OBj+1(1) = 90◦ holds, |AHj| = |A(1)O| = d

holds and AHj is one of the shortest perpendicular line segments
from A to the straight lines Bj′Bj′+1 (1 ≤ j′ ≤ n).

Now, the positions of Bj(t) (1 ≤ j ≤ n) in the lifting motion are
determined in the following two lemmas.
Lemma 1. Let ABCD be a tetragon on the xy-plane consisting

of two rigid triangles �ABC and �ACD, that is, ABCD can be

folded along the line segment AC. We assume that A = O and

∠ACB+∠ACD < 180◦ (see Fig. 5 (a)). Let h = min(|AH1|, |AH2|),
where H1 and H2 are the feet of the perpendicular lines from A to

BC and CD, respectively. If we continuously lift A on the positive

z-axis from A0 = O to A1 = (0, 0, h) and move the horizontally

aligned edges on the xy-plane, then we have

∠B′C′D′ < ∠BCD

during the motion, where A′ (� O), B′, C′, and D′ are the points

corresponding to A, B, C, and D, respectively, in a folded state of

ABCD (see Fig. 5 (b)).
Proof. Let E be an intersection of the straight lines AC and BD,
and E′ be the point corresponding to E on the straight line A′C′.
Then, A′ � O implies that E′ is not on the xy-plane. Hence, we
have ∠B′E′D′ < 180◦ and |B′D′| < |B′E′| + |E′D′| = |BD|. Since
∠ACB + ∠ACD < 180◦ holds and both BC and CD are rigid, by
the law of cosines, it follows that ∠B′C′D′ < ∠BCD. �
Lemma 2. LetP(Γn; A) be the convex n-gon on the xy-plane with

a convex polygon Γn = B1 · · · Bn with n ≥ 3 and A = O. Then, for

any position of A(t) (0 ≤ t ≤ 1), there exist B1(t), . . . , Bn(t) on the

xy-plane such that all radial edges are rigid, that is, |A(t)Bj(t)| =
|ABj|, and |Bj(t)Bj+1(t)| ≤ |BjBj+1| for any t (0 ≤ t ≤ 1). More-

over, OBj(t) (1 ≤ j ≤ n) are in anticlockwise order about O for

0 ≤ t ≤ 1.

Proof. We show that we can determine the positions of Bj(t) on
the circle with center O and radius l j(t) =

√|BjO|2 − (td)2 that
satisfy the equation

Fig. 6 (a) Angles θ1(0), θ2(0) and (b) angles θi(t), αi(t) and βi(t) with
i = 1, 2.

n∑
j=1

∠Bj(t)OBj+1(t) = 360◦ (1)

for any t (0 ≤ t ≤ 1). We focus on two consecutive faces
�BjOBj+1 and �Bj+1OBj+2 for each fixed j (1 ≤ j ≤ n). Then,
we move Bj, Bj+1, and Bj+2 such that BjBj+1 and Bj+1Bj+2 are
rigid, synchronizing with the lifting motion of A. When A moves
from O to (0, 0, d) for 0 ≤ t ≤ 1, d is the length of the shortest
perpendicular line segment from A to BjBj+1 (1 ≤ j ≤ n), that is,
the distance from O to the perimeter of Γn. Hence, �ABjBj+1 and
�ABj+1Bj+2 can move from t = 0 to t = 1 as in Lemma 1.

We define the angles of �OBj(t)Bj+1(t) as follows:

θ j(t) = ∠Bj(t)OBj+1(t), α j(t) = ∠OBj(t)Bj+1(t)

and

β j(t) = ∠OBj+1(t)Bj(t)

(see Fig. 6). By Lemma 1 the following holds.

β j(t) + α j+1(t) = ∠Bj(t)Bj+1B(t) j+2(t) < ∠BjBj+1Bj+2

holds for any j (1 ≤ j ≤ n) and any t (0 < t ≤ 1). Hence,

n∑
j=1

(α j(t) + β j(t)) <
n∑

j=1

∠BjBj+1Bj+2

= 180◦ × (n − 2).

Thus, we have

n∑
j=1

θ j(t) =
n∑

j=1

(180◦ − (α j(t) + β j(t)))

> 360◦.

Now, ∠Bj(t)OBj+1(t) can be changed to any angle less than or
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Fig. 7 Folded state of a 1-skeleton of a pyramid during the lifting motion.

equal to θ j(t) by folding BjBj+1 at any point, which is determined
and denoted by F j(t) later. Hence, by folding BjBj+1 if necessary,
we can choose ∠Bj(t)OBj+1(t) ≤ θ j(t) such that the equality (1)
and |Bj(t)Bj+1(t)| ≤ |BjBj+1| hold (1 ≤ j ≤ n, 0 ≤ t ≤ 1). �

Note that B1(t), . . . , Bn(t) in Lemma 2 can be determined con-
tinuously with respect to t (0 ≤ t ≤ 1). In contrast, the following
remark is important for the proof of Theorem 2 in Section 6.
Remark 1. In Lemmas 1 and 2, the assumption ∠ACB+∠ACD <

180◦ for ABCD played a key role. However, we cannot extend it

to all of the non-convex tetragons, because both ∠OC′B′ > ∠OCB

and ∠OC′D′ > ∠OCD may occur, that is, ∠OC′B′ + ∠OC′D′ >
∠OCB+∠OCD may hold. Hence, in a continuously flattening mo-

tion of a non-convex n-gon P(Γn; A) with rigid radial edges, there

may not exist B1(t), . . . , Bn(t) satisfying the equation (1) even for

small t > 0.

Note that it is not necessary for any Bj(t) to lie on the line seg-
ment BjO. Now, for Bj(t) and Bj+1(t) (1 ≤ j ≤ n, 0 ≤ t ≤ 1),
we can uniquely determine a folding point F j(t) on the xy-plane
satisfying the following conditions (Fig. 4 (b)):

∠Bj(t)OF j(t) = ∠Bj+1(t)OF j(t), (2)

|Bj(t)F j(t)| + |Bj+1(t)F j(t)| = |BjBj+1|, (3)

∠Bj(t)F j(t)O + ∠Bj+1(t)F j(t)O ≥ 180◦. (4)

Now, we consider the lifting motion for the radial edges of the
pyramid P(Γn; A1, A2) with A2 = O. Recall that A2(t) = (0, 0, td)
for 0 ≤ t ≤ 1. We define the motion of A1 for 0 ≤ t ≤ 1. For any
fixed t (0 ≤ t ≤ 1), |BjA1|2 − |Bj(t)O|2 is common for all j’s with
1 ≤ j ≤ n, because

|BjA1|2 − |Bj(t)O|2 = |BjA1|2 − (|BjO|2 − (td)2)

= |OA1|2 + (td)2.

Define A1(t) = (0, 0,
√|OA1|2 + (td)2) for 0 ≤ t ≤ 1 (see

Fig. 7).
We can now state the following lemma.

Lemma 3. For P(Γn; A1, A2) with A2 = O, let A1(t) =
(0, 0,

√|OA1|2 + (td)2) and A2(t) = (0, 0, td) (0 ≤ t ≤ 1). There

exist positions Bj(t) (1 ≤ j ≤ n, 0 ≤ t ≤ 1) such that all radial

edges are rigid and |Bj(t)Bj+1(t)| ≤ |BjBj+1|. Moreover, we can

set the line segments Bj(t)O (1 ≤ j ≤ n) in anticlockwise order

about O.

By Lemma 3, we can set Ai(t) = (0, 0,
√|OAi|2 + (td)2) for

each i (1 ≤ i ≤ k) during the lifting motion (0 ≤ t ≤ 1). Note that,
for each of the folding points F j(t) (1 ≤ j ≤ n), the corresponding

Fig. 8 Rotating motion of OBj(1) toward OBn(1).

point on the edge BjBj+1 may stay or continuously move on the
edge. When some of the points F j(t) reach O at the first time, i.e.,
t = 1, we proceed to the next step of rotation.

3. Rotating the Horizontally Aligned Edges

In this section, for 1 ≤ t ≤ 2, we determine a rotating mo-
tion of P(Γn; Ai) for each i (1 ≤ i ≤ k) after the lifting motion
(0 ≤ t ≤ 1). During the rotating motion, the apex Ai(1) is fixed,
and each of the bottom vertices Bj(1) moves on a circle with cen-
ter O and radius |OBj(1)|. Furthermore, for 1 ≤ t ≤ 2, we can
uniquely determine a folding point F j(t) on the xy-plane satisfy-
ing the conditions (2)–(4). Then, every horizontally aligned edge
moves on the xy-plane such that each edge BjBj+1 is folded at
F j(t).

The rotating motion is illustrated in Fig. 8. Without loss of
generality, we can assume that Fn(t) reaches O at the end of
the lifting motion; that is, Fn(1) = O. Then, for 1 ≤ t ≤ 2,
we rotate Bj(1) (1 ≤ j ≤ n − 1) about the z-axis by the angle∑

j≤ j′≤n−1 ∠Bj′ (1)OBj′+1(1) until it reaches the line OBn(1). Thus,
the 1-skeleton of the pyramid is flattened on the plane including
the triangle Ai(1)OBn(1).

4. Folded States of Faces

In this section, for the motion of the 1-skeleton of P =
P(Γn; A1, . . . , Ak), the existence of a folded state of the triangu-
lar faces is discussed. We focus on any of the fixed triangular
faces of P.
Lemma 4. Let P = P(Γn; A) with a convex n-gon Γ. We choose

any j (1 ≤ j ≤ n) and t (0 ≤ t ≤ 2), and fix them. Let the folding

point F = F j(t) = (x, y, 0) and denote by F∗ the corresponding

point of F on BjBj+1. There exist R and R∗ ∈ �ABjBj+1 such that

F∗R∗ ⊥ BjBj+1, |AR∗| = |A(t)R|, and R = (x, y, |R∗F∗|) (Fig. 9).
Proof. Let B′j+1(t) be a point on the xy-plane with

�A(t)Bj(t)B
′
j+1(t) ≡ �ABjBj+1

in non-reflective order, and F′ be the point on Bj(t)B′j+1(t)
with |Bj(t)F′| = |BjF∗| (Fig. 9 (a)). Because F is inside
�OBj(t)Bj+1(t), it is seen that F is a point specified by rotat-
ing F′ around Bj(t) toward the line segment OBj(t). Hence,
|OF| ≤ |OF′| and

|A(t)F| ≤ |A(t)F′| = |AF∗|. (5)

Now, let l be the line perpendicular to the xy-plane passing
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Fig. 9 (a) �A(t)Bj(t)Bj+1(t) at time t (0 ≤ t ≤ 2) and (b) �ABjBj+1 at time
0.

through F, and l∗ be the line on the plane including �ABjBj+1,
perpendicular to BjBj+1 passing through F∗ (Fig. 9 (b)). Then,
l∗ intersects the edges ABj or ABj+1. Without loss pf generality,
we can assume that l∗ intersects the edge ABj. Let M∗0 = F∗,
M∗1 = l∗ ∩ ABj, M0 = F, and M1 = (x, y, |M∗0 M∗1 |).

Because �BjF∗M∗1 ≡ �Bj(t)FM1 and

|BjM
∗
1 | + |AM∗1 | = |ABj| = |A(t)Bj(t)| ≤ |Bj(t)M1| + |A(t)M1|,

it follows that

|AM∗1 | ≤ |A(t)M1| (6)

holds.
Let M and M∗ be moving points on the line segments M0M1

and M∗0 M∗1 with |M0M| = |M∗0 M∗|, respectively, where they move
continuously. Then, it is shown by Eqs. (5), (6), and the continu-
ity of real numbers that there exist points R and R∗ ∈ F∗M∗1 such
that F∗R∗ ⊥ BjBj+1, |A(t)R| = |AR∗|, and R = (x, y, |F∗R∗|). �

Lemma 4 implies that the 1-skeleton of P(Γn; A1, . . . , Ak) has a
folded state of each of the triangular faces �AiBjBj+1 in R3 with
creases AiRi j, BjRi j, Bj+1Ri j, and F jRi j, where F j and Ri j corre-
spond to the points F and R in Lemma 4. Moreover, we must
avoid collisions between the folded states of the faces. For each
1 ≤ j ≤ n, an orthogonal projection of �AiBjBj+1 (1 ≤ i ≤ k)
to the xy-plane is �OBjBj+1. Hence, �AiBjBj+1 and �Ai′Bj′Bj′+1

(1 ≤ i ≤ i′ ≤ k, 1 ≤ j < j′ ≤ n) do not experience collisions.
Next, for each j (1 ≤ j ≤ n), we show that the relative interiors
of Ai(t)Ri j (1 ≤ i ≤ k) are disjoint at any time t (0 ≤ t ≤ 2).

We choose any j and fix it (1 ≤ j ≤ n). Additionally, we
rewrite Ri instead of Ri j for the sake of simplicity.
Lemma 5. For any 1 ≤ i < i′ ≤ k,

|OAi(t)| ≤ |OAi′ (t)| if and only if |FRi| ≤ |FRi′ |,
where F, Ri and Ri′ are points corresponding to F and R in

Fig. 10 Point Ci on the line AiRi.

Fig. 11 Positional relationship among points on the plane H when |OAi | ≤
|OAi′ | and |FRi | ≥ |FRi′ |.

Lemma 4, respectively.
Proof. We can assume without loss of generality that Ai(t) and
Ai′ (t) lie on the positive z-axis. Let Π be the plane including the
four points O, Ai(t), Ai′ (t), and F, and let D be the intersection of
Π and the line segment Bj(t)Bj+1(t) (Fig. 10). Let Ci and Ci′ be
points on the straight lines Ai(t)Ri and Ai′ (t)Ri′ , respectively, such
that

|Bj(t)Ci| + |Bj+1(t)Ci| = |Bj(t)F| + |Bj+1(t)F| = |BjBj+1|
and

|Bj(t)Ci′ | + |Bj+1(t)Ci′ | = |Bj(t)F| + |Bj+1(t)F| = |BjBj+1|.
We assume that |OAi| ≤ |OAi′ | and |FRi| ≥ |FRi′ | hold (Fig. 11).

Then, there exists an intersection I of the straight line Ai′Ri′ and
the line segment CiD. Since F∗ (corresponds to F∗ in Lemma 4)
is on the edge BjBj+1 of �AiBjBj+1 and the point Ci′ corresponds
to F∗ on the line Ai′ (t)Ri′ , we have

|Bj(t)I| + |Bj+1(t)I| > |Bj(t)Ci′ | + |Bj+1(t)Ci′ | (7)

= |BjBj+1|.
In contrast, by ∠Bj(t)IBj+1(t) > ∠Bj(t)CiBj+1(t),

|Bj(t)I| + |Bj+1(t)I| < |Bj(t)Ci| + |Bj+1(t)Ci| = |BjBj+1|.
This contradicts (7). �

Lemmas 4 and 5 play an important role in Section 5.

5. Continuous Flattening Motions of Multi-
layered Pyramids

One of our main results in this paper is the existence of a con-
tinuous flattening motion for a multi-layered pyramid. Here, ev-
ery apex of the multi-layered pyramid is on the z-axis, where ev-
ery z coordinate of the apexes can take any real number (including
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Fig. 12 (a) Circumcircle of �OBC and (b) �ABC and �QBC.

negative real numbers).
Now, Theorem 1 can be proved as follows.

Proof of Theorem 1. Let P(Γn; A1, . . . , Ak) be a multi-layered
pyramid with Γn = B1 · · · Bn. Because Γn is convex and Ai

(1 ≤ i ≤ k) are on the z-axis, Lemmas 2 through 5 determine the
positions of Ai(t), Bj(t), F j(t), and Ri j(t) (1 ≤ i ≤ k, 1 ≤ j ≤ n,
0 ≤ t ≤ 2), each of which is continuous for 0 ≤ t ≤ 2. Hence,
each P(Γn; Ai) can be continuously flattened, satisfying all the re-
quired conditions. Moreover, the motions of P(Γ; Ai) (1 ≤ i ≤ k)
synchronize with one another without collisions. �

6. Non-existence of Continuous Flattening

We show that the condition of convexity is necessary for The-
orem 1. The following lemma plays a key role in the proof of
Theorem 2.
Lemma 6. Let BC be a line segment on the xy-plane satisfying

the following two conditions: (1) BC is parallel to the x-axis, and

(2) the circumcircle of �OBC is tangent to the y-axis (Fig. 12 (a)).
Let A be any point on the z-axis, and let Q be a point obtained by

rotating A about the line BC. Q′ denotes the orthogonal projec-

tion of Q on the xy-plane. Then,

∠BOC > ∠BQ′C (8)

(Fig. 12 (b)).
Proof. Because BC is orthogonal to the y-axis, Q′ must be on
the y-axis. Hence, Q′ is outside the circumcircle of �OBC. Thus,
it follows that ∠BOC > ∠BQ′C. �

Note that, since the alternate segment theorem shows ∠OBC =

∠COH in Fig. 12 (a), it is seen that on the xy-plane, a segment BC

parallel to the x-axis satisfies the condition (2) in Lemma 6 if and
only if

2∠OBC = 90◦ − ∠BOC. (9)

Hence, we can apply Lemma 6 to �OBC satisfying (9) on the xy-
plane and any point A on the z-axis; then, we have the inequality
(8). Furthermore, we can uniquely determine ∠BQ′C from the
form of �ABC and the z-coordinate of Q in Lemma 6.

We prove Theorem 2 by illustrating an example.
Proof of Theorem 2. Let Γ = B1B2B3B4B5B6 be a star hexagon
such that

∠B2B3B4 = ∠B4B5B6 = ∠B6B1B2 = 30◦

and

∠B1B2B3 = ∠B3B4B5 = ∠B5B6B1 = 210◦

Fig. 13 Multi-layered pyramid P(Γ; A1, A2) with a star hexagonal base.

(Fig. 13). We consider P(Γ; A1, A2) such that A1 = (0, 0, 1), A2 =

(0, 0,−1), and ∠BjOBj+1 = 60◦ (1 ≤ j ≤ 6).
Let us suppose that there exists a continuous flattening mo-

tion of P(Γ; A1, A2) with rigid radial edges for time t from 0 to
1. Since we cannot stretch any edge during the flattening motion,
|Bj(t)Bj+1(t)| ≤ |BjBj+1| must hold for any t (0 ≤ t ≤ 1).

If A1 and A2 are fixed at the initial positions, then |OBj(t)|
cannot change and ∠Bj(t)OBj+1(t) ≤ 60◦ holds for any j (1 ≤
j ≤ 6). Hence,

∑6
j=1 ∠Bj(t)OBj+1(t) = 360◦ implies that both

∠Bj(t)OBj+1(t) = 60◦ and |Bj(t)Bj+1(t)| = |BjBj+1| (1 ≤ j ≤ 6)
hold for 0 ≤ t ≤ 1, that is, P(Γ; A1, A2) is rigid. Thus, without
loss of generality, at the beginning of any motion of P(Γ; A1, A2)
we can assume that A1 and A2 are either approaching or leaving
each other on the z-axis. Moreover, because of the rigidity of
all radial edges, we can also assume that B1, . . . , B6 continuously
move on the xy-plane synchronizing with the motions of A1 and
A2 such that B1(t), . . . , B6(t) are in anticlockwise order about O

and satisfy
∑6

j=1 ∠Bj(t)OBj+1(t) = 360◦.
Let us consider six triangles �OBjBj+1 (1 ≤ j ≤ 6). Since

2∠OB2 j−1B2 j = 30◦,

90◦ − ∠B2 j−1OB2 j = 90◦ − 60◦ = 30◦

and

2∠OB2 j+1B2 j = 30◦,

90◦ − ∠B2 j+1OB2 j = 90◦ − 60◦ = 30◦

for 1 ≤ j ≤ 3, the triangles �OBjBj+1 (1 ≤ j ≤ 6) satisfy the con-
dition (9), where B7 = B1. Hence, Lemma 6 can be applied for
each of the triangles �A1BjBj+1 (1 ≤ j ≤ 6), which are congruent
to one another.

We fix t > 0 at the beginning of the motion of P(Γ; A1, A2).
We show that ∠Bj(t)OBj+1(t) < 60◦ holds for any j (1 ≤ j ≤ 6).
Then, we choose any j and fix it (1 ≤ j ≤ 6). Now, we con-
sider ∠Bj(t)OBj+1(t) in two cases: |Bj(t)Bj+1(t)| = |BjBj+1| and
|Bj(t)Bj+1(t)| < |BjBj+1|.
(Case I) If |Bj(t)Bj+1(t)| = |BjBj+1| holds, then �A1(t)Bj(t)Bj+1(t)
≡ �A1BjBj+1 holds and we can uniquely determine
∠Bj(t)OBj+1(t) from the position of A1(t). Put θ(t) =

∠Bj(t)OBj+1(t). Lemma 6 shows that θ(t) < ∠BjOBj+1 = 60◦,
because the z-coordinate of A(t) is not equal to the one of A.
(Case II) Even if |Bj(t)Bj+1(t)| < |BjBj+1| holds, |OBj(t)| and
|OBj+1| exhibit the same values as those in Case I. Hence,
by the law of cosines, with �OBj(t)Bj+1(t), it follows that
∠Bj(t)OBj+1(t) < θ(t) < 60◦.
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Fig. 14 Two multi-layered pyramids and a triangular prism.

Since all of the triangles �A1(t)Bj(t)Bj+1(t) (1 ≤ j ≤ 6) are
congruent to one another, we have

∑6
j=1 ∠Bj(t)OBj+1(t) ≤ 6θ(t) <

360◦, which is a contradiction. Hence, a continuous flattening
motion cannot exist for P(Γ; A1, A2). �
Remark 2. By the condition (9), as examples for the proof of

Theorem 2, multi-layered pyramids P = P(Γ2n; A1, A2) with a

star 2n-gonal base (n ≥ 3) can be obtained more generally such

that

∠OB2 j−1B2 j−2 = ∠OB2 j−1B2 j = 45◦ − 90◦

n
, 1 ≤ j ≤ n

and

∠OB2 jB2 j−1 = ∠OB2 jB2 j+1 = 135◦ − 90◦

n
, 1 ≤ j ≤ n,

where B0 = B2n and B1 = B2n+1.

Remark 3. Our method can be applied for more general types

of multi-layered structures, for example, a structure consisting of

two multi-layered pyramids and a prism orthogonal to the xy-

plane, as shown in Fig. 14. The triangular prism can be flattened

according to the motions of horizontally aligned edges obtained

with our method for the top and bottom multi-layered pyramids.

For such structures, we can provide a continuous flattening mo-

tion if the apexes do not collide with one another during the lifting

motions.

However, it appears to be difficult to show the existence (or

non-existence) of a continuous flattening motion for a given

multi-layered pyramid with a non-convex base. We intend to in-

vestigate this problem in the future.
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