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Abstract: In this paper, we study a variation of the map folding problem. The input is a 2× n map with a box-pleated
crease pattern of size 2 × n. Precisely, viewing the crease pattern as a planar graph, its vertices and edges respectively
form the subsets of the vertices set and edges set of the planar graph of the square and diagonal grid. The question is
whether the map can be flat-folded or not. If the answer is yes, then what is the time complexity to make the decision?
Our conclusion is that any locally flat-foldable 2×n map with such a box-pleated crease pattern is globally flat-foldable.
We present linear-time algorithms for both deciding the flat foldability and finding a feasible way of folding.
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1. Introduction

In computational origami, one of the most popular problems
is the flat-folding problem, which asks whether a paper with a
given crease pattern can be flat-folded [1]. A flat-folding refers
to a mapping from the paper to its folded state satisfying that the
image of each crease is a line segment with a dihedral angle mea-
suring either π or −π and the image of each face is a congruent
face. In the folded state, each face is also called a layer. The
paper layers should satisfy certain conditions that inhibit the pa-
per from penetrating itself. The subproblem obtained when we
restrict the input to have a single vertex is called single-vertex flat

foldability (or local flat foldability of a vertex). For the single-
vertex flat foldability, a solution to the decision problem was pro-
posed in Ref. [1]. When a general crease pattern has a global
mountain–valley assignment for which every vertex follows the
single-vertex flat foldability, we say that the entire crease pat-
tern is locally flat-foldable. For the decision of local flat foldabil-
ity of entire crease patterns, a linear-time algorithm was given
in Ref. [2]. Here, we mention two major conditions concerning
angles and assignments of mountain/valley foldings:
Condition 1 (Kawasaki [3], Justin [4]): For a flat-foldable ver-
tex, the alternate angles between its adjacent creases must sum to
π.
Condition 2 (Maekawa [5], Justin [4]): For a flat-foldable ver-
tex, the numbers of related creases assigned to be mountains and
valleys differ by ±2.

On the other hand, for a piece of paper with a general crease
pattern, the global flat foldability, i.e., whether a flat-folded state
really exists, is intractable. Since Bern and Hayes first showed
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that the flat-folding problem is NP-hard in general [2], this prob-
lem has been widely investigated for many variants.

The map folding problem has been studied for almost 40 years
as a simpler version. However, even in this restricted case, there
remain many unsolved problems [6]. In the standard map folding
problem, a map is defined by a rectangular sheet with a square
grid pattern. The sheet is specified as an m × n regular square
grid. Its mountain-valley assignment is defined as a mapping
from the collection of non-boundary edges of every square to the
set {M,V}, where M and V refer to mountain and valley folds,
respectively.

In Ref. [6], they primarily investigated the map folding prob-
lem on a simple folding model, where the crease pattern must
be folded by a sequence of simple simple folds which rigidly ro-
tates a subset of the paper about the supporting line of a subset
of creases. In this simple model, they showed the weak NP-
completeness of the map folding problem for both the maps in
a rectangular shape with diagonal creases and the maps with the
regular square grid pattern but on an orthogonal piece of paper.
Recently, results regarding the hardness have been extended and
strengthened to more general simple folding models in Ref. [7].

When we turn to the general folding model, the map folding
problem asks if a feasible folded state is consistent with a given
crease pattern with/without an MV assignment. This problem re-
flects different aspects than the simple folding model. In Ref. [8],
it was claimed that the map folding problem for a map of size
2 × n with an MV assignment could be solved in O(n9) time. For
a map of size m × n, a method to decide the validity of the over-
lap orders of layers in the final folded state is given in Ref. [9].
Note that, counterintuitively, this problem is quite complicated.
Figure 1 gives the minimal map unable to be flat-folded, which
is of size 2 × 5. However, it is quite difficult to understand why
the map could not be folded, even in practice.

The MV assignment appears to have a significant effect on the
difficulty of the map folding problem. Conversely, it is trivial to
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fold any regular square grid without an MV assignment.
As an extension of the square grids in the map folding problem,

in this paper, we consider the patterns whose creases are only on
a subset of a square grid and the diagonals of the squares, which
are named box-pleating in Ref. [10]. The box-pleated patterns are
popularly used for constructing arbitrary polycubes. Their practi-
cal uses also involve transformational robotics and self-assembly.
In Ref. [10], it was presented that deciding the flat foldability of
box-pleated crease patterns is NP-hard no matter with or without
an MV assignment when m and n are both restricted to be rela-
tively large numbers, at least much larger than an m as 2 in the
current paper.

However, there may exist polynomial-time solutions for the flat
foldability of maps with box-pleated crease patterns when the size
of the maps is restricted. In this context, recently, maps of size
1 × n were investigated by the first two authors [11]. The consid-
ered maps are of size 1× n with box-pleated patterns and without
an MV assignment. They proved that every such map is globally
flat-foldable as long as it is locally flat-foldable. On the other
hand, for the maps with box-pleated patterns of size 3 × 3, in-
stances which cannot be flat-folded exist even when the entire
map is locally flat-foldable. Two representative patterns unable
to be flat-folded are illustrated in Fig. 2 (exemplified in Ref. [12]).
The pattern on the right is not locally flat-foldable. The pattern
on the left is locally flat-foldable, and its inability to be folded is
due to inevitable self-intersections.

In this paper, we invastigate maps of size 2×n with box-pleated
crease patterns (Fig. 3) and with no MV assignment. The main
theorem is as follows:
Theorem 1.1. Let P be a map of size 2 × n with a box-pleated

crease pattern, which involves creases on a subset of a square

grid and the diagonals of the squares, but without an MV as-

signment. Then, any P satisfying local flat foldability can be flat-

folded. Moreover, finding a method to fold P takes linear time.

Fig. 1 Minimal unfoldable map of size 2 × 5. The red solid line segments
indicate mountains, whereas the blue dashed line segments indicate
valleys.

Fig. 2 (Left) Locally flat-foldable but not globally flat-foldable crease pat-
tern. (Right) A crease pattern that is not locally flat foldable although
each vertex individually can be flat folded.

Fig. 3 Instance of a map of size 2 × 10 without MV assignment. Bold lines
indicate the border of P, and thin lines are creases in a crease pattern.

2. Terminology

This section presents definitions of the terms used in this paper.
Our input is a map denoted by P, which is of size 2 × n with

a box-pleated crease pattern. Its box-pleated crease pattern is
defined as a subset of line segments in the square grid with di-
agonals other than the boundary of P (illustrated in Fig. 3). We
distinguish between the front and the back of P. Following the
terminology in Ref. [6], the line segments in the crease pattern
are called creases and the endpoints of creases inside P are called
vertices. Furthermore, a mountain-valley assignment (an MV as-

signment) decides the way that creases are supposed to be folded.
In an MV assignment, every crease is assigned either a mountain

(“M”) or a valley (“V”), which are denoted by red solid lines and
blue dashed lines, respectively, in the illustrations of the present
paper.

We suppose that there exists a right-handed Cartesian coordi-
nate, the unit length of which is equal to the edge length of a unit
square in P, and P is located entirely in the first quadrant with its
lower-left corner located at the origin. Along the horizontal axis,
a square of 2× 2 size centered at point (i, 1) (1 ≤ i ≤ n − 1, i ∈ N)
is defined as the ith section, denoted by S i with its center point
denoted by vi (see Fig. 4 (a)). Note that a pair of adjacent sections
shares an area of size 1 × 2.

The creases incident to vi within S i are labeled hi, ui, bi, uli, bli,
uri, and bri, as illustrated in Fig. 4 (c). Moreover, hi is assigned
to the left of vi. In order to avoid duplicated labeling, the crease
to the right of vi is labeled hi+1. The set of vis is denoted by V8

because up to eight creases can exist around any vi. Similarly,
the set of remaining vertices (i.e., the vertices located at points
(i − 1/2, 1/2) and (i − 1/2, 3/2) for is with 1 ≤ i ≤ n) is de-
noted by V4 because each vertex has up to four incident creases.
In order to prepare the discussion in the following sections, let C

be the set of all creases incident to vertices in V8. Figure 4 (c)
illustrates the creases in C around a single vertex.

Here, P is separated into several parts regarding the horizontal
creases, as illustrated in Fig. 5. Each part is classified into either

Fig. 4 (a) Indexing of sections. (b) Creases in C. (c) Labels of creases
incident to vi.
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Table 1 Thirty-six possible patterns satisfying local flat foldability and associated operations.

Fig. 5 Separation with respect to the horizontal center line. The existence
of creases at locations marked by dashed lines has no effect on the
separation.

a center-line part or a no-center-line part according to the exis-
tence of horizontal creases. A center-line part is a part of consec-
utive sections each with two horizontal creases. A no-center-line
part is a part of consecutive sections with no horizontal crease.
A section joining two such parts is called a connection section,
which shares its horizontal crease with a center-line part.

Our approach to fold P without self-intersection is to find an
MV assignment which enables P to be folded into a zigzag form
(in a rough sense). Specifically, the proposed approach can be
described as follows. While folding P from S 1 to S n−1 in order,
S i+1 is always supposed to be folded to layers above S i or to the
same layer as S i. We refer to this principle as the overlap prin-

ciple. In the following discussion, P is postulated to be locally
flat-foldable.

3. Outline of the Proof

Our proof is based primarily on the separation of P. A suffi-
cient condition for flat foldability can be specified as the conjunc-
tion of three conditions as (1) no self-intersection appears in any
part of P, (2) the overlap principle is satisfied in every part, and
(3) the parts are able to be connected without violating the over-
lap principle. If these conditions can be simultaneously satisfied,
then P is globally flat-foldable. In order to prove Theorem 1.1, we
show that the proposed method of folding ensures the reachability
of such a state as long as P is locally flat-foldable. Specifically, a
general method to fold P into a zigzag form will be described in
detail.

We classify 36 possible locally flat-foldable patterns in a sin-
gle section with respect to C and provide two corresponding fold-
ing methods: direct folding (without unfolding) and combination

folding (a combination of folding and unfolding operations). The
summary in Table 1 concerns certain methods of folding corre-
sponding to all these patterns. Reasonable MV assignments will
be given step-by-step for every pattern and their combinations.
Section 4.1 explains that we can limit the analysis to C, rather
than analyzing all of the creases. In Sections 4.2 and 4.3, we
explain how to specify the MV assignments for every center-line
part and no-center-line part, respectively, in order to flat fold these
parts under the overlap principle. In Section 4.4, we prove that
every connection section can be effectively flat-folded to join a
center-line part and a no-center-line part.

In conclusion, P can be flat-folded if and only if its vertices are
all locally flat-foldable. The decision on whether P can be flat-
folded is solvable in linear time by checking the vertices one by
one locally. The linear-time algorithm provided in Section 5 will
guide a flat-foldable P to its final flat-folded state by specifying
the folding process.

4. Flat Foldability Realized in All Possible Pat-
terns and Connections

We prove Theorem 1.1 in this section. Only the patterns with
respect to C, namely the set of creases around vertices in V8, are
considered in our proof. The reason for this is given at the be-
ginning of Section 4.1. Then, methods to fold arbitrary center-
line parts and no-center-line parts are described in Sections 4.2
and 4.3. Finally, all possibilities of their boundary sections are
discussed in Section 4.4 in the form of exhausting their combina-
tions, each of which encloses a connection section.

4.1 Why Only C is Considered
We consider only the creases in C in our proof. We explain

the reason for this through a proof of the following proposition
by showing that there always exists a valid MV assignment for
the creases not in C and a corresponding feasible overlap of the
layers, even after an MV assignment is defined on the creases in
C.
Proposition 4.1. The flat foldability of P can be decided only by

the creases in set C.

A 1×2 area is shared by a pair of adjacent sections S i and S i+1.
Here, we focus on a single square in the upper row (The bottom
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Table 2 MV assignments and the overlapping order in every folded state. The numbers in ascending
order indicate the corresponding layers from bottom to top.

Fig. 6 Two possible cases for creases around a vertex in V4.

row can be handled in exactly the same manner). There are three
possibilities, corresponding to zero, two, and four creases in the
square. For the case of two creases, the local flat foldability forces
the creases to be on the same line and with the same assignment.
Thus, the entire assignment in the square can be decided by only
the creases in C. The remaining case is such that four creases
exist in the square, two of which are in C and the other two of
which are not in C. We show that, once the assignment of the two
creases in C is decided, the assignment of the remaining creases
can always be decided while maintaining the overlap relation.

There exist eight locally flat-foldable MV assignments in the
square. Only half of these assignments, in which uri is assigned
to be a mountain, as illustrated in Fig. 6, are explained here. The
other assignments can be obtained by interchanging the roles of
M and V . Four triangles separated by creases are identified by
labels Tr, Tu, Tl, and Tb, as in Fig. 6. The numbers shown in the
triangle areas indicate the overlapping orders of these four trian-
gles in the folded states when Tb faces the front up.

In order to maintain the overlap principle, Tr must be placed
above Tl. When M and V are assigned to uri and uli+1, respec-
tively, there exist two possible MV assignments in the square, as
shown by 1-(a) and 1-(b) in Fig. 6. Since Tr is placed above Tl

in both cases, we can choose either MV assignment. In another
case, when M is assigned to both uri and uli+1, there also exist two
possible MV assignments in the square, as shown in 2-(a) and 2-
(b). In order to place Tr above Tl, we choose the assignment of
2-(a) in this case. When the MV assignments are reversed from
the abovementioned cases, 2-(b) will be chosen.

Each end of 1× 2 size of P is also considered in the same man-
ner. We can choose any of 1-(a), 1-(b), and 2-(a) according to the
assignment of the crease in C.

The folds along these creases in a certain section do not cause
intersection with other sections because this section is folded to
different layers from other sections. Moreover, these folds do not
cause self-intersections within a single section. Thus, the first
condition can be satisfied.

Since the overlap principle is required for folding operations
according to C and creases other than C would not violate the
overlap principle, which agree with the latter two conditions, the
correctness of Proposition 4.1 is claimed.

In the following sections, we discuss the flat foldability of dif-
ferent parts. Based on Proposition 4.1, we consider only the
creases in C in the following sections.

4.2 Folding a Center-line Part
As the classification shown in Table 1, a center-line part is han-

dled with direct folding, which is a sequence of only folding and
no unfolding operations.

For each of the 12 possible patterns of a section, we show avail-
able MV assignments and the corresponding overlapping orders
under the overlap principle in Table 2 (We assumed that the area
directly under the left horizontal crease faces the front up in the
upper illustrations and the back of this area faces up in the lower
illustrations). The folding of each section (except for the sections
in Pattern 1-1 ), as indicated in Table 2, places its left section

under its right section. The section in Pattern 1-1 puts the
right half of its left adjacent section in the same layer as the left
half of its right section.

Note that both ends of size 1 × 2 of a center-line part are not
discussed at present. Their folding operations are specified in
Section 4.4 when the connection sections are analyzed.

The above analysis is concluded considering the following
Lemma.
Lemma 4.2. Any center-line part in P can be flat-folded in a

zigzag manner.

Proof. The flat-folded state of a center-line part can be achieved
by applying the above operations to the sections one by one from
left to right. Specifically, each section should be folded as illus-
trated in the upper row in Table 2 when the area directly under the
left horizontal crease faces the front up, otherwise, each section
should be folded as shown in the lower row. �

4.3 Folding a No-center-line Part
This section considers the patterns in a no-center-line part. We

use combination folding to handle these patterns, except for Pat-
tern 4-1 and Pattern 4-2 . Patterns 4-1 and 4-2 are distin-
guished from the other patterns because folding either of these
patterns can be seen as separating P into two individual parts
without any interference with each other. This means that either
part can be handled as a new independent map. We use combi-
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Fig. 7 The no-center-line parts and the method to fold them. The upper
illustration shows an initial flat-folded state of a no-center-line part
and its MV assignment, and the lower illustration shows how to fold
the part.

nation folding instead of direct folding because the no-center-line
part includes only vertical and diagonal creases, which are similar
to the 1 × n patterns introduced in [11]. We extend their method
of achieving the final flat-folded state via a sequence of folds and
unfolds for application to the no-center-line part. Although there
may exist other ways to flat fold this part, we use combination
folding.

The combination folding that we use here initially folds each
section as Pattern 5-2 , and then modifies the sections to the

intended patterns. By using Pattern 5-2 to define an interme-
diate state on the way to the final flat-folded state, the final zigzag
form can be easily achieved.

Let {S i | a ≤ i ≤ b} be a maximal no-center-line part without
Pattern 4-1 or Pattern 4-2 for the same a and b. The

basic idea is to fold every S i initially as to fold Pattern 5-2
with two different MV assignments alternately with respect to i

(see Fig. 7). The MV assignment ensures the initial flat-folded
state, as shown in the upper illustration. The unfolds are then ap-
plied during two phases. The first phase adjusts the sections in
{S i | a ≤ i ≤ b, i is odd} to their actual patterns, whereas the sec-
ond phase adjusts sections in {S i | a ≤ i ≤ b, i is even}. Without
loss of generality, we assume that both a and b are odd.

Now, we present a proposition to state the feasibility of the first
phase. Only the individual sections have to be considered at this
point because their adjacent sections are currently fixed to Pattern
5-2 .

Proposition 4.3. The flat-folded states of Patterns 5-1 , 5-

3 , 5-4 , 5-5 , and 5-6 can always be obtained

from the flat-folded state of Pattern 5-2 while maintaining

the overlap principle.

Proof. The adjustment from Pattern 5-2 to every other pat-
tern is shown in Fig. 8 by introducing the MV assignments and
the corresponding states side by side. A section in Pattern 5-4

only needs a single unfold within its upper half, while the

adjustments to Pattern 5-3 and Pattern 5-6 involve un-
folds along the vertical creases followed by folds along diagonal

Fig. 8 Operations of combination foldings.

creases. Pattern 5-1 requires changing the MV assignment
of the sections right to it because the unfolds along the vertical
creases of this pattern would violate the overlap principle. This
revision can be seen as an alternation of the MV assignments be-
tween sections with odd and even indexes.

The illustration for Pattern 5-5 is omitted because this pat-

tern can be folded with the same operation of Pattern 5-4 and
the succeeding folds along its two diagonal creases, as shown in
Pattern 5-2 , which would not affect the other overlapping
orders in the map. �

The first phase ends when all sections in {S i | a ≤ i ≤ b, i is
odd} are folded. The next objective is to fold the sections in
{S i | a ≤ i ≤ b, i is even} without violating the overlap principle.
For each individual, the folded states of patterns in adjacent sec-
tions have been modified from Pattern 5-2 . Therefore, we
have to consider all possible combinations of the six patterns in
the area covered by the two sections adjacent to S i (a 2×4 portion
with center point vi). In order to handle each S i, we first adjust
S i to a tractable state according to S i−1 and S i+1 and then apply
other folds.

Next, we give the second proposition for the no-center-line part
and discuss all cases in detail in order to prove this proposition.
Proposition 4.4. All possible combinations of two patterns in a

no-center-line part can be flat-folded.

Proof. This proposition is proven by categorizing all cases of
possible combinations in a no-center-line part and listing their
corresponding MV assignments, which lead to flat-folded states.
In addition to the discussion on flat foldability, since we intend to
fold the no-center-line part into a flat state which also obeys the
overlap principle, the method of folding provided here is in fact
an adjustment from the folded state obtained at the first phase to
a flat state based on the real pattern under consideration of the
overlap principle.

We classify 36 (6 × 6) possible combinations into 10 classes
with respect to their performances appearing in the folding, as
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Table 4 Ten classes of combinations involved in the second phase of unfolding the no-center-line part.

Table 3 Ten classes of combinations involved in the second phase.

Case Combinations of patterns (S i−1, S i+1)
1 ({5-1, 5-4}, {5-1, 5-4})
2 (5-2, 5-2)

3
(5-2, {5-1, 5-3, 5-4, 5-5, 5-6}),
({5-1, 5-3, 5-4, 5-5, 5-6}, 5-2)

4 (5-5, 5-5)

5
(5-5, {5-1, 5-3, 5-4, 5-6}),
({5-1, 5-3, 5-4, 5-6}, 5-5)

6 ({5-1, 5-4}, 5-6), (5-6, {5-1, 5-4})
7 ({5-1, 5-4}, 5-3), (5-3, {5-1, 5-4})
8 (5-6, 5-3)
9 (5-3, 5-6)

10 (5-3, 5-3), (5-6, 5-6)

listed in Table 3. For example, four combinations of (5-1, 5-4),
(5-1, 5-1), (5-4, 5-1), and (5-4, 5-4) are categorized into Case 1.
The combination of (5-2, 5-2) is categorized into Case 2, and so
on. We give the corresponding MV assignment for each case on
the basis of the overlap principle.

For cases other than Cases 1, 3, and 5, we define their corre-
sponding folding in the following manner. First, revise S i to the
corresponding assignment, as illustrated in Table 4, and then ap-
ply the same unfolding operation as in the first phase. Note that
the assignments in the upper and lower rows in Table 4 corre-
spond to those before and after the revision, respectively. Fur-
thermore, the illustrated assignments correspond to the case in
which every leftmost area faces the front up. The assignments
are supposed to be reversed when the leftmost area faces the back
up.

The operations for Cases 1, 3, and 5 are as follows.
Case 1: As in the first stage, it is sufficient to perform a triv-

ial unfolding operation on S i, because neither part intersects the
crease near vi.

Case 3: Apply the same operation to Case 2. The only differ-
ence is that when there is no corresponding crease in another part,
the diagonal crease in S i will also be deleted.

Case 5: Apply the same operation as Case 4. Similar to case
3, sometimes unnecessary diagonal creases in S i are also elimi-
nated.

The proof for the proposition 4.4 is complete for the reason that
all the cases are exhausted. �

Finally, Patterns 4-1 and 4-2 are supposed to be han-
dled by direct folding. Figure 9 illustrates the corresponding MV

assignments for handling the case in which the leftmost triangle
faces the front up. When the leftmost triangle faces the back up,
we can simply interchange all of the Ms and Vs to adjust these
values so as to maintain the overlap principle. In both cases, there
exist two optional choices to fold Pattern 4-2 , with the only

Fig. 9 MV assignments for Patterns 4-1 and 4-2 .

difference on which line directs the separation.
After locally folding a section in Pattern 4-1 or Pattern 4-

2 , P can be respectively regarded as two independent parts
joined by vertical creases or two diagonal creases assigned the
same and along the same line.

Now all of the corresponding handlings of the patterns in-
volved in a no-center-line part are described in detail. We present
Lemma 4.5 to reemphasize the flat foldability of a no-center-line
part, although this is a trivial conclusion of Propositions 4.3 and
4.4.
Lemma 4.5. Any no-center-line part in P can be flat-folded in-

dependently.

4.4 Folding a Connection Section
Every connection section has two different kinds of neighbors:

one from a center-line part and the other from a no-center-line
part. In this section, we first consider the possible combinations
of two patterns from a connection section and a no-center-line
part, except for Patterns 4-1 and 4-2 . We then con-
sider the possible combinations of two patterns from a connection
section and a center-line part. The corresponding combinatorial
counts are 96 (16 × 6) and 192 (16 × 12), respectively. Because
both numbers are large, eight and 20 combinations are chosen as
representatives in Tables 5 and 6 based on the symmetry and the
initial state defined for the no-center-line part in Section 4.3. The
details are given along with Propositions 4.6 and 4.7, as follows.
Proposition 4.6. Any two adjacent sections S i and S i+1 belong-

ing to a connection section and a no-center-line part, respec-

tively, can always be folded.

Proof. Only the combinations involving Pattern 5-2 are
taken into consideration. The reason is that the flat-folded state of
the other five patterns can be obtained from the flat-folded state
of Pattern 5-2 while maintaining the overlap principle (Proposi-
tion 4.3). The MV assignments and the flat-folded states for the
possible combinations are given in Table 5, which completes the
proof for Proposition 4.6. �

For another side of the connection section, Proposition 4.7 is
given in the same manner.
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Table 5 MV assignments and overlapping orders in every folded state for the connections of a connection
section and Pattern 5-2.

Table 6 Twenty representative types of connections of a connection section and a center-line part.

Proposition 4.7. Any two adjacent sections S i and S i+1 belong-

ing to a center-line part and a connection section, respectively,

can always be folded.

Proof. Twenty representative combinations for a connection
section with its left neighbor from a center-line part are given
in Table 6. For completeness of the proof, instructions for the
remaining possible combinations are given below. Without loss
of generality, assume that S i is the connection section to be con-
sidered, and the lower-left corner of the 2 × 4 connection faces

the front up. First, for the unlisted patterns from a center-line
part, the flat-folded states of the combinations can be obtained
by folding these patterns in the manner described in Section 4.1,
as illustrated in Table 2. Then, for the unlisted patterns from a
connection section, we have the following.

For Case 1 in Table 6, all combinations involving Pattern 3-
2 can be obtained by assigning its creases hi, uli, ui, bri as

hi, uli, uri, bi in Pattern 3-1 (change the assignments of bi and
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uri if the lower-left corner faces the back up). For Patterns 3-5
and 3-6 , the assignments are specified as the mirrors of

Patterns 3-1 and 3-2 with respect to the centerline.
Similarly, for Case 2, operations for Pattern 3-7 are

achieved by mirroring the cases for Pattern 3-3 (change the as-
signments of ui, uli, uri, and bri if the lower-left corner faces the
back up) with respect to the centerline.

For Case 3, we assign the given MV assignment in the table to
Pattern 3-4 . Any pattern from a center-line part assigned as
in Table 2 can then be easily connected to Pattern 3-4. The rea-
son is that in the left half of Pattern 3-4, there exists no diagonal
crease to cause intersection with its left neighbor section. The
combinations involving Pattern 3-8 can also be handled by
mirroring the cases of Pattern 3-4 with respect to the centerline.

The right half of a connection section is shared by a no-center-
line part. In the MV assignments provided in Table 6, sometimes
the assignments of creases shared by a connection section and
no-center-line part are opposite to the initial assignments we pro-
vided for the no-center-line part in Section 4.3. In such cases,
to keep the overlap principle, we apply the folding operation to
the no-center-line part as if the back of it faces up. The possible
operations are listed in Table 5. �

The symmetric cases, in which S i and S i+1 exchange the parts
to which they belong, can be performed with the same operations
on their back. A summary of Propositions 4.6 and 4.7 is given in
Lemma 4.8.
Lemma 4.8. A connection section can always be flat-folded as

the connection of a no-center-line part and a center-line part.

Since all sections of P can be flat-folded because every part is
folded into a zigzag pattern, no self-intersection would happen.
Hence, any 2 × n map with a box-pleated pattern can be globally
flat-folded as long as its local flat foldability is satisfied.

5. Linear-time Algorithm for Deciding the
Flat Foldability of a Given 2 × n Map

Section 4 presented the folding operations for all parts in P and
proved the equivalence between its global flat foldability and its
local flat foldability. Since linear time is needed in order to de-
termine whether a given crease pattern is locally flat-foldable [2],
the time complexity of deciding the global flat foldability of P is
also linear.

In the remainder of this section, we prove the existence of a
linear-time algorithm for finding a sequence of folding operations
by giving Algorithm 1. We then produce the entire process on a
specific 2 × 15 map illustrated in Fig. 10 (a).

Algorithm 1 requires a series of sections {S i} of a given map
P as the input. The last element of {S i} contains eight parame-
ters, while every other element contains seven. This is because
the shared horizontal creases are assigned to the right-side sec-
tions. These parameters indicate the existence and assignments
of creases in each section. We denote the state of a crease by
an integer in {0, 1, 2, 3} to define its non-existence, existence with
no assignment, the assignment M, and the assignment V, respec-
tively. The output is a sequence of folding operations. Since con-
stant time is required in order to find the corresponding operation
for each section during the computation, this algorithm returns a

Algorithm 1: Linear-time algorithm for computing the folding
process of a given 2 × n map.

result in linear time. Thus, Theorem 1.1 is proven.
Next, we exemplify the folding process on the 2 × 15 map il-

lustrated in Fig. 10 (a).
The first traversal finds that S 8 is in Pattern 4-1 . Thus, the

map is separated into p1 and p2, as illustrated in Fig. 10 (b).
Next, p1 is separated into three parts with respect to the cen-

terline, namely, a center-line part, a connection section, and a
no-center-line part in left-to-right order, as shown in Fig. 10 (c).
The center-line part of p1 is composed by Patterns 1-5 , 1-

4 , and 1-2 . An MV assignment is given to the section
in Pattern 1-5 according to the assignment in the upper row of
Table 2. For sections in Patterns 1-4 and 1-2, the MV assign-
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Fig. 10 Example of size 2 × 15.

ments are given according to the second row because their back
are forced to face upward. Next, the connection section matches
Case 1 in Table 6 and thus is folded similarly (1-5 ( ), 3-1

( )) by first changing Pattern 3-1 to Pattern 3-2 with its creases
hi, uli, ui, bri assigned in the same manner as hi, uli, uri, bi in Pat-
tern 3-1, and, second, mirroring the pattern with respect to the
centerline.

For the no-center-line part, we first fold the part into the initial
state and then revise the creases in the third section, as shown by
Pattern 5-3 in Fig. 8. The final assignment of p1 is shown on
the left-hand side of Fig. 10 (d). The numbers indicate overlap-
ping orders.

For the remaining parts of the map, S 8 is assigned as in
Fig. 10 (e) in order to maintain the overlap principle, while the
MV assignment and the overlapping order of p2 are shown in the
right-hand side of Fig. 10 (d).

The entire MV assignment in Fig. 10 (e) is achieved by joining
p1 and p2. Then, this instance is folded into a final flat-folded
state without self-intersection.

6. Conclusion and Future Work

A variation of map folding, deciding the global flat foldability
of a map with a box-pleated crease pattern of size 2 × n without
any MV assignment, is the focus of the present research. For such
a map, we first presented our analysis of different sorts of vertices
and then applied a classification of all possible patterns to match
these patterns to two distinct operations, along with providing the
corresponding MV assignments. We highlighted our method of
categorization for a diversity of patterns. Above all, our most
valuable finding is that a locally flat-foldable map of size 2 × n is
also globally flat-foldable. In Section 5, we presented algorithms
for both the decision problem and finding a feasible method of
folding.

In approaching the topic of desirable future work, we want to
mention that the authors of Ref. [12] reported that not every lo-
cally flat-foldable 3 × n map with a box-pleated pattern can be

globally flat-folded, but did not give a reason. We believe that
further studies on the characteristics of foldable and unfoldable
maps will be interesting for anyone who intends to comprehend
maps with diagonal creases. Moreover, extensions of instances
of this problem to those with fully defined MV assignments are
expected.
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