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1. Introduction

Given a collection of 2D polygons, a gluing describes a closed
surface by specifying how to glue (a part of) each edge of these
polygons onto (a part of) another edge. Alexandrov’s uniqueness
theorem [1] states that any valid gluing that is homeomorphic to
a sphere and that does not yield a total facial angle greater than
2π at any point, corresponds to the surface of a unique convex 3D
polyhedron (doubly covered convex polygons are also regarded as
polyhedra). Note that the original polygonal pieces might need to
be folded to obtain this 3D surface.

Unfortunately, the proof of Alexandrov’s theorem is highly
non-constructive. The only known approximation algorithm to
find the vertices of this polyhedron [8] has a (pseudopolynomial)
running time really large in n, where n is the total complexity
of the gluing. In particular, its running time depends on n as
Õ(n578.5), and it also depends on the aspect ratio of the polyhe-
dral metric, the Gaussian curvature at its vertices, and the desired
precision of the solution. There is no known exact algorithm for
reconstructing the 3D polyhedron, and in fact the coordinates of
the vertices of the polyhedron might not even be expressible as a
closed formula [7].

Enumerating all possible valid gluings is also not an easy task,
as the number of gluings can be exponential even for a single
polygon [4]. However one valid gluing can be found in polyno-
mial time using dynamic programming [6], [9]. Complete enu-
merations of gluings and the resulting polyhedra are only known
for very specific cases such as the Latin cross [5] and a single
regular convex polygon [6].

The special case when the polygons to be glued together are all
identical regular k-gons, and the gluing is edge-to-edge was re-
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cently studied by the first two authors of this paper [2]. For k > 6,
the only two possibilities are two k-gons glued into a doubly-
covered k-gon, or one k-gon folded in half (if k is even). When
k = 6, the number of hexagons that can be glued into a convex
polyhedron is unbounded. However, for non-flat polyhedra of this
type there are at most ten possible graph structures. For six struc-
tures out of these ten, the gluings realizing them have been found.
For doubly-covered 2D polygons, all the possible polygons and
the gluings forming them have been characterized.

In this paper we continue this study by thoroughly considering
the case of k = 5, i.e., gluing regular pentagons edge to edge.
This setting differs substantially from the case of hexagons, since
it is not possible to produce a flat vertex by gluing regular pen-
tagons. Therefore both the number of possible graph structures
and the number of possible gluings is finite and little enough to
study each one of them individually.

We start by enumerating all edge-to-edge gluings of regular
pentagons satisfying the conditions of the Alexandrov’s Theorem
(Section 3). After that we solve the problem of establishing the
graph structure of the convex polyhedra corresponding to each
such gluing G. Using the existing methods (implementation [10]
of the Bobenko-Izmestiev algorithm [3]), we obtain an approxi-
mate polyhedron P for gluing G. With the help of a computer
program, we generate a certificate that the edges of these approx-
imate polyhedra are present in the sought polyhedra. In partic-
ular, we upper bound the discrepancy in vertex coordinates be-
tween the unique convex polyhedron corresponding to G a given
approximate polyhedron (Theorem 4), which implies a sufficient
condition for the polyhedron to have a certain edge (Theorem 5).
Our computer program checks this condition automatically. For
non-simplicial approximate polyhedra P, to prove that there are
no additional edges present in the sought polyhedra, we resort
to ad-hoc geometric methods, using symmetry arguments and re-
constructing the process of gluing the polyhedron (Section 6).

While the main outcome of this work is the full list of the con-
vex polyhedra that are obtained by gluing regular pentagons edge
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to edge (Section 4), the methods for obtaining it are of indepen-
dent interest and may be applied to other problems of the same
flavour.

2. Preliminaries and Definitions

In this section we review definitions and previous results that
are necessary for the rest of this paper. We start with some basic
notions.

By a polyhedron we mean a three-dimensional polytope, and,
unless stated otherwise, all the polyhedra we are considering are
convex. A doubly-covered convex polygon is also regarded as a
convex polyhedron. A polyhedron is called simplicial if all its
faces are triangles.

Consider an edge e of a polyhedron; and let f1 and f2 be the
two faces of the polyhedron that are incident to e. We call a ver-
tex in f1 or f2 opposite to e if it is not incident to e. If f1 and f2
are triangles, then there are exactly two vertices opposite to e, see
Fig. 1.
Definition 1. Let P be a convex polyhedron. The Gaussian cur-

vature at a vertex v of P equals (2π − ∑t
j=1 α

v
j), where t is the

number of faces of P incident to v, and αvj is the angle at v of the
j-th face incident to v.

Since P is convex, the Gaussian curvature at each vertex of P

is non-negative.
Theorem 1 (Gauss, Bonnet 1848). The total sum of the Gaussian

curvature of all vertices of a 3D polyhedron P equals 4π.
For an example, see Fig. 2 that shows a convex pentahedron

and the values of Gaussian curvature at each of its vertices.
Definition 2. A gluing G is a collection of polygons T1 . . . Tn

equipped with an equivalence relation ∼ on their border describ-
ing how the polygons should be glued to one another.
Definition 3. The polyhedral metric M of a gluing G is the in-
trinsic metric of the simplicial complex corresponding to G: the
distance between two points of the gluing is the infimum of the

Fig. 1 Vertices u1 and u2 are opposite to edge e of polyhedron P.

Fig. 2 Gaussian curvature of the vertices of a convex pentahedron.

lengths of the polygonal lines joining the points such that each
vertex of it is within one of the polygons T1 . . .Tn.

We denote the distance between points p, q of G by |pq|.
Definition 4. Gluing G (and the polyhedral metric corresponding
to it) is said to satisfy Alexandrov’s conditions if:
a) the topological space produced by G is homeomorphic to a

sphere, and
b) the total sum of angles at each of the vertices of G is at most

2π.
Theorem 2 (Alexandrov, 1950, [1]). If a gluing G satisfies

Alexandrov’s conditions then this gluing corresponds to a unique

convex polyhedron P(G): that is, the polyhedral metric of G and

the shortest-path metric of the surface of P(G) are equivalent.

Correspondence to a polyhedron described in this theorem in-
tuitively means that P(G) can be glued from polygons of G in
accordance with relation ∼. Note that polygons of G need not
correspond to faces of P(G).

Recall that a chord of a polygon Q is any segment connecting
two points on the border of Q that lies completely inside Q.
Definition 5. For a polyhedron P, a net of P is a gluing G =

(T1 . . .Tn,∼) of P together with the set of chords of the polygons
Ti that do not intersect each other except possibly at endpoints.
Those chords represent creases, i.e., lines along which P should
be folded from this polygon.

3. Gluing Regular Pentagons Together

In this section, we describe how to enumerate all the edge-to-
edge gluings of regular pentagons.

3.1 How Many Pentagons Can We Glue and which Vertices
Can We Obtain?

Let P be a convex polyhedron obtained by gluing several reg-
ular pentagons edge to edge. Vertices of P are clearly vertices of
the pentagons. The sum of facial angles around a vertex v of P

equals 3π/5 (the interior angle of a regular pentagon) times the
number of pentagons glued together at v. Since the Gaussian cur-
vature at v is in (0, 2π), the number of pentagons glued at v can be
either one, two, or three. This yields the Gaussian curvature at v
to be respectively 7π/5, 4π/5, or π/5.

Note that, as opposed to the case of regular hexagons, it is not
possible to produce a vertex of curvature 0 (which would be a flat
point on the surface of P) by gluing several pentagons. Therefore
all the vertices of the pentagons must correspond to vertices of P.
Proposition 3. Suppose P is a convex polyhedron obtained by

gluing edge-to-edge N regular pentagons. Then: (a) P has

2 + 1.5N vertices in total. In particular, N must be even. (b)

N is at most 12.

Proof. From the above discussion, the vertices of P can be sub-
divided into three types according to their Gaussian curvature:
(1) the ones of curvature 7π/5, (2) 4π/5, and (3) π/5. Let us de-
note the number of vertices type 1, 2 and 3, respectively, as x, y, z.
Then we have the following system of two equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩

7x + 4y + z = 20

x + 2y + 3z = 5N

The first equation is implied by the Gauss-Bonnet theorem; the
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Fig. 3 Polyhedra glued from two regular pentagons and their nets. Here and further black lines are creases
along which the polyhedron is folded. Dark red lines always denote borders between the polygons
of the gluing.

Fig. 4 Polyhedra glued from four regular pentagons and their nets.

second one is obtained by counting the vertices of pentagons,
since each polyhedron vertex of type 1, 2 and 3 corresponds to
respectively one, two or three pentagon vertices.

(a) By summing up the equations after multiplying the first one
by 0.1 and the second one by 0.3, we obtain that x + y + z =

2 + 1.5N.
(b) Since x, y, z are non-negative integers, from the first equa-

tion we derive that the maximum number of vertices is obtained

when x = 0, y = 0, z = 20. This assignment corresponds to
N = 12 by the second equation. �

3.2 Enumerating All Possible Gluings
We used a computer program to list all the non-isomorphic glu-

ings of this type. Our program is a simple modification of the one
that enumerates the gluings of hexagons [2]. The gluings are de-
picted in Figs. 3 (c), 3 (d), 4 (d), 4 (e), 4 (f), 5 (d), 5 (e), 5 (f).
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Fig. 5 Polyhedra glued from six or more regular pentagons and their nets.

4. A Complete List of All Shapes Obtained by
Gluing Pentagons

Below is the list of all polyhedra that can be obtained by gluing
regular pentagons. For those polyhedra that are simplicial, their
graph structure is confirmed by applying the method of Section 5,
for the others the proof is geometric and is done in Section 6.
• 2 pentagons:
– doubly-covered regular pentagon, see Fig. 3 (a), Fig. 3 (c).
– simplicial hexahedron with 5 vertices (3 vertices of degree

4, and 2 vertices of degree 3), see Fig. 3 (b), Fig. 3 (d).
• 4 pentagons:
– simplicial dodecahedron with 8 vertices (2 vertices of de-

gree 5 and 6 vertices of degree 4), see Fig. 4 (a), Fig. 4 (d).
– octohedron with 8 vertices (4 vertices of degree 4 and 4 ver-

tices of degree 3) and 4 quadrilateral and 4 triangular faces.
It is a truncated biprism, see Fig. 4 (b), Fig. 4 (e).

– hexahedron with 8 vertices each of degree 3 and 6 quadri-
lateral faces. This is a parallelepiped, see Fig. 4 (c),
Fig. 4 (f).

Note that P4,1, P4,2, P4,3 can be glued from a single common
polygon by altering the relation ∼.
• 6 pentagons: simplicial decaoctohedron (18-hedron) with 11

vertices (5 vertices of degree 6, 6 vertices of degree 4), see
Fig. 5 (a), Fig. 5 (d).

• 8 pentagons: simplicial icositetrahedron (24-hedron) with 14
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Fig. 6 Plane Π1 tangent to Br(ui), Br(u j), Br(ua).

vertices (2 vertices of degree 6, 12 vertices of degree 5), see
Fig. 5 (b), Fig. 5 (e).

• 12 pentagons: regular dodecahedron with 20 vertices of de-
gree 3 and 12 pentagonal faces, see Fig. 5 (c), Fig. 5 (f).

We now proceed with a description of how to determine the
graph structures of the polyhedra in this list. We separately con-
firm the presence of the edges (Section 5) and prove that no addi-
tional edges are present in the quadrilateral faces of P4,2 and P4,3

(Section 6).

5. An Algorithmic Method to Verify the Graph
Structure of a Glued Polyhedron

Consider a polyhedral metric M that satisfies the Alexandrov’s
conditions and thus corresponds to a unique polyhedron P. Sup-
pose we have a polyhedron P that approximates P. That is, ver-
tices of P are in one-to-one correspondence with the cone points
of M (and thus with the vertices of P). In this section we show
how to check whether the graph structure of P contains all the
edges of P.

We will be using the following notation: v1, v2, v3, . . . for the
vertices of P; u1, u2, u3, . . . for the corresponding vertices of P;
V , E, F for the number of vertices, edges and faces of P respec-
tively; D for the maximum degree of a vertex of P; L for the
length of the longest edge of P; Br(u) for the ball in R3 of radius
r centered at the point u.

We also know the lengths of edges and distances between ver-
tices of P since those are lengths of shortest paths between cone
points of metric M. Let the discrepancy of an edge uiu j of P

be the absolute value of the difference between the length of that
edge and the distance between the corresponding vertices vi and
v j of P. Let maximum edge discrepancy μ of P be the maximum
discrepancy for all edges of P.

Similarly, for any facial angle u juiuk of P, let discrepancy of
this angle be the absolute value of the difference between the val-
ues of u juiuk and of the angle between the corresponding shortest
paths in P; let the maximum angle discrepancy γ of P be the
maximum discrepancy for all the facial angles of P.

We base our check on the following theorem.
Theorem 4. Suppose μ is the maximum edge discrepancy be-

tween P and P, γ is the maximum angle discrepancy between P

and P, D is the maximum degree of a vertex of P. If Dγ < π/2,

then each vertex of P lies within an r–ball centered at the corre-

sponding vertex of P, where

r = E2 · L · 2 sin(Dγ/2) + Eμ. (1)

We defer its proof to Section 5.1, and for now we focus on
describing our check, using the theorem as a black box.

Let uiu j be an edge of P and let ua, ub be the two vertices of P

opposite to the edge uiu j (see Fig. 1). We want to check that there
does not exist a plane intersecting all four r–balls centered at ui,
u j, ua, ub respectively.

Assume without loss of generality that the plane passing
through ua, ui, u j is not vertical and that P lies below that plane
(otherwise apply a rigid transformation to P so that it becomes
true). Note that we always can do this since P is convex.

Consider three planes Π1, Π2, Π3 tangent to Br(ui), Br(u j),
Br(ua) such that:
• Π1 is below Br(ui), Br(u j) and above Br(ua),
• Π2 is below Br(ui) and above Br(u j), Br(ua),
• Π3 is below Br(u j) and above Br(ui), Br(ua).

Theorem 5. If ub lies below Π1, Π2 and Π3 and the distance

from ub to each of the planes Π1, Π2 and Π3 is greater than r,

then there must be the edge viv j in P.

An example can be seen in Fig. 6: planeΠ1 is tangent to Br(ui),
Br(u j), Br(ua). Point ub,1 is below Π1, and point ub,2 is above Π1,
the distance from each of the points to Π1 is greater than r.

To prove this theorem, we need the following lemma.
Lemma 6. Given two disks Br(uleft), Br(uright) in R2; points uleft,

uright lie on x axis. Given a point u, xu > xuright , yu < 0. If u lies

below the common tangent of the disks that is above Br(uleft) and

below Br(uright), than there is no line passing through Br(uleft),
Br(uright), and u.

The example for this lemma can be seen in Fig. 7. Point u1 is
above the tangent, so there may be a line passing through it and
the two disks. Point u2 is below the tangent, so no lines through
Br(uleft), Br(uright), u are possible.
Proof. Consider the set of points in R2 covered by all lines pass-
ing through Br(uleft), Br(uright). We are looking for the lower bor-
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Fig. 7 An example for Lemma 6.

Fig. 8 Common tangent of disks is lower than any line passing through
them.

der of it which corresponds to the lowest line passing through
these disks.

Consider a line passing through the disks. If it is not tangent to
Br(uleft) from above, it can be made lower by raising its intersec-
tion with Br(uleft), see Fig. 8 (a). If it is not tangent to Br(uright)
from below, it also can be made lower by lowering its intersection
with Br(uright), see Fig. 8 (b).

Therefore, any line passing through Br(uleft), Br(uright) is higher
than the common tangent of these disks when x > xuright . �
Proof of Theorem 5. We can assume that points ui, u j lie on y
axis, see Fig. 6. For each pair (x, y) we want to find minimum z

such that there is a plane passing through Br(ui), Br(u j), Br(ua),
and (x, y, z). Let us consider three cases: (1) yui ≤ y ≤ yu j , (2)
y ≤ yui , (3) yu j ≤ y.

Consider case 1. Project everything on plane y = 0. The
projections of Br(ui) and Br(u j) coincide, and a plane λ passing
through these disks can be lowered by matching the projections
of its intersections with the disks, thus making projection of λ a
line. Now we can apply Lemma 6 to the projection to get plane
Π1 from the statement of the Theorem.

Consider case 2. Project everything on a plane orthogonal to
the segment u jua. Using a similar argument, applying Lemma 6
we get plane Π2 from the statement. Case 3 is symmetric to case
2 and gives us plane Π3.

Therefore, all points of Br(ub) should lie below the planes Π1,
Π2, Π3, which yields the condition of distance between ub and the
planes being greater than r. �

The check suggested in Theorem 5 requires O(1) time, and has
to be performed once for every edge uiu j of P. This implies the
following.

Theorem 7. Given a polyhedral metric M satisfying Alexan-

drov’s conditions and an approximation P for the polyhedron P
that corresponds to M, there is a procedure to verify for each

edge of P if it is present in P. The procedure answers “yes” only

for those edges that are present in P, and it answers “inconclu-

sive” if the approximation P is not precise enough. The procedure

requires time O(E).
Inconclusive answers occur if a plane exists that intersects all

four r–balls even though there is an edge connecting two of the
vertices. In such case, precision has to be increased by replac-
ing P with a polyhedron that has a smaller discrepancy in edge
lengths and values of angles and repeating the procedure.

Theorem 7 yields that if P is simplicial we can in time O(E)
verify whole its graph structure without any additional effort.
However, if there are faces in P with four or more vertices, the
absence of the edges that are diagonals of these faces has to
be proved, which requires some creativity. For non-simplicial
shapes glued from pentagons such proofs are given in Section 6.

To obtain polyhedron P one can use the algorithm developed
by Kane et al. [8] or the one by Bobenko, Izmestiev [3]. Each
of them outputs a polyhedron P which is an approximation of P.
In this work we used the implementation of the latter presented
by Sechelmann [10]. It gave us approximation with μ ∼ 10−7,
γ ∼ 10−6, L ∼ 2.5. These parameters allowed for r ∼ 10−3, which
was enough to verify the presence of all the suggested edges.

To do so, we developed a program that checks the condition of
Theorem 5. Its source code can be found in our bitbucket reposi-
tory *1.

5.1 Proof of Theorem 4
We now proceed with the proof of Theorem 4. To prove it, we

need the following lemma.
Lemma 8. Let pq, pq′ be line segments in R3, |pq| = �. If there

are two real numbers ε, θ with ε > 0 and 0 < θ < π2 such that

� − ε ≤ |pq′| ≤ � + ε and �qpq′ ≤ θ,

then |qq′| ≤ 2� sin θ2 + ε. (2)
Proof. pq′ can be obtained from pq, as shown in Fig. 9, by a
composition ρ ◦ τ of
( 1 ) rotation ρ around p by an angle at most θ,
( 2 ) homothety τ with center p and ratio λ, where λ is some real

number with �−ε
�
≤ λ ≤ �+ε

�
.

First, it is clear that |ρ(q), τ(ρ(q))| ≤ ε, since τ is defined so as

*1 bitbucket.org/boris-a-zolotov/diplomnaia-rabota-19/src/

master/praxis/haskell
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to add not more than ε to a segment of length �. Now we estimate
dist(q, ρ(q)). It is at most � · 2 sin(θ/2), which is the length of the
base of an isosceles triangle with sides equal to � and angle at the
apex θ.

Combining the above estimations with the triangle inequality
concludes the proof. �
Proof of Theorem 4. Place P and P in such a way that
( 1 ) a pair of their corresponding vertices, u1 in P and v1 in P,

coincide,
( 2 ) a pair of corresponding edges, e′ incident to u1 in P and e

incident to v1 in P, lie on the same ray, and
( 3 ) a pair of corresponding faces, f ′ in P incident to u1 and e′

and f in P incident to v1 and e, lie on the same half-plane.
Consider a pair of corresponding vertices, u in P and v in P. In

order to estimate |uv| consider a shortest path π1 = u1w
′
1w
′
2 . . . w

′
ku

in the graph structure of polyhedron P. It is comprised of edges
of P and is not the geodesic shortest path from u1 to u. Vertices of
π1 correspond to the vertices of another path π2 = v1w1w2 . . . wkv

in P. Since π1 is a simple path, it contains at most E edges and
therefore its total length is at most EL.

We now focus on the paths themselves, not on the polyhedra.
Path π2 can be obtained from π1 by a sequence of changes of
edge directions (see Fig. 10, Fig. 11 (a)) and edge lengths (see
Fig. 11 (b)). Let us estimate by how much endpoint u of path
π1 can move when this sequence of changes is applied.

Denote w′0 � u1, w0 � v1 and assume that for each j = 1, . . . , i
edge w′j−1w

′
j is parallel to w j−1w j. Then, by the triangle inequal-

ity, the angle α between w′iw
′
i+1 and wiwi+1 is at most Dγ, see

Fig. 10. Rotate the path w′i . . . w
′
ku around w′i by angle α so w′iw

′
i+1

Fig. 9 After a segment is rotated by at most θ and its length changed by at
most ε, its endpoint q moves by at most � · 2 sin θ2 + ε.

Fig. 10 The angle between the edge of P and the edge of P is less thanDγ.

Fig. 11 Illustration for the proof of Theorem 4: (a) Rotation by the angle less than Dγ is applied to the
path w′i . . . w

′
k . (b) The edge w′iw

′
i+1 is being lengthened or shortened by not more than μ.

and wiwi+1 become parallel.
Distance |w′iu| is at most EL, so, by Lemma 8, every time we

apply such rotation, the endpoint u of path π1 moves by at most
EL · 2 sin(Dγ/2). Since there are at most E vertices in the path
and E rotations are applied, the endpoint u moves by at most

E2 · L · 2 sin

(Dγ
2

)
. (3)

Now that the directions of all the edges in path π1 coincide with
the directions of the edges in path π2, we can make the lengths
of corresponding edges match. If the length of a single edge of a
path in P is changed by at most μ, and other edges are not changed
(as shown in Fig. 11 (b)), then the end of the path also moves by
not more than μ. Therefore after we adjust the length of all the
edges, the endpoint u of path π1 moves by at most E · μ. (4)

Combining (3) and (4) implies that in total point u moved by at
most

E2 · L · 2 sin(Dγ/2) + Eμ. (5)

This completes the proof. �

6. Geometric Methods to Determine Graph
Structure

In this section we give the last part of the proof that the poly-
hedra corresponding to the gluings listed in Section 4 have the
same graph structure as the polyhedra listed in the same section.
That is, we prove that quadrilateral faces of P4,2, P4,3 correspond
to quadrlateral faces of P4,2, P4,3, i.e., that certain edges are not
present in P4,2, P4,3.

6.1 Quadrilateral Faces of P4,2

Recall that P4,2 is the polyhedron that corresponds to the glu-
ing G4,2 (see Fig. 4 (e)). Let A, B, . . . ,H denote the vertices of
G4,2, see Fig. 13. We have already established by the methods of
Section 5 that P4,2 has edges that are shown in the net in Fig. 4 (e)
(black lines). We now prove the following.
Theorem 9. For the polyhedron P4,2 = P(G4,2), each of

the 4-tuples of vertices (G,H,C,D), (A, B,H,G), (E, F,C, B),
(A,D, F, E) forms a quadrilateral face of P4,2.

Proof. Observe first that there are two vertical planes such that
P4,2 is symmetric with respect to both of them: (1) the plane
ζ that passes through edge GH (the common side of two pen-
tagons), and the midpoints M1, M2, M3 of edges AD, EF, BC

respectively (see Fig. 12); and (2) the plane ζ′ that passes through
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Fig. 12 P4,2 is symmetric with respect to 2 vertical planes, which yields
four quadrilateral faces.

Fig. 13 The net of P4,2.

Fig. 14 P4,3 is symmetric with respect to the plane EACG. There are six
faces which are all parallelograms.

edge EF and the midpoints of edges AB, GH and DC. Indeed,
polyhedron P4,2 is symmetric with respect to plane ζ, since the
segment HM2 cuts in half the pentagon EFCHB (colored orange
in Fig. 12 and Fig. 13), and so does the segment GM2 does with
pentagon FEAGD (colored yellow in Fig. 12 and Fig. 13). The
argument for the plane ζ′ is analogous.

Suppose for the sake of contradiction that BF is an edge of
P4,2. Then segment EC must also be an edge due to the sym-
metry with respect to plane ζ. However, segments BF and EC

cross inside the pentagon EFCHB and thus cannot be both the
chords of the net of P4,2. We arrive at a contradiction. By the
same argument EC cannot be an edge of P4,2. Therefore EFCB

is a quadrilateral face of P4,2.
The existence of quadrilateral faces GHCD, ABHG, ADFE is

implied by a symmetric argument. This completes the proof. �

6.2 Quadrilateral Faces of P4,3

Polyhedron P4,3 is the polyhedron that corresponds to the glu-
ing G4,3 (see Fig. 4 (f)). Again let A, B, . . .H denote the vertices
of G4,3, see Fig. 15. The chords shown in the net on Fig. 4 (f)

Fig. 15 The net of P4,3.

(black lines) are already proven to be corresponding to the edges
of P4,3. We now prove the following.
Theorem 10. For the polyhedron P4,3 = P(G4,3), each of

the 4-tuples of vertices (E, A, B, F), (E, A,D,H), (C,G, F, B),
(C,G,H,D), (A, B,C,D), (E, F,G,H) forms a quadrilateral face

of P4,3. In particular, each of these faces is a parallelogram.

Proof. We show that there is a convex polyhedron with the net
as in Fig. 15 that satisfies the claim. By Alexandrov’s theorem
such polyhedron is unique and is exactly P4,3.

The pentagon EAFHA (colored green in Fig. 15) is folded
along its diagonals EF and EH and glued along its edge EA. We
use one degree of freedom to place it so that it is symmetric with
respect to the plane through EAM1, where M1 is the midpoint of
HF. Let us now take another pentagon AFBDH and glue one
of its vertices to A. Place this pentagon in a way that the plane
ADB is parallel to the plane EHF (see the orange pentagon in
Fig. 15). Now we glue these two pentagons along the edges AF

and AH without changing the position of the triangle ADB. Since
�FEA+�EAF+�FAB = π, the points E, A, B, F are coplanar and
form a parallelogram. By analogous arguments, EADH, CGFB,
and CGHD are parallelograms as well.

It is easy to see that the shape we just obtained by gluing the
pentagons EAFHA and AHDBF is still symmetric with respect
to the plane EAM1, and the planes EHF and ADB are parallel.

Now let us show that points H,D, B, F are coplanar and form a
square HDBF. Indeed, all of its sides have equal length as sides
of a regular pentagon, and it has an axis of symmetry passing
through the midpoints M1 and M2 of its opposite sides. Now
if we glue the two halves of the polyhedron along this com-
mon square, the triangles CDB and ADB will be coplanar, since
�CM2M1 = �EM1M2 and �EM1M2 + �M1M2A = π.

Since |AD| = |DC| = |CB| = |BA| as diagonals of a regular
pentagon, ADCB is a rhombus. By a similar argument, EHGF is
a rhombus as well. This completes the proof. �
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