
Electronic Preprint for Journal of Information Processing Vol.28

Regular Paper

Hardness of Reconfiguring Robot Swarms with Uniform
External Control in Limited Directions

David Caballero1 Angel A. Cantu1 Timothy Gomez1 Austin Luchsinger1,a)

Robert Schweller1 TimWylie1

Received: January 1, 2020, Accepted: September 10, 2020

Abstract: Motivated by advances in microscale applications and simplistic robot agents, we look at problems based
on using a global signal to move all agents when given a limited number of directional signals and immovable geome-
try. We study a model where unit square particles move within a 2D grid based on uniform external forces. Movement
is based on a sequence of uniform commands which cause all particles to move 1 step in a specific direction. The 2D
grid board additionally contains “blocked” spaces which prevent particles from entry. Within this model, we investi-
gate the complexity of deciding 1) whether a target location on the board can be occupied (by any) particle (Occupancy
problem), 2) whether a specific particle can be relocated to another specific position in the board (Relocation problem),
and 3) whether a board configuration can be transformed into another configuration (Reconfiguration problem). We
prove that while occupancy is solvable in polynomial time, the relocation and reconfiguration problems are both NP-
Complete even when restricted to only 2 or 3 movement directions. We further define a hierarchy of board geometries
and show that this hardness holds for even very restricted classes of board geometry.

Keywords: robot motion planning, computational complexity, block puzzle

1. Introduction

The tilt model, proposed by Becker et al. [5], has foundations
in classical robot motion planning. This model consists of a 2D
grid of open and blocked spaces, called the “board”, along with
a set of unit square pieces/tiles placed at open board locations.
A sequence of “tilts” pushes all the board pieces maximally in a
specified cardinal direction. A sequence of such tilts transforms
the initial board configuration into a new configuration. Some
natural computational problems related to this model are those
of occupancy, relocation, and reconfiguration. Occupancy is the
problem of determining if there exists a sequence of tilts such that
a specific, initially empty, board location may be occupied by a
particle on the board. Relocation is the problem of whether a se-
quence of tilts exists to relocate a specific tile from location a to
location b. Reconfiguration asks if a sequence of tilts exists to
transform board configuration A to board configuration B (where
each configuration specifies the location of all tiles on the board).
These problems were recently all shown to be PSPACE-Complete
(in 4-directions) [2].

Here, we discuss a variant of this model (introduced in Ref. [4])
in which particles only move 1 step per tilt in the specified direc-
tion, rather than maximally. Figure 1 shows a simple example.
We further consider these problems with limited usable directions
(e.g., only tilting down and right), as well as considering the ef-
fect of limiting the complexity of the geometry of the open spaces

1 The University of Texas Rio Grande Valley, Edinburg, Texas 78539,
USA

a) amluchsinger@gmail.com

of the board. For example, one limited type of geometry is that in
which the open spaces form an “x/y-monotone” shape.

1.1 Previous Work
The problems of Occupancy, Relocation, and Reconfiguration

were first studied in Ref. [5] in the full tilt model. In this work, the
authors showed NP-hardness for the Occupancy Problem. Soon
after, the authors of Ref. [7] showed that finding the minimum
move sequence for reconfiguring one configuration to another
is PSPACE-Complete. Additional algorithmic, complexity, and
logic work was done in Ref. [6]. All of these results used only
1 × 1 pieces. Later work in Ref. [1] relaxed the constraint on
tile size and showed the Relocation and Reconfiguration Prob-
lems were PSPACE-Complete when only a single 2 × 2 poly-
omino is allowed. Recent work strengthened these results and
showed PSPACE-Completeness for all three problems even when
only allowing 1 × 1 pieces [2]. Additional work has focused
on the application of the tilt model for the assembly of general
shapes [8], [10], [11], including universal constructors [1], [2],
and sorting polyominoes [9].

1.2 Our Contributions
We investigate some natural questions related to these prob-

lems and seek to find simple versions that are still computation-
ally intractable. We remove the requirement for tiles to slide
maximally and focus on unit movements as in Ref. [4]. In this
model, the occupancy problem is solvable in polynomial time

This research was supported in part by National Science Foundation
Grant CCF-1817602.

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Table 1 An overview of results. The items in column Problem list the prob-
lems explored in this model. Direct. indicates how many directions
of movement are allowed for the result. For the case of 2 directions
we consider orthogonal directions. Geometry describes the type
of board geometry used for the reduction (or allowed by the algo-
rithm). The Result column shows the complexity of the problem
with the theorem being found in column Theorem.

Problem Direct. Geometry Result Theorem
Occupancy Any All P Thm. 3.1
Relocation 2, 3 Monotone NP-Complete Thm. 5.1

Reconfiguration 2 Connected NP-Complete Thm. 6.1

(Theorem 3.1), so we focus on the Relocation and Reconfigu-
ration problems. We show intractability based on restricted di-
rections for both reconfiguration and relocation. We show that
the Relocation problem is NP-Complete even when limited to
monotone board geometry (Theorem 5.1) and the Reconfigura-
tion Problem is NP-Complete when limited to Connected boards
(Theorem 6.1). A summary of our results is shown in Table 1.

2. Preliminaries

Board. A board (or workspace) is a rectangular region of the 2D
square lattice in which specific locations are marked as blocked.
Formally, an m × n board is a partition B = (O,W) of {(x, y)|x ∈
{1, 2, . . . ,m}, y ∈ {1, 2, . . . , n}} where O denotes a set of open lo-
cations, and W denotes a set of blocked locations- referred to as
“concrete.” We classify the different board geometries according
to the following hierarchy:
• Connected: A board where the set of open spaces O is a con-

nected shape.
• Simple: A connected board is simple if O has genus-0, mean-

ing that the set of open spaces is a shape without holes.
• Monotone: A simple board where O is either horizontally or

vertically monotone.
• Convex: A monotone board where O is both horizontally

and vertically monotone.
• Rectangular: A convex board where O is a rectangle.

Configurations. A configuration is an arrangement of tiles
placed on open locations of a given board. Formally, a tile is a
labeled unit square centered on a non-blocked point on a given
board. A configuration C = (B, P = {P1 . . . Pk}) consists of a
board B and a set of non-overlapping tiles P that each do not
overlap with the blocked locations of board B.
Step. A step is a way to turn one configuration into another by
way of a global signal that moves all tiles in a configuration one
unit in a direction d ∈ {N, E, S ,W}when possible without causing
an overlap with a blocked position or another tile. Formally, for a
configuration C = (B, P), consider the translation of all tiles in P

by 1 unit in direction d. If no overlap with blocked board spaces
occurs, then the new configuration is derived by first performing
this translation. On the other hand, for each tile for which the
translation causes an overlap with a blocked space, temporarily
add these tiles to the set of blocked spaces and repeat. Once the
translation induces no overlap with blocked spaces, execute the
translation of the remaining non-blocked tiles to arrive at the new
configuration. If all tiles are eventually marked as blocked spaces,
then the step transition does not change the initial configuration.

We say that a configuration C can be directly reconfigured into

Fig. 1 An example step sequence. The initial board configuration followed
by the resulting configurations after an N step, E step, and then final
E step. So, the sequence to get from the initial state to the final state
in this figure is 〈N, 2E〉.

configuration C′ (denoted C →1 C′) if applying one step in some
direction d ∈ {N, E, S ,W} to C results in C′. We define the rela-
tion→∗ to be the transitive closure of →1 and say that C can be
reconfigured into C′ if and only if C →∗ C′, i.e., C may be recon-
figured into C′ by way of a sequence of step transformations.
Step Sequence. A step sequence is a sequence of steps which can
be inferred from a sequence of directions D = 〈d1, d2, . . . , dk〉;
each di ∈ D implies a step in that direction. For simplicity, we
often just refer to the sequence of directions from which that se-
quence was derived. Given a starting configuration, a step se-
quence corresponds to a sequence of configurations based on the
step transformation. Note: As a shorthand, when sequential steps
di, di+1, . . . , di+n in a sequence are all in the same direction, we
simply annotate those steps with n ∗ d (e.g. 〈N,N,N〉 is written as
〈3N〉). An example is shown in Fig. 1.

2.1 Problem Definitions
In this paper we consider the following three problems under

the step transformation. In subsequent theorem statements we
will state the complexity of these problems “under the step trans-
formation” to help compare these results with work done “under
the tilt transformation”.

Occupancy. The occupancy problem asks whether or not a
given location can be occupied by any tile on the board. For-
mally, given a configuration C = (B, P) and a coordinate e ∈ B,
does there exist a C′ such that C →∗ C′ where C′ = (B, P′) and
∃p ∈ P′ that contains a tile with coordinate e?

Relocation. The relocation problem asks whether a specified
tile can be relocated to a particular position. That is, given a con-
figuration, a specific tile within that configuration, and a transla-
tion of that tile, does there exist a sequence of steps which moves
the original tile to its translation?

Reconfiguration. The reconfiguration problem asks whether a
configuration can be reconfigured into another. Formally, given
two configurations C = (B, P) and C′ = (B, P′), does C →∗ C′?.

3. Occupancy

Theorem 3.1. The occupancy problem under the step transfor-
mation is in P when using only 1 × 1 tiles regardless of direction
limitations. In particular, the problem is solvable in O(|B|) time,
where |B| denotes the number of positions on the input board B.
Proof. Perform a breadth-first-search from the goal location to
determine if any position containing a tile is reachable by way of a
sequence of unit distance steps between north/south or east/west
connected open locations. If no tiled position is reachable, the
goal position is clearly not occupiable. If there is a reachable tile,
consider the closest such tile. The shortest path connecting this

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

tile to the goal location yields a tilt sequence that is guaranteed
to place the tile at the goal, as the only way for it to be blocked
would require another tile to move into position ahead of it along
the shortest path, contradicting the claim that the first tile was the
closest to the goal position. Thus, the occupancy problem can be
solved in O(|B|) time. �

4. NP-Membership with Limited Directions

In this section we prove NP membership for the relocation and
reconfiguration problems when restricting steps to two orthogo-
nal directions. The directions we consider, south and east, can
be defined as the set d = {S , E}. Therefore, tiles can only move
to a position that is south, east or southeast of the starting spot.
We consider these directions since the case when the directions
are opposite each other is solvable in polynomial time. For three
directions we use west, south, and east, which can be represented
by the set d = {W, S , E}. The following will consider a configura-
tion with n tiles and a board of size l × w.

Membership comes from the polynomial upper-bound on the
length of a move sequence using limited directions.
Lemma 4.1. For any two configurations C and C′, if C →∗ C′

through a sequence of south and east steps, there exists a step se-
quence S of length O(n(l + w)) using only those two directions
such that applying S to C results in C′.
Proof. Consider a tile t at location p in C and at p′ in C′, the
maximum distance between p and p′ is l+w. Any step that moves
t brings it closer to p′ since p′ must be to the south east of its start-
ing location p, if a step moves t further away from p′ than that
step is not in S since it would have moved t to a location such
that it can never reach p′. Now notice that each step must move
at least one tile, and any step that moves a tile must move it closer
to its position in C′. Since each tile can move at most l + w and
each step must move at least one tile, if C can be reconfigured to
C′ then it will be able to do so in O(n(l + w)) steps. �
Lemma 4.2. For any two configurations C and C′, if C can be
reconfigured to C′ using only west, south, and east steps, there
exists a step sequence S of length O(nlw2) using only those three
directions such that applying S to C results in C′.
Proof. First let us consider the maximum number of south
movements that can be made. Similar to above each south step
moves at least one tile further south so the maximum number of
south steps that can be made is nl. Now considering the directions
east and west, the maximum number of consecutive steps that can
be made in one direction is w. Any step can be undone by making
a step in the opposite direction unless the first step changed the
position of tiles relative to each other. However this only brings
the maximum move sequence for east and west to be w2. Since
the maximum move sequence before having to make a south step
is w2 and the maximum number of south steps is nl the maximum
move sequence length is O(nlw2). �
Theorem 4.3. When restricted to 2 or 3 directions, the Reloca-
tion and Reconfiguration problems under the step transformation
are in NP.
Proof. A step sequence can be used to verify positive answers to
the Relocation and Reconfiguration problems. From Lemmas 4.1
and 4.2 we can see that the step sequences for the cases of 2 and

3 directions are polynomially bounded. �

5. Relocation with Limited Directions

In this section we detail a reduction from 3SAT to relocation in
monotone boards using limited directions. We refer to the posi-
tion the tile destined for relocation is initialized as location a and
the goal position as location b. W.l.o.g, the directions used in the
reduction are limited to east and south.

Overview. The board of this reduction consists of a long
hallway-like structure with notches that can fit some tiles and pre-
vent them from moving. The tile we are attempting to relocate
begins at the top left position of the board with its goal location
being at the bottom right. In between both locations is a section
of the board that maps to the clauses of a 3SAT instance, contain-
ing tiles that are mapped to the literals of each clause. These tiles
mapped to literals block the path from the tile we are attempt-
ing to relocate to the goal location at the bottom right part of the
board. Certain step sequences are performed so that truth assign-
ments are made to the literals, causing the tiles mapped to the
literals of the clause chains to become stuck in some notches if
they are set to true. If the proper variable assignments are made,
then the path will be cleared, and the tile we are relocating will
be able to arrive at the goal location.

5.1 Relocation Preliminaries
We first describe the gadgets used for this reduction, as well as

present some notation that we use throughout the section.
Gadgets. All of the gadgets discussed in this section are shown

in Fig. 2. We will later describe how to construct a board by at-
taching gadgets together via their north (head) and south (foot)
binding locations (depicted in blue). The relocation tile is lo-
cated at position a inside of the start gadget. The Assignment
gadget is where tilts will correspond to variable assignments for
our reduction. Every literal of a 3SAT formula has a correspond-
ing Positive or Negative gadget, along with an associated tile that
represents that literal. Location b resides inside the Goal gad-
get, a gadget whose structure grows with respect to the number
of variables N. The area within the Goal gadget that grows based
on N is outlined in Fig. 2. The Buffer and Notch gadget are utility
gadgets discussed when needed.

Notation. Here we present the notation for describing the con-
struction of a board with the gadgets described above. We define
gi ↘ g j as gadget gi’s foot binding with gadget g j’s head. A
chain is defined as a sequence of gadgets S = 〈g1, g2, . . . gn〉, s.t.

Fig. 2 (a) Start gadget (b) Assignment gadget (c) Positive gadget (d) Nega-
tive gadget (e) Buffer gadget (f) Notch gadget (g) Goal gadget.

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

g1 ↘ g2, g2 ↘ g3, . . . , gn−1 ↘ gn. It follows that a chain also
has binding locations that allow it to bond with other chains or
gadgets. We define G = 〈S 1, S 2, . . . , S n〉 as a sequence of chains

s.t. S 1 ↘ S 2, S 2 ↘ S 3, . . . , S n−1 ↘ S n. Similarly, we say
the binding of two sequences of chains G = 〈S 1, S 2, . . . , S n〉 and
G′ = 〈S ′1, S ′2, . . . , S ′m〉 yields another sequence of chains G′′ =
〈S 1, S 2, . . . , S ′m−1, S

′
m〉 s.t S 1 ↘ S 2, . . . , S n ↘ S ′1, . . . , S

′
m−1 ↘

S ′m.

5.2 Board
The board consists of three sections: the assignment, formula,

and validation section. The tile initialized at location a within the
assignment section is referred to as the relocation tile, the tiles in-
side the formula section are referred to as the literal tiles, and the
tiles within the validation section are called the validation tiles.
These board sections are all chains of the gadgets shown in Fig. 2.

Validation Section. The validation section is the sequence of
gadgets S V = 〈g1, g2, . . . , gN〉 where:
• gN = Goal gadget and ∀i < N, gi = Buffer gadget with a val-

idation tile allocated in-between the head of every gadget.
Formula Section. For the set of clauses C and set of variables

X = {x1, x2, . . . , xN}, the clause chain of clause c ∈ C is the se-
quence Gc = 〈S 1, S 2, S 3, S 4, S 5〉 where:
• S 1 = 〈g1, g2, . . . , gN〉where if the literal lp ∈ c is the variable

xp ∈ X, then gp = Positive gadget if lp is a positive literal
or gp = Negative gadget if lp is a negative literal. The literal
tile for literal lp is allocated in between the head of g1.

• S 2 = 〈g1, g2, . . . , gN〉 where if the literal lq ∈ c is the variable
xq ∈ X, then gq = Positive gadget if lq is a positive literal
or gq = Negative gadget if lq is a negative literal. The literal
tile for literal lq is allocated in between the head of g1.

• S 3 = 〈g1, g2, . . . , gN〉 where if the literal lr ∈ c is the variable
xr ∈ X, then gr = Positive gadget if lr is a positive literal or
gr = Negative gadget if lr is a negative literal. The literal tile
for literal lr is allocated in between the head of g1.

• S 4 = 〈g1, g2, . . . , g2N+1〉 where ∀i < 2N + 1, gi =

Buffer gadget, and g2N+1 = Notch gadget.
• S 5 = 〈g1, g2, . . . , g2N+1〉 where ∀i, gi = Buffer gadget.
The formula section is therefore the sequence GF =

〈Gc1 ,Gc2 , . . . ,Gc|C| 〉 where every Gci ∈ GF is a clause chain and
Gc1 ↘ Gc2 , Gc2 ↘ Gc3 , . . ., Gc|C|−1 ↘ Gc|C|

Assignment Section. The assignment section is a sequence of
chains GA = 〈S 1, S 2, S 3, S 4〉 where:
• S 1 = 〈g1, g2, . . . , gN〉 where g1 = Start gadget and ∀i > 1,
gi = Assignment gadget. The relocation tile is initialized
within the Start gadget, as depicted in Fig. 2.

• S 2 = 〈g1, g2, . . . , g2N〉 where ∀i, gi = Notch gadget.
• S 3 = 〈g1, g2, . . . , g2N+1〉 where g1, gN+1, g2N+1 =

Assignment gadget and ∀i s.t gi � Assignment gadget,
gi = Notch gadget.

• S 4 = 〈g1, g2, . . . , gv〉 where v = |S V | + |GF |, and ∀i ≤ v,
gi = Notch gadget.

The board B = 〈GA,GF , S V〉 is therefore the combination of
the three sections where GA ↘ GF and GF ↘ S V .

Fig. 3 Assigning (a) true or (b) false to some variable x. Setting a literal to
true is done by confining its corresponding literal tile within a Posi-
tive or Negative gadget.

5.3 Reduction
The reduction can be understood as a two phase process. In the

first phase variables are given a truth value one-by-one in ascend-
ing order for the set of variables X = {x1, x2, . . . , xN}. The second
phase consists of verifying if the variable assignments from the
first phase satisfied the clauses of the formula. Every clause chain
is checked for any unconfined literal tiles, where if a clause chain
confines at least one literal tile it is said to be satisfied, and unsat-
isfied otherwise. A satisfied clause chain can have up to two re-
maining unconfined literal tiles, where an unsatisfied clause will
have three unconfined literal tiles. In order to identify satisfied
and unsatisfied clauses, the remaining literal tiles are ‘counted’
by attempting to occupy two open spaces using the literal tiles
in each of their respective clause chains. Attempting to occupy
the two spaces with three literal tiles (e.g., an unsatisfied clause
chain) will leave one literal tile unconfined which will be used to
prevent relocation.

First Phase. Starting with the board configuration described
above, each variable in ascending order can be assigned some
truth value by executing the step sequences depicted in Fig. 3.
During this phase, the relocation tile will visit every gadget in-
side the first chain of the assignment section if either one of the
sequences depicted is executed for every variable truth assign-
ment.

To ensure the step sequences depicted are the only ones ex-
ecutable during this phase, the validation tiles in the validation
section will enter the Goal gadget one-by-one for every assign-
ment and risk occupying location b, as shown in Fig. 4. This re-
lation between the relocation and validation tiles ensures that the
two sequences depicted are the only ones performed during this
phase.

All literal tiles visit every gadget of the chain it resides in for
every clause chain (one of which is a Positive or Negative gad-
get) as the step sequence depicted above is performed. By de-
sign, the literal tiles reach a Positive or Negative gadget when its
corresponding variable is next in the truth assignment procedure
(Fig. 5). After the last variable is assigned some truth value, every
clause chain will confine at least one literal tile if the correspond-
ing clause was satisfied, and zero literal tiles if it was not.

Second Phase. Immediately after the first phase the relocation
tile will reside inside the second chain of the assignment section,

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 4 Illustration of validation tiles entering the Goal gadget as truth as-
signments are made. In (a) and (c), true assignments are made, show-
ing the start and end location of the tiles. In (b), a false assignment
was made, showing how the validation tiles are still placed outside
of location b.

Fig. 5 Visualization of two clause chains ci = (x1 ∨ ¬x2 ∨ x3), c j =

(¬x1 ∨ ¬x1 ∨ x2) for X = {x1, x2, x3} during the first phase. (a) As-
signing the variable x1 to true value is done by the step sequence
〈S , 3E, 2S 〉, which makes all other tiles in the clauses chains and as-
signment section move to the next gadget. (b) Assigning the value
f alse to the variable x2 is done by the sequence 〈E, S , 3E, 2S 〉. (c)
By performing the true sequence again, the variable x3 can be as-
signed some truth value as well.

Fig. 6 During the second phase, unconfined literal tiles are forced inside the
Notch gadget of the fourth chain of their corresponding clause chain.
Unsatisfied clause chains export one too many literal tiles, as shown
in (c).

whose structure consists of only Notch gadgets. The Notch gad-
get serves two functions in this phase, one of which is to forbid
the movement in the south direction when the relocation tile tra-
verses through it. The first step in this phase is therefore to exe-
cute the step sequence 〈S , 3E, 2S 〉 until the relocation tile reaches
the third chain, which simultaneously moves any unconfined lit-
eral tiles to the fourth chain of their respective clause chains.

Afterwards, the relocation and any unconfined literal tiles will
reside inside the third and fourth chain, respectively, of their cor-
responding section/chain, as depicted in Fig. 6. The last gadget
of the fourth chain of every clause chain consists of a Notch gad-
get, whose function in this case is to provide two open spaces for
the unconfined literal tiles from the clause chains. Moving the
relocation tile through the third chain of the assignment section,
each remaining literal tile will reach the last Notch gadget of their
corresponding clause chain and fit in one of the two open spaces
made by the Notch gadget, provided that the clause chain was sat-
isfied. If a clause chain was unsatisfied, then the third literal like
will not fit within the two open spaces provided by the Notch gad-
get, leaving it free to continue through the board. At this point,
the relocation tile would have reached the fourth chain of the as-
signment section, which is composed entirely of Notch gadgets
and whose length is equal to that of the length of the formula sec-
tion plus the length of the validation section. Traversing the tile
through the fourth chain will move any free literal tiles towards
the validation section, blocking location b. Therefore, if there

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

exists at least one unsatisfied clause chain, there exists at least
one unconfined literal tile inexorably pushed to occupy location b

whilst the relocation tile traverses through the architecture of the
fourth chain of the assignment section. If there are no unsatisfied
clause chains, it follows that there will be a direct path from the
relocation tile to location b on the board allowing its relocation
there.

5.4 Theorem
Theorem 5.1. The relocation problem under the step transforma-
tion is NP-Complete on a monotone board when limited to two
directions.
Proof. Membership in NP is described in Section 4. To show
NP-Completeness, a reduction from 3SAT is detailed to show re-
location in monotone boards solves 3SAT. For a given 3SAT in-
stance, a monotone board B = (O,W) is designed such that the
elements of the 3SAT instance are represented by correspond-
ing elements of the monotone board. The elements of a given
3SAT instance consist of the set of clauses along with the literals
that make up each individual clause. The literals of each clause
are represented by individual tiles, which inhabit their pertaining
clause chain. As stated above, the literals can be assigned some
truth value by either confining the associated tile within its per-
taining clause chain (e.g., assigning true) or keeping it unconfined
(e.g., assigning false). The reduction can be understood as a two
phase process:

Phase one. Starting with an initial board B = (O,W) described
in the previous section, the first phase consists of making variable
truth assignments in ascending order for the set of Boolean vari-
ables X = {x1, x2, . . . , xN}. Each variable can be given some truth
value by performing either step sequence illustrated in Fig. 3. Si-
multaneously, each individual literal tile in the clause chains will
reach a corresponding Positive or Negative gadget exactly when
the variable it equals is assigned some truth value. When assign-
ing a variable to true, the positive literals that equal that variable
will become confined, whereas the negative literals that equal that
variable will remain unconfined. Likewise, assigning a variable to
false keeps the positive literals unconfined and the negative ones
confined. During this phase, the design of the validation section
along with the inhabitant validation tiles restrict the available step
sequences to that of the two previously mentioned. Given that the
Goal gadget resides within the validation section, along with lo-
cation b of the board, the validation tiles risk occupying location
b unless either of the step sequences are performed during this
phase. The restrictive nature of the validation section ensures that
phase one of the reduction consists only of valid variable truth as-
signments.

Phase two. Afterwards, every clause chain assumes some sat-
isfiability status by the quantity of confined literal tiles residing
within them. During this phase, the number of unconfined lit-
eral tiles of each clause chain are ‘counted’ by the attempt to oc-
cupy two open spaces inside their corresponding clause chains
with these literal tiles. A satisfied clause chain will confine at
least one literal tile and leave at most two literal tiles unconfined.
These two unconfined literal tiles are able to occupy the two open
spaces, essentially removing them from the path to location b

from location a. On the other hand, an unsatisfied clause yields
one too many unconfined literal tiles for the two corresponding
open spaces, causing one of the literal tiles to remain within the
path to location b from location a.

Following this two phase process, the tile initialized at location
a is relocatable to location b on the board if every clause chain
yielded at most two unconfined literal tiles after the first phase.
During the second phase, these two unconfined literal tiles can
be removed from the path from location a to location b, allow-
ing access for the relocation tile to the targeted location on the
board. Similarly, relocation becomes impossible when a clause
chain produces three unconfined literal tiles after phase one since
the attempt to relocate after the second phase will inexorably oc-
cupy location b with one of the unconfined literal tiles. It follows
that the relocation of the relocation tile initialized at location a

is possible if all clause chains were satisfied, which is possible
only with a satisfying truth assignment to the set of variables.
Moreover, if the boolean formula is not satisfiable, then some
clause chains will always yield three unconfined literal tiles. The
forward-progressing nature of the construction, along with the
inability to store tiles in improper notches, means that the relo-
cation tile can never be relocated to its goal position (because it
is blocked). Therefore, for a given 3SAT instance relocation is
possible if and only if the boolean formula is satisfiable. �
Theorem 5.2. The relocation problem under the step transforma-
tion is NP-Complete on a monotone board when limited to three
directions.
Proof. If we allow for movement in a third direction (e.g.,
movement in the 〈W〉 direction), we see how the phases previ-
ously described are not significantly changed. During phase one,
the validation section is used to restrict the step sequences avail-
able when assigning truth values to variables where the inclusion
of the third direction only adds the cycling between the choices
of the step sequences (assigning true or assigning false). There-
fore making movement in the third direction available does not
change the way variable truth assignments are made. Moreover,
the manner in which tiles traverse through the board remains the
same since the movement in the third direction will simply revert
the board back to the configuration that was previously visited
when movement in the 〈E〉 direction was performed. Thus, the
phases of the reduction persist even with the third direction. �

6. Reconfiguration with Limited Directions

We now will take a look at the problem of reconfiguration on a
connected board when limited to two orthogonal directions. We
show that with these constraints the problem is NP-Complete un-
der the step transformation. Without loss of generality we will be
limiting the directions to south and east. In this section, we prove
hardness with a reduction from 3SAT. The following subsections
describe the gadgets used when constructing a tilt configuration
from a 3SAT formula with n variables and m clauses. We present
individual gadgets separately which can be connected in a way
that does not effect their functionality.

6.1 Gadget Construction
In this subsection, we describe how to construct an instance of

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 7 (a)3 SAT clause gadget, where n is the total number of unique vari-
ables, and m indicates that this clause is the mth clause in the formula.
(b) Example of variable placement for clause (x1 ∨ ¬x2 ∨ x3) in a 5
variable formula. Goal locations indicated by red arrows.

Fig. 8 (a) South Limiter: Limits the amount of south steps made before all
variables have been assigned. (b) South Forcer: Forces the user to
make south steps at specific times.

the reconfiguration problem from an instance of the 3SAT prob-
lem. We discuss this construction in terms of gadgets.

Clause Gadget Each clause of the 3SAT formula will be rep-
resented by a clause gadget (depicted in Fig. 7). This gadget con-
sists of a top chamber in which variable tiles will be placed and a
1-wide gap that connects that chamber to a second bottom cham-
ber. There will be a staircase that connects the lower chamber
to a final reconfiguration zone, which contains the goal locations
for the three variable tiles in the clause. The number of steps of
the staircase will be a function of the current clause; so, the mth

clause in the formula will have a staircase with 3(m−1)+2 steps.
For every variable xi, in every clause that it appears, we will

place a corresponding variable tile in the top chamber of its re-
spective clause gadget at position 5(i − 1) + 1 for every positive
variable and 5(i − 1) for every negated variable. The goal loca-
tions of the tiles will be one in each of the notches. Without loss
of generality, the goal locations will be in the reverse order from
west to east that they start at in the top chamber. Figure 7 shows
an example tile placement for a clause gadget.

South Limiter Gadget Every instance of the reconfiguration
problem obtained through this reduction will contain a single
south limiter gadget (shown in Fig. 8). The purpose of this gadget
is to limit the number of south steps that can be made in the recon-
figuration step sequence. The height and width of this gadget will
scale linearly to the number of variables in the 3SAT formula.

In the South Limiter gadget we place a tile at the northwest

Fig. 9 (a) Example of south limiter tile placement in a 5 variable formula.
Goal location indicated by red arrow. Post assignment zone high-
lighted in green. (b) Example of south forcer tile placement in a 5
variable formula. Goal location indicated by red labels.

corner, and the goal location is the notch at the other end of the
gadget. Figure 9 depicts tile and goal placement for this gadget.

South Forcer Gadget Each instance will also have one south

forcer gadget (shown in Fig. 8). The purpose of this gadget is to
enforce the proper timing of any south step made in the reconfig-
uration step sequence. The height and width of this gadget also
scales linearly to the number of variables.

In the South Forcer gadget we place 2 tiles in a row for every
distinct variable in the 3SAT formula on the west side of the gad-
get. The goal location of row n is the eastmost side of the nth gap
8, in the same position relative to each other that they started in.
Figure 9 depicts tile and goal placement for this gadget.

6.2 Gadget Functionality
Here, we discuss the relationship between our tilt reconfigura-

tion and the 3SAT variable assignment, as well as the functional-
ity of each of the gadgets presented in the previous subsection.

Variable Assignment This reduction works by utilizing the
uniform global signals to assign all variables xi a truth value si-
multaneously. To start the process of reconfiguration we will be-
gin stepping east, uniformly shifting all variable tiles along the
top chamber of the clause gadgets. When the eastmost variable
tile is located above the assignment chamber, the choice of as-
signing that variable true can be made by performing step se-
quence st = 〈S , E〉, or false with the step sequence s f = 〈E, S 〉.
A variable tile evaluates to true if it enters the assignment cham-
ber. Since all variable tiles ti representing a particular variable
xi share the same x-coordinate, all of these tiles will receive the
same assignment.

South Forcer/Limiter Gadgets The reconfiguration require-
ment of the south forcer gadget ensures that every variable must
receive an assignment. The only way to place each tile-pair in
their respective goal positions is to “assign” each of the n vari-
ables a value of either true or false. The south limiter gadget

ensures that only n assignments can be made, since doing more
would position the gadget’s tile along the bottom edge of the gad-
get with no way of reaching its goal position. The combination of
these gadgets prevents the possibility of assigning both a positive
and negated variable tile, i.e. ti and ¬ti, values of true. Once every
variable tile has been assigned, the south limiter gadget’s tile will
be in the post assignment zone (see Fig. 9). In order to achieve
the configuration goal inside that gadget, only east steps can be

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 10 State of a clause gadget in which no variable tiles are evaluated to a
literal true before and after the forced south tilt, and the respective
states of the south limiter gadget.

made until the tile is directly above its goal location. With global
signals this causes all variables tiles to be pushed maximally to
the east side of the top chamber of their respective clause gadget.
Once the south limiter’s tile is above its goal location, a south step
must be performed, since we are limited to only south and east,
and an east step would make the south limiter’s tile pass its goal
position.

Clause Verification A clause gadget is in its goal configura-
tion when each of its variable tiles are in their goal locations at
the bottom right of the gadget. A clause gadget will be unable
to reach its goal configuration if no variable tiles make it through
the assignment chamber (this is the equivalent to every literal of
a 3SAT clause evaluating to false). If there are three variable tiles
still in the top chamber of a clause gadget, a south step will place
the westmost variable tile into the tile trap. This leaves the board
unreconfigurable (see Fig. 10). If at least 1 variable tile is passed
into the assignment chamber, then the clause gadget will always
be reconfigurable. From there the tiles can be moved to their re-
spective staircase, where the varied number of steps allows for
each tile to be moved to its goal location individually.

6.3 Formal Proof
Theorem 6.1. The reconfiguration problem under the step trans-
formation is NP-Complete on a connected board when limited to
two directions.
Proof. To show hardness for the reconfiguration problem under
the step transformation, we reduce from 3SAT. Given a 3SAT for-
mula consisting of n variables and m clauses, we construct a tilt
configuration using the gadgets described in Section 6.1. We cre-
ate a clause gadget for every clause in the 3SAT formula, as well
as a single South Forcer Gadget and a single South Limiter Gad-
get. To make this a connected board these gadgets can be attached
at their northwest corner without affecting their functionality.

First, we argue that the instance of the reconfiguration problem
obtained through this reduction is solvable if the respective 3SAT
formula is solvable. This follows from the variable assignment
paragraph in Section 6.2. Given a certificate containing the truth
values that satisfy the 3SAT formula, start the reconfiguration by
stepping east. When variable tile ti is up for assignment, i.e.,
the positive variable tile representing xi is above the assignment
chamber, a 〈S , E〉 step sequence can be input if the variable xi is
being set true, and a 〈E, S 〉 step sequence if the variable xi is to
be assigned false. Since the certificate contains a valid solution
to the 3SAT formula, then at least one tile in every clause will
evaluate to true (following the functionality section), meaning all
clause tiles can be placed in their goal locations. Furthermore, the
tiles in the south limiter gadget and the south forcer gadget will
reach their goal positions via the standard variable assignment.

Next, we argue that the respective 3SAT problem is solvable if

the obtained instance of the reconfiguration problem has a solu-
tion. This direction relies on the functionality of the South Lim-
iter and South Forcer gadgets, as well as the clause verification
discussed in Section 6.2. We define da as the distance between
the westmost variable tile (x1 or ¬x1 if it exists) and the assign-
ment chamber. We observe the distance from the tile in the south

limiter gadget to its goal location is greater than da. Only n south
steps can be input before the south limiter gadget’s tile is above
its goal location. Every variable tile assignment requires a south
step, and once the south limiters gadget’s tile is above its goal
location, all variable tiles are no longer assignable. Thus, we can
only give an assignment to n variable tiles. The issue remains
that we can assign both a positive and negated variable tile, i.e.
ti and ¬ti, and skip the assignment of some other variable tile t j.
The south forcer gadget ensures this can not happen by requir-
ing south steps to be made at certain times in order to satisfy the
reconfiguration requirements. This restriction ensures that each
variable must receive a true or false assignment.

Thus, the generated instance of the reconfiguration problem is
solvable if and only if the given 3SAT formula is solvable. Along
with Thm. 4.3, it follows that the problem is NP-Complete when
limited to two directions. �

7. Conclusion and Future Work

In this paper we investigated the Occupancy, Relocation, and
Reconfiguration problems in an extremely limited variation of
the tilt model. We discovered that even with these limitations,
the problems of Relocation and Reconfiguration were still NP-
Complete under the step transformation. Future work may focus
on pushing the limitations even further; possibly considering re-
location and/or reconfiguration of a rectangular board.

References

[1] Balanza-Martinez, J., Caballero, D., Cantu, A., Garcia, L., Luchsinger,
A., Reyes, R., Schweller, R. and Wylie, T.: Full Tilt: Universal Con-
structors for General Shapes with Uniform External Forces, Proc. 30th
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’19
(2019).

[2] Balanza-Martinez, J., Caballero, D., Cantu, A.A., Flores, M., Gomez,
T., Luchsinger, A., Reyes, R., Schweller, R. and Wylie, T.: Hierar-
chical Shape Construction and Complexity for Slidable Polyominoes
under Uniform External Forces, Proc. 31st Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA’20 (2020).

[3] Balanza-Martinez, J., Caballero, D., Cantu, A.A., Gomez, T.,
Luchsinger, A., Schweller, R., and Wylie, T.: Relocation with Uni-
form External Control in Limited Directions, The 22nd Japan Confer-
ence on Discrete and Computational Geometry, Graphs, and Games,
JCDCGGG, pp.39–40 (2019).

[4] Becker, A., Habibi, G., Werfel, J., Rubenstein, M. and McLurkin, J.:
Massive uniform manipulation: Controlling large populations of sim-
ple robots with a common input signal, 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp.520–527 (online),
DOI: 10.1109/IROS.2013.6696401 (2013).

[5] Becker, A., Demaine, E.D., Fekete, S.P., Habibi, G. and McLurkin, J.:
Reconfiguring Massive Particle Swarms with Limited, Global Control,
Algorithms for Sensor Systems, pp.51–66, Springer Berlin Heidelberg
(2014).

[6] Becker, A.T., Demaine, E.D., Fekete, S.P., Lonsford, J. and
Morris-Wright, R.: Particle computation: Complexity, algorithms, and
logic, Natural Computing, Vol.18, pp.181–201 (2019).

[7] Becker, A.T., Demaine, E.D., Fekete, S.P. and McLurkin, J.:
Particle computation: Designing worlds to control robot swarms
with only global signals, Proc. IEEE International Conference on
Robotics and Automation, ICRA’14, pp.6751–6756 (online), DOI:
10.1109/ICRA.2014.6907856 (2014).

[8] Becker, A.T., Fekete, S.P., Keldenich, P., Krupke, D., Rieck, C.,

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Scheffer, C. and Schmidt, A.: Tilt Assembly: Algorithms for Micro-
factories That Build Objects with Uniform External Forces, Algorith-
mica (online), DOI: 10.1007/s00453-018-0483-9 (2018).

[9] Keldenich, P., Manzoor, S., Huang, L., Krupke, D., Schmidt, A.,
Fekete, S.P. and Becker, A.T.: On Designing 2D Discrete Workspaces
to Sort or Classify Polynminoes, 2018 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pp.1–9 (online), DOI:
10.1109/IROS.2018.8594150 (2018).

[10] Manzoor, S., Sheckman, S., Lonsford, J., Kim, H., Kim, M.J. and
Becker, A.T.: Parallel Self-Assembly of Polyominoes Under Uniform
Control Inputs, IEEE Robotics and Automation Letters, Vol.2, No.4,
pp.2040–2047 (online), DOI: 10.1109/LRA.2017.2715402 (2017).

[11] Schmidt, A., Manzoor, S., Huang, L., Becker, A.T. and Fekete, S.P.:
Efficient Parallel Self-Assembly Under Uniform Control Inputs, IEEE
Robotics and Automation Letters, Vol.3, pp.3521–3528 (2018).

David Caballero is a graduate student
pursuing a Master’s in Computer Science
from University of Texas Rio Grande Val-
ley. Research areas include Molecular
Computation, Computational Complexity
and Robot Motion Planning.

Angel A. Cantu is a Computer Scientist
at the Southwest Research Institute for the
Defense and Intelligence Division. His
work involves research in geolocation,
signals intelligence, and radar systems.

Timothy Gomez is a graduate student
pursuing a Master’s in Computer Science
from University of Texas Rio Grande Val-
ley. Research areas include Molecular
Computation, Computational Complexity
and Robot Motion Planning.

Austin Luchsinger is working as a grad-
uate research assistant while pursuing a
PhD in Electrical and Computer Engineer-
ing at the University of Texas at Austin.
His research is primarily in the areas
of molecular computation, robot motion
planning, and self-assembly.

Robert Schweller is a Professor of Com-
puter Science at the University of Texas
Rio Grande Valley. Research interests
include Algorithms, Molecular Computa-
tion, Computational Geometry, and Robot
Motion Planning.

Tim Wylie is an Associate Professor of
Computer Science at the University of
Texas Rio Grande Valley. His research
interests include Algorithms, Game Com-
plexity, Molecular Computation, and
Computational Geometry.

c© 2020 Information Processing Society of Japan

