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Abstract: We investigate the phase transition of a dynamical system generating a possibly infinite orbit of points. The
points of the orbit are generated according to the following basic operation. Given a positive real number a, called
the expansion factor, and two points p, q at Euclidean distance |pq| we determine the unique point p′ on the straight
line passing through p and q which is antipodal to the point p with respect to q and at a Euclidean distance a|pq| from
q. The operation on points previously defined is denoted by p ⇒a,q p′. Let a := a0, a1, . . . , an−1 be arbitrary but
fixed positive real numbers and q := q0, q1, . . . , qn−1, be n (anchor) points. An orbit consisting of an infinite sequence
p0, p1, . . . , pm, . . . of points in the plane is generated by using the anchor points as follows. The orbit is initiated with
an arbitrary point p0 := p and for all integers m ≥ 0, satisfies pm ⇒am mod n ,qm mod n pm+1 so that pm+1 := (pm)′. The
resulting sequence of points is called the (a, q)-orbit of p. For any starting point p and any pair (a, q) we characterize
the boundedness of (a, q)-orbits. Namely, we show that there is a phase transition concerning the boundedness of the
resulting (a, q)-orbit which depends on whether the product a0a1 · · · an−1 of the expansion factors is less or larger than
one. We also characterize the behaviour of the orbits when a0a1 · · · an−1 = 1. The “boundedness” phase transition
phenomenon described above is shown to be valid for any dimension d = 1, 2, 3 in Euclidean space. In addition,
we propose variants of this approach for generating orbits on convex polygons, and propose several open problems
corresponding to phase transition phenomena.
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1. Introduction

We study a simple dynamical system defined by a procedure
which is generating possibly infinite orbits of points by making
use of an abitrary but fixed set of anchor points placed in Eu-
clidean space. We investigate and characterize the boundedness
of the orbits thus generated.

1.1 Orbits from Anchor Points
Before describing the problem we begin with some preliminary

definitions and explanations of related concepts. Although the
points and orbits generated may be in any dimension d = 1, 2, 3
in Euclidean space, for the sake of simplicity in the discussion
below we assume d = 2. We indicate later how to transfer the
methodology to all d.

Given a positive real number a, called the expansion factor,
and two points p, q at Euclidean distance |pq| we determine the
unique point p′ on the straight line passing through the points p

and q (see Fig. 1) which is antipodal to the point p with respect to
q and at a Euclidean distance a|pq| from q (throughout this paper
the notation | · | is used to define Euclidean distance).

Definition 1 The previously defined antipodal operation be-
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4 Research supported by PAPIIT grant IN 102117 from UNAM
a) kranakis@scs.carleton.ca
b) urrutia@matem.unam.mx

Fig. 1 The basic antipodal operation p ⇒a,q p′ mapping a point p to a
unique point p′ for generating orbits, where a is the expansion factor
at q and |qp′| = a|pq|.

tween points p and q with expansion factor a > 0 is denoted by
p⇒a,q p′.

Suppose that n points q = (q0, q1, . . . , qn−1), called anchors are
located in arbitrary but fixed positions in the plane.

The generated orbits consist of points forming trajectories in
the plane. Assume that each point qi is associated with a pos-
itive real number ai called the expansion factor of qi. Let a =
(a0, a1, . . . , an−1) be the sequence of expansion factors. The con-
secutive points of the orbit are generated according to the basic
antipodal operation described above as follows.

Definition 2 Let p be any (starting) point in the plane. The
(a,q)-orbit of p with respect to the sequence q of anchors consists
of a possibly infinite sequence p0 := p, p1, . . . , pm, . . . of points
which is generated by using the antipodal operation on the anchor
points q0, q1, . . . , qn−1 so that for all m ≥ 0 the point pm+1 is an-
tipodal to the point pm with respect to the anchor point qm mod n

whose respective expansion factor is am mod n (see Fig. 2).
The points of the orbit are generated by making use of the se-

quence of anchors q in the given order and repeats in that order
“cyclically” in that after using the anchor qn−1 it starts over with

A preliminary abstract of this work was presented by the first co-author
in Ref. [1].
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Fig. 3 The first three points p0, p1, p2, p3 in a a-forward outer billiard (orbit) for a bounded convex
polygon with starting point p0. By reversing direction p2, p1, p0 this can also be considered a
a-backward orbit.

Fig. 2 The first seven points p0, p1, p2, p3, p4, p5, p6 in a (a, q)-orbit for the
unit segments with five anchor points q0, q1, q2, q3, q4 in the plane
and respective expansion factors a0, a1, a2, a3, a4. The sequence of
points pi continues indefinitely.

point q0. The point pm+1 is called the antipodal point of pm so
that it satisfies pm ⇒am mod n ,qm mod n pm+1. We use the simpler no-
tation pi ⇒ pi+1, when the implied expansion factor ai mod n can
be implied easily from the context. Iterating this operation there
results an infinite sequence p0 ⇒ p1 ⇒ p2 ⇒ · · · (which may
traverse a given point more than once) called the (a, q)-orbit of p0

with respect to the pair (a, q), while p0 is called the starting point
of the resulting orbit (see Fig. 2).

Definition 3 The sequence of points thus generated from the
starting point p := p0, are the anchor points q and the correspond-
ing expansion factors a is denoted by Op(a, q).
Unless it is necessary, mention of q may be omitted when this
is easily implied from the context and when all the ais are equal
we then use the simpler notation Op(a), where we assume that
a0 := a = · · · = an−1. Notice that if the anchor points are colinear
and the starting point lies on this common line then the result-
ing orbit will also lie in its entirety on this line but otherwise in
general the orbit will lie in the plane.

Definition 4 A sequence of points {pi} is said to be periodic
if for some constant k it satisfies pi = pi+kn, for n = 1, 2, . . ..

Definition 5 An orbit Op(a, q) is called bounded if it is a
subset of some closed disk in the plane and unbounded, other-
wise. Further, the (a, q)-orbits are unbounded (resp. bounded) if
all non-periodic Op(a, q) are unbounded (resp. bounded) for all
points p.

Definition 6 An orbit Op(a, q) is called closed if p0 = pm+1,
for some m ≥ 1.
Closed orbits are clearlt periodic orbits. A closed orbit is also of

course bounded.
Now we can formulate one of the main questions which will be

studied in the remainder of this paper. (Note that the definitions
and discussion above are valid for any dimension d = 1, 2, 3 in
Euclidean space.)

Problem 1 (Orbits from Anchor Points) Suppose that n

anchor points q = (q0, q1, . . . , qn−1) are located in the plane.
Under what conditions on the real numbers a0, a1, . . . , an−1 is the
(a,q)-orbit bounded or unbounded?
More specifically, we are interested in whether or not there is a
phase transition concerning the boundedness of the orbits which
depends on the product a0a1 · · · an−1.

1.2 Orbits from Vertices of a Convex Polygon
The orbit problem on point sets proposed in this paper is some-

what related to outer billiards (see Ref. [6]), that is a dynamical
system defined in the Euclidean plane. This involves a discrete
sequence of moves taking place outside a given bounded convex
set K. The boundary of K is a closed curve which may be smooth
or polygonal. In addition, let a be an arbitrary positive real num-
ber.

To form an outer billiard (orbit), we start with an arbitrary point
p := p0 which lies outside the convex set K. We draw the straight
line tangent to K emanating from p0 and intersecting K at a vertex
of K, for example denoted by p01, so that K is to the left of this
line. Let p1 be the point on this line antipodal to p0 with respect
to p01 so that |p0 p01| = a|p01 p1|. Note that the point p01 will be a
vertex of the convex polygon which depends on the point p0 and
the convex polygon K.

Now iterate the same operation starting with the point p1 lead-
ing to the segment p1 p12 p2, and so on.

Definition 7 The sequence of points resulting when we iter-
ate the previously described operation of drawing tangential line
segments with expansion factor a and which always keeps the
convex polygon to their left (resp. right) called forward (resp.
backward) a-orbit.

Figure 3 depicts an example of a forward outer billiard orbit
with respect to a convex polygon starting from a point p0.

It makes no difference whether one uses forward or backward
a-orbits. For example, any finite backward orbit arises by revers-
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ing the direction of a finite forward orbit. For this reason, all
a-orbits are considered forward a-orbits. Notice that an arbitrary
orbit (outer billiard) may not necessarily traverse all the vertices
of the convex polygon when rotating around the convex polygon
and it may well traverse different vertices in another round *1. Or-
bits from convex polygons will be visited again in Section 3.

The definitions above are inspired from and are a generaliza-
tion of analogous definitions restricted to a = 1 and which can be
found in the book [6] by Schwartz.

1.3 Related Work
Neumann [4] was the first to introduce outer billiards in the late

1950s. In the 1970s, Moser [3] popularized outer billiards as a toy
model for celestial mechanics. More precisely, Moser [2][p.11]
attributes the following question to Ref. [4]: Assume a = 1.

“Is there an outer billiards system with an unbounded
orbit?”

Moser [2] considers the above question as an idealized version of
the problem of understanding the stability of the solar system.

For a book-length treatment of the topic as well as a chrono-
logical list of most known works related to the question of the
boundedness of the resulting orbit when a = 1 the reader is re-
ferred to the book by Schwartz [6]. We note that only outer orbits
on Penrose kites are known to be unbounded [5]. To find general
related work on billiards the reader is referred to the books [7], [8]
by Tabachnikov.

There are certain similarities and differences between the prob-
lem of boundedness of orbits from anchor points and the polyg-
onal case of outer billiard problem. There are similarities be-
cause they both generate orbits of points in the plane. There
are also differences because of the way outer billiard orbits are
generated. Given a convex polygon K, its sequence of vertices
q = (q0, q1, . . . , qn−1) is also a sequence of anchor points. How-
ever an outer billiard (a,q)-orbit on K is a trajectory that traverses
these vertices cyclically but might skip some of them when it
makes its next move since it requires that the next vertex is tan-
gent to the polygon and this may not necessarily be the next vertex
of the convex polygon in the natural cyclical order of the vertices
on its perimeter. However, this is not the case in our problem
on orbits for anchor points because we cannot skip any points in
forming a trajectory.

To the best of our knowledge the phase transition phenomenon
for the boundedness of orbits from anchor point sets considered
in the present paper is new and has never been studied in the past.

1.4 Outline and Results of the Paper
For any set of anchors q = (q0, q1, . . . , qn−1) in the plane

and associated expansion factors (positive real numbers) a =
(a0, a1, . . . , an−1), we analyze and characterize the boundedness
of the (a, q)-orbit. Theorem 1 is the main result in Section 2 and
proves the phase transition in d-dimensional Euclidean space, for
d = 1, 2, 3, of the resulting orbit for any starting point p. Further,
in Section 3 we look at similar questions for orbits on convex

*1 In a way, this is the main difference between orbits generated by the con-
vex polygon with vertices q0, q1, . . . , qn−1 and the orbits generated from
the anchor points q0, q1, . . . , qn−1.

polygons and propose interesting open problems. Finally, Sec-
tion 4 presents the conclusion.

2. Orbits from Anchor Point Sets

In this section we consider phase transitions for orbits arising
from a set of anchor points. The main theorem to be proved in
the sequel is the following.

Theorem 1 (Phase Transition on Boundedness of Orbits)
Consider a sequence of n anchor points q0, q1, . . . , qn−1 and
associated expansion factors a0, a1, . . . , an−1, respectively.
( 1 ) Assume a0a1 · · · an−1 � 1. Any (a, q)-orbit visiting the

points cyclically in the order q0, q1, . . . , qn−1 is either closed
or else if the product a0 · · · an−1 is greater than 1, it is un-
bounded, and if the product a0 · · · an−1 is less than 1 it is
bounded.

( 2 ) Assume a0a1 · · · an−1 = 1.
( a ) If n is odd then any (a,q)-orbit visiting the points cycli-

cally in the order q0, q1, . . . , qn−1 is periodic.
( b ) If n is even then any (a, q)-orbit visiting the points cycli-

cally in the order q0, q1, . . . , qn−1 is either periodic or
unbounded.

The statements above are equally valid for anchor points in 1D,
2D and 3D space.

Details of the proof of Theorem 1 will be deferred until some
basic concepts are introduced and necessary lemmas are proven.

The main ideas of the proof are as follows. In Section 2.1 we
present the well-known concept of the pantograph leading to a
simple methodology for deriving the first phase transition result
presented in Section 2.2 and which is valid for a0a1 · · · an−1 � 1.
The phase transition for the case a0a1 · · · an−1 = 1 is analyzed
in Section 2.3. We also prove the phase transition result in 1D,
2D and 3D space by applying the idea of projection. Finally, the
proof of the main theorem will be completed in Section 2.4 by
putting all these ideas together.

2.1 Pantographs
The approach of this section is inspired from the pantograph,

a mechanical device used for copying and scaling in industrial
design work. The pantograph is based on linkages of connected
parallelograms so that the movement of one pen, in tracing an im-
age, causes identical (up to scale) movements in another one pen
or even more pens (see Ref. [9]). This simple principle of copying
“up to scale” is founded on the simple Lemma 1 given below.

Lemma 1 (The Pantograph Lemma) Consider a sequence
of n anchor points q0, q1, . . . , qn−1 and associated expansion fac-
tors a0, a1, . . . , an−1, respectively. Consider two different start-
ing points p0, p′0 and the resulting orbits p0, p1, . . . , pm−1, . . . and
p′0, p

′
1, . . . , p

′
m−1, . . . generated by the respective antipodal opera-

tions on these anchor points. If the point p0 moves to the new
point p′0 at distance x from p0 then the distance of the point pi

from the point p′i will be equal to (a0 · · · ai−1)x, for 1 ≤ i ≤ n,
respectively.
Proof. Since both transitions (see Fig. 4)

p j−1 ⇒a j−1 ,q j−1 p j and p′j−1 ⇒a j−1 ,q j−1 p′j

hold true, the triangles
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Fig. 4 Using similarity of triangles, it follows that if |p0 p1 | = x then
|p′0 p′1 | = a · x.

�(p j−1 p′j−1q j−1) and �(p j p
′
jq j−1)

must be similar, for all j ≥ 1. Therefore the distance of the points
pi and p′i are as required, which proves Lemma 1.

Notice that the drawing resulting from the original pen is pro-
portional (similar) to the original drawing by a factor arising as a
product of the expansion factors of the corresponding anchors.

As another useful corollary of Lemma 1 we note that if the
point p0 is moving towards the point p′0 tracing a smooth rec-
tifiable curve γ0 then the point p j will be moving towards the
point p′j tracing a smooth rectifiable curve γ j which can be ob-
tained from γ0 by uniformly scaling by a corresponding factor
a0a1 · · · a j, possibly with additional translation, rotation and re-
flection. Therefore, as can be seen easily from Fig. 4, if p0 is
moving towards p′0 along a straight line then also pi is moving
towards p′i (along a straight line). Moreover, the orientation of
the curve is reflected, in the sense that if the expansion factor
|p j p′j |
p0 p′0

is equal to a, where a > 0, and the curve γ0 represents an

arrow
−−−→
p0 p′0 then the arrow

−−−→
p j p′j corresponding to the curve γ j is

reflected so as to satisfy

−−−→
p j p

′
j =

⎧⎪⎪⎨⎪⎪⎩
a(
−−−→
p0 p′0), if j is even

−a(
−−−→
p0 p′0), if j is odd

This property will turn out to be important in the proof of
Lemma 3 which is used in the proof of the main Theorem.

2.2 Phase Transition for a0a1 · · · an−1 � 1
Now we state and prove the existence of a phase transition phe-

nomenon when a0 · · · an−1 � 1.
Lemma 2 (Phase transition when a0a1 · · · an−1 � 1)

Consider a sequence of n anchor points q0, q1, . . . , qn−1 and as-
sociated expansion factors a0, a1, . . . , an−1, respectively. Assume
a0a1 · · · an−1 � 1. Any (a, q)-orbit visiting the points cyclically
in the order q0, q1, . . . , qn−1 is either closed or else if the product
a0 · · · an−1 is greater than 1, it is unbounded, and if the product
a0 · · · an−1 is less than 1 it is bounded.
Proof. Suppose that an orbit is started at a given point p0, and
after visiting the anchor points q0, q1, . . . , qn−1 cyclically in this
order it ends up at a point pn using the sequence of consecutive
antipodal operations as given below

p0 ⇒a0 ,q0 p1 ⇒a1 ,q1 p2 · · · pn−2 ⇒an−2 ,qn−2 pn−1 ⇒an−1 ,qn−1 pn

If pn = p0 then the orbit is closed (periodic).
Therefore without loss of generality we may suppose that p0

is different from pn and let d0 := |p0 pn| be the Euclidean dis-
tance between p0 and pn. Now continue the orbit starting from
the point pn and by traversing the anchor points q0, q1, . . . , qn−1

one is ending at the new point p2n. By repeated application of the
pantograph Lemma 1 mentioned above, if one traces the move-
ment of the point p0 to the point pn, the point pn will move along
the line joining p0 to pn by a distance d0 · (a0 · · · an−1). More-
over, the final position of pn will be p2n (the position at which p0

will end up after visiting all of the qi’s twice). If one visits all
of the qi’s k times, the distance between p(k−1)n and pnk will be
d0 · (a0 · · · an−1)k−1.

Now we can prove the phase transition claimed in the statement
of the lemma. On the one hand, if the product a0 · · · an−1 is bigger
than one, then |p(k−1)n pkn| → ∞, as n → ∞. On the other hand,
if a0 · · · an−1 is less than one then using the triangle inequality we
see that

|pkn p0| ≤
k∑

i=1

|p(i−1)n pin|

= d0

k∑

i=1

(a0 · · · an−1)i−1

≤ d0
1 − (a0 · · · an−1)k

1 − a0 · · · an−1
,

which is bounded because a0 · · · an−1 < 1.
To prove that the entire orbit is bounded we must employ a

similar argument for the remaining points of the orbit. To this
end, it is enough to define di := |p0 pi|, for i < n and repeat the
previous argument. This completes the proof of Lemma 2.

Lemma 2 shows that there is a phase transition for the
orbits generated from a point set q0, q1, . . . , qn−1 of anchors
with respective expansion factors a0, a1, . . . , an−1, provided that
a0a1 · · · an−1 � 1. Next we look at the case a0a1 · · · an−1 = 1.

2.3 Phase Transition for a0a1 · · · an−1 = 1
Now we state and prove the existence of a phase transition phe-

nomenon when a0 · · · an−1 = 1.
Lemma 3 (Phase transition when a0a1 · · · an−1 = 1)

Consider a sequence of n anchor points q0, q1, . . . , qn−1 and as-
sociated expansion factors a0, a1, . . . , an−1, respectively. Assume
a0a1 · · · an−1 = 1.
( 1 ) If n is odd then any (a,q)-orbit visiting the points cyclically

in the order q0, q1, . . . , qn−1 is periodic.
( 2 ) If n is even then any (a, q)-orbit visiting the points cyclically

in the order q0, q1, . . . , qn−1 is either periodic or unbounded.
Proof. Suppose that an orbit is started at a given point p0, and
after visiting the anchor points q0, q1, . . . , qn−1 cyclically in this
order it ends up at a point pn using the sequence of consecutive
antipodal operations as follows

p0 ⇒a0 ,q0 p1 ⇒a1 ,q1 p2 · · · pn−2 ⇒an−2 ,qn−2 pn−1 ⇒an−1 ,qn−1 pn

If pn = p0 then the resulting orbit is closed (periodic). So without

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

Fig. 6 Left picture: The four q0, q1, q2, q3 vertices of a square having the same expansion factor and a
periodic orbit with four points p0, p1, p2, p3. Right picture: The seven vertices q0, q1, . . . , q6 of a
convex polygon not having the same expansion factors and the resulting periodic orbit consisting
of four points p0, p1, p2, p3.

loss of generality one can assume that pn � p0.
To complete the proof we argue as follows. As noted above,

recall from Fig. 4 that every application of an antipodal opera-
tion reverses the direction of the arrow indicating the direction of
movement from the point pi to the point p′i . Therefore the rest of
the argument will depend on the parity of the index n.

Part 1. If n is odd. Consider the next n points
pn, pn+1, . . . , p2n−1 in the orbit of p0 and the line segments p0 pn

and pn p2n. As a consequence of the pantograph Lemma 1 these
segments are parallel and further |p0 pn| = |pn p2n|. Moreover, it
follows from the observation above that the movement between
the points p0 and pn has opposite orientation from the movement
between the points pn and p2n. As a result, p2n = p0, which
proves that the orbit is periodic.

Part 2. If n is even. Consider the consecutive groups of n

points pkn, pkn+1, . . . , p(k+1)n−1 as generated by the antipodal oper-
ation which follows the anchor points q0, q1, . . . , qn−1 cyclically,
for k = 0, 1, . . .. As a consequence of the pantograph Lemma 1,
the line segments pkn p(k+1)n, for k − 0, 1, . . . are parallel and of
equal length. Since |pkn p(k+1)n| � 0, as a consequence of the pan-
tograph Lemma 1, these are parallel and further |p0 pn| = |pn p2n|.
Moreover, it follows from the observation above that the move-
ment between the points pkn and p(k+1)n, for all k, has the same
orientation. As a consequence, the resulting orbit is unbounded.

This completes the proof of Lemma 3.

2.4 Proof of Theorem 1
Proof. Now we are in a position to complete the details of the
proof of Theorem 1. The results proven so far are equally valid in
1D with the interpretation that the anchor points lie on a straight
line and the starting points of the orbits are placed on this line.

We can extend the result to anchor points in space by project-
ing the anchor points to points of an infinite plane so that different
points in 3D are projected to different points in 2D (see Fig. 5).
The projection clearly maintains the same expansion factors for
the projected points. Additional details required to complete the
proof are left up to the reader.

By combining Lemmas 2 and 3 together with the above ob-
servation on projecting anchor points the proof of Theorem 1 is

Fig. 5 A set q0, q1, . . . , qn−1 of n anchors in 3D space. Each anchor qi is
projected to the infinite plane.

easily completed.

3. Orbits from Convex Polygons

Consider a convex polygon with vertices q0, q1, . . . , qn−1 in the
counterclockwise order (see Fig. 3). Each vertex qi is associated
with a positive real number ai, called the expansion factor. To
form an outer billiard orbit, one starts with an arbitrary point p0

which lies outside the convex polygon K and draws a straight
line tangent to K emanating from p0 and intersecting K at a ver-
tex so that K is to the left of this line. Let p1 be the point on this
line antipodal to p0 with expansion factor a0 *2. Now iterate the
same operation starting with the point p1 so that p2 is the point
antipodal to p1 and expansion factor a1, leading to the segment
p1 p2, and so on. See Fig. 3 which depicts an (a0, a1, . . . , an−1)-
orbit (outer billiard) generated from a starting point p0.

Example 1 Consider the example depicted in Fig. 6 below.
The left side of Fig. 6 depicts a periodic orbit with four points
p0, p1, p2, p3 having identical expansion factors arising from a
square with four vertices q0, q1, q2, q3. The right side of Fig. 6
depicts a periodic orbit consisting of four points p0, p1, p2, p3 for
a convex polygon with seven vertices q0, q1, . . . , q6 not having the
same expansion factors.

The example just described indicates the main difficulties with
characterizing phase transition phenomena for orbits arising from

*2 If the tangent is parallel to an edge then by convention we select as an-
tipodal point the first vertex of the convex polygon intersected by this
line.
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Fig. 7 A convex polygon with 7 vertices q0, q1, . . . , q6 and a periodic outer
billiard p0, p1, . . . , p6 in an outer billiard (orbit) for a convex polygon
with starting point p0.

convex polygons. First of all we must restrict our attention to non-
periodic orbits. Second, even for non-periodic orbits one must
take into account the fact that (non-)periodic orbits may omit ver-
tices of the convex polygon.

Therefore, unlike the case of orbits from anchor point sets al-
ready analyzed in Section 2 it is not a priori obvious that a condi-
tion on the size of the product a0a1 · · · an−1 can ensure a phase
transition on the boundedness of the resulting orbits. There-
fore the following question (which is similar to question posed
in Problem 1) is left as an open problem.

Problem 2 (Phase transition on convex polygons)
Suppose we are given a convex polygon with vertices
q0, q1, . . . , qn−1 and associated expansion factors, ai, for
i = 0, 1, 2, . . . , n − 1 respectively. Is there a phase transition
for the boundedness of non-periodic orbits which depends
on the value of the product a0a1 · · · an−1, in other words, if
a0a1 · · · an−1 < 1 then the orbit generated is bounded and if
a0a1 · · · an−1 ≥ 1 then the orbit generated is unbounded?

This problem subsumes the main question on the bounded-
ness of outer billiards initially posed by Neumann [4] and pop-
ularized by Moser [3], already mentioned in the related work in
Section 1.3. Therefore it is not expected to be easy.

In general we can prove the following theorem.
Theorem 2 For any sequence of n expansion fac-

tors a0, a1, . . . , an−1 there esist a sequence of n points
q0, q1, . . . , qn−1 forming a convex polygon and a periodic
orbit p0, p1, . . . , pn−1, pn = p0 visiting all the vertices of the
convex polygon in their given order such that

|piqi|
|qi pi+1| = ai, for all i = 0, 1, . . . , n − 1.

Proof. The proof is depicted in Fig. 7. Start with a sequence of
points p0, p1, . . . , pn−1, pn = p0 forming a convex polygon. On
each line segment pi pi+1 select a point qi so that

|piqi|
|qi pi+1| = ai,

for all i = 0, 1, . . . , n−1. Clearly, the points points q0, q1, . . . , qn−1

form a convex polygon. Moreover, the orbit associated with the
convex polygon q0, q1, . . . , qn−1 and emanating from the point p0

is periodic, by construction. This completes the proof of Theo-
rem 2.

4. Conclusion

In this paper we introduce a new dynamical system defined

in the Euclidean plane or space and study its phase transition
for point sets. For any sequence of n positive real numbers
a = (a0, a1, . . . , an−1), we analyze and characterize the bound-
edness of the resulting (a, q)-orbits, where q = (q0, q1, . . . , qn−1)
is a corresponding arbitrary sequence of n anchors in the plane.
In particular, we prove that there is a phase transition concerning
the boundedness of an (a,q)-orbit which depends on whether or
not a0a1 · · · an−1 < 1. We also propose several related problems
for orbits arising from considering collections of anchor points
forming a convex polygon.
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