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Abstract: We show that every minimum area isosceles triangle containing a given triangle T shares a side and an
angle with T . This proves a conjecture of Nandakumar motivated by a computational problem. We use our result to
deduce that for every triangle T , (1) there are at most 3 minimum area isosceles triangles that contain T , and (2) there
exists an isosceles triangle containing T whose area is smaller than

√
2 times the area of T . Both bounds are best

possible.
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1. Introduction

Given two convex bodies, T ′ and T , in the plane, it is not easy
to decide whether there is a rigid motion that takes T ′ into a po-
sition where it covers T . Suppose, for instance, that we place a
2-dimensional convex body T ′ in the 3-dimensional space, and
let T denote the orthogonal projection of T ′ onto the x-y plane.
The area of T ′ is at least as large as the area of T , and it looks
plausible that T ′ can be moved to cover T . However, the proof of
this fact is far from straightforward; see Refs. [3], [12]. As Stein-
haus [21] pointed out, it is not even clear how to decide, whether a
given triangle T ′ can be brought into a position where it covers a
fixed triangle T . The first such algorithm was found by Post [17]
in 1993, and it was based on the following lemma.
Lemma 1.1 (Post). If a triangle T ′ can be moved to a position

where it covers another triangle T , then one can also find a cov-

ering position of T ′ with a side that contains a side of T .

In many problems, the body T ′ is not fixed, but can be cho-
sen from a family of possible “containers,” and we want to find
a container which is in some sense optimal. To find a mini-
mum area or minimum perimeter triangle, rectangle, convex k-
gon, or ellipse (Löwner-John ellipse) enclosing a given set of
points are classical problems in geometry with interesting ap-
plications in packing and covering, approximation, convexity,
computational geometry, robotics, and elsewhere [1], [2], [4], [5],
[6], [8], [9], [10], [16], [18], [19]. Finding optimal circumscrib-
ing and inscribed simplices, ellipsoids, polytopes with a fixed
number of sides or vertices, etc., are fundamental questions in
optimization, functional analysis, and number theory; see e.g.,
Refs. [7], [11], [13], [20], [22].
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Motivated by a computational problem, Nandakumar [15]
raised the following interesting special instance of the above
question: Determine the minimum area of an isosceles triangle

containing a given triangle T . The aim of the present note is to
solve this problem and to find all triangles for which the minimum
is attained. We call these triangles minimum area isosceles con-

tainers for T . It is easy to verify that every triangle has at least
one minimum area isosceles container (see Lemma 3.1). How-
ever, we will see that in some cases the minimum area isosceles
container is not unique.

Our main objective is to prove the following statement conjec-
tured by Nandakumar [15].
Theorem 1.2. Let T be a triangle and let T ′ ⊇ T be one of its

minimum area isosceles containers. Then, T ′ and T have a side

in common, and their angles at one of the endpoints of this side

are equal.

For any two points, A and B, let AB denote the closed seg-
ment connecting them, and let |AB| stand for the length of AB.
To unify the presentation, in the sequel we fix a triangle T with
vertices A, B,C, and side lengths a = |BC|, b = |AC|, c = |AB|. If
two sides are of the same length, then T is the unique minimum
area isosceles container of itself, so there is nothing to prove.
Therefore, from now on we assume without loss of generality
that a < b < c.

To establish Theorem 1.2 and to formulate our further results,
we need to introduce some special isosceles triangles associated
with the triangle ABC, each of which shares a side and an angle
with ABC.

Special containers of the first kind. Let B′ denote the point
on the ray �CB, for which |B′C| = |AC| = b (see Fig. 1). Analo-
gously, let C′ (and C′′) denote the points on �AC (resp., �BC) such
that |AC′| = c (resp., |BC′′| = c). Obviously, the triangles AB′C,
ABC′, and ABC′′ are isosceles. We call them special containers
of the first kind associated with ABC.

Special containers of the second kind. Let B1 denote the
point on the ray �AB, different from A, for which |B1C| = |AC| = b

(see Fig. 2). Analogously, let C1 (resp., C2) denote the point on
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Fig. 1 Special containers of the first kind AB′C, ABC′, and ABC′′.

Fig. 2 Special containers of the second kind AB1C, ABC1, and ABC2.

�AC (resp., �BC) for which |BC1| = |AB| = c and C1 � A (resp.,
|AC2| = |AB| = c and C2 � B). The triangles AB1C, ABC1, and
ABC2 are called the special containers of the second kind associ-
ated with ABC.

Special containers of the third kind. Let A be the intersec-
tion of the perpendicular bisector of BC and the line AC. Since
we have b = |AC| < |AB| = c, the point A lies outside of ABC.
Analogously, denote by B (resp., C) the intersection of the per-
pendicular bisector of AC (resp. AB) and the line BC. Note that
ABC and ABC do not contain ABC if �BCA ≥ 90◦. The tri-
angles ABC, ABC, and ABC are called special containers of the
third kind associated with ABC, provided that they contain ABC.
Thus, if ABC is acute, then it has three special containers of the
third kind. Otherwise, it has only one (see Fig. 3).

All special containers share a common angle and a common
side with the original triangle ABC. Obviously, there is no other
isosceles container having the same property. Indeed, for each
vertex of ABC, there are at most 3 isosceles triangles that share
this vertex and the angle at this vertex with ABC, and also have a
common side with ABC.

Therefore, Theorem 1.2 is an immediate corollary of the fol-
lowing statement.
Theorem 1.3. All minimum area isosceles containers for a trian-

gle are special containers of the first kind, or of the second kind,

or of the third kind.

Whenever a minimum area isosceles container of a triangle is
acute, we can be more specific.
Theorem 1.4. If a minimum area isosceles container of a trian-

gle is acute, then it is a special container of the first kind.

One is tempted to believe that if a triangle is acute, then all of

Fig. 3 Special containers of the third kind in the acute and in the non-acute
cases.

its minimum area isosceles containers are acute and, hence, all of
them are special containers of the first kind. However, this is not
the case: Example 5.1 demonstrates that there are acute triangles
with obtuse minimum area isosceles containers. As all special
containers of the first kind and the third kind of an acute triangle
are acute, Theorem 1.4 implies the following statement.
Corollary 1.5. A minimum area isosceles container for an acute

triangle is obtuse if and only if it is a special container of the

second kind.

It follows from Theorem 1.3 that every triangle has at most 9
minimum area isosceles containers: at most 3 special containers
of each kind. In the next section, we prove that there is no mini-
mum area isosceles container of the third kind (see Lemma 2.2).
Thus, every triangle can have at most 6 minimum area isosceles
containers. In fact, this bound can be further reduced to 3.
Theorem 1.6. Every non-isosceles triangle ABC has at most 3
minimum area isosceles containers, AB′C, ABC′, and AB1C. In

particular, every minimum area isosceles container is a special

container of the first or of the second kind.

There is a unique triangle T ∗, up to similarity, which has pre-

cisely 3 different minimum area isosceles containers. Its angles

are α∗ ≈ 41.831452◦, 2α∗, and 180◦ −3α∗, where α∗ is the unique

solution of sin(α) sin(2α)−sin2(3α) = 0 in the interval [36◦, 45◦].
Finally, we discuss how large the area of a minimum area

isosceles container for a triangle T can be relative to the area of
T . We also consider the same question for special containers of
the first kind.
Theorem 1.7. (a) Every triangle of area 1 has an isosceles con-

tainer whose area is smaller than
√

2.

(b) Every triangle of area 1 has a special container of the first

kind, whose area is smaller than 1+
√

5
2 .

Both bounds are best possible.
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As (b) is best possible, there exists a triangle of area 1 for which
every special container of the first kind has area larger than 1+

√
5

2 .
Therefore, by (a), none of its special containers of the first kind
can be a minimum area isosceles container. This disproves an ear-
lier conjecture of Nandakumar, according to which every triangle
T admits a minimum area isosceles container which is a special
container of the first kind.

Our paper is organized as follows. In Section 2, we prove some
useful inequalities for the areas of special containers. In partic-
ular, we prove Theorem 1.7 (b). In Section 3, we establish some
elementary properties of minimum area isosceles containers. Sec-
tion 4 contains the proofs of Theorems 1.3, and 1.4. Finally, The-
orems 1.6, and 1.7 (a) are proved in Section 5.

2. Preliminaries—Proof of Theorem 1.7 (b)

In this section, we collect some basic facts about special con-
tainers and establish Theorem 1.7 (b).

First, we consider special containers of the first kind, because
their areas can be easily compared to the area of the triangle ABC.
As everywhere else, we assume that the side lengths of ABC sat-
isfy a < b < c. The area of ABC is denoted by t(ABC).
Lemma 2.1. For any non-isosceles triangle ABC, we have

(a) t(ABC′′) > t(ABC′),
(b) t(AB′C) > t(ABC′) (resp., t(AB′C) ≥ t(ABC′))

if and only if b2 > ac (resp., b2 ≥ ac).
Proof. Let m be the length of the altitude of ABC perpendicular
to the side BC. We have t(ABC) = a·m

2 and t(AB′C) = b·m
2 . Thus,

the ratio t(AB′C)/t(ABC) = b/a.
Similar arguments show that

t(ABC′)
t(ABC)

=
c
b

and
t(ABC′′)
t(ABC)

=
c
a
.

(a) Since b > a, we have t(ABC′′) > t(ABC′).
(b) Straightforward. �

Next, using Lemma 2.1, we determine the supremum of the ra-
tio of the area of the smallest isosceles containers of the first kind
to the area of the original triangle ABC. This will also provide an
upper bound for the ratio of the area of a smallest area isosceles

containers to the area of the original triangle. This fact will be
used in the sequel.
Proof of Theorem 1.7 (b). Let r∗1 denote the supremum of the
ratio of the area of a smallest container of the first kind associ-
ated with ABC and the area of ABC, over all triangles ABC with
the above property. We show that r∗1 =

1+
√

5
2 . Suppose without

loss of generality that a = 1. By our assumptions and the triangle
inequality, we have 1 < b < c < b + 1. Let

r(b, c) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
b if b2 ≤ c,

c/b if b2 > c.

By Lemma 2.1, r(b, c) = min
(

t(AB′C)
t(ABC) ,

t(ABC′)
t(ABC)

)
, and

r∗1 = sup
1<b<c<b+1

r(b, c).

If b2 ≤ c < b + 1, then r(b, c) = b < 1+
√

5
2 .

If b2 > c and b < 1+
√

5
2 , then r(b, c) = c

b < b < 1+
√

5
2 . Other-

wise, if b ≥ 1+
√

5
2 (and, hence, b2 > c), then r(b, c) = c

b <
b+1

b =

Fig. 4 Proof of Lemma 2.2.

1+ 1
b ≤ 1+ 2

1+
√

5
= 1+

√
5

2 . Thus, we obtain that r(b, c) < r∗1 ≤ 1+
√

5
2 ,

for all 1 < b < c < b + 1, i.e, the supremum r∗1 is not attained for
any triangle ABC.

The supremum of r(b, c), restricted to the parabola arc c = b2 <

b + 1 in the (b, c) plane, is 1+
√

5
2 . Since every point (b, c) of this

arc corresponds to a triangle with side lengths 1, b, c, we obtain
that r∗1 =

1+
√

5
2 , as required. �

We show that for any special container of the third kind, there
exists a special container of the second kind whose area is smaller.
Lemma 2.2. For any triangle ABC we have t(AB1C) < t(ABC).
If ABC is acute, then we also have t(ABC1) < t(ABC) and

t(ABC2) < t(ABC). Thus, a minimum area isosceles container

can never be a special container of the third kind.

Proof. We verify only the first inequality; the other two state-
ments can be shown analogously.

Assign planar coordinates to the points. We can assume with-
out loss of generality that A = (0, 0), B = (2, 0), C = (p, q), and
C = (1, d). Then t(ABC) = d. The equation of the line passing
through B, C, and C is dx + y = 2d. Taking p = 1 + s for some
0 < s < 1, we have q = d(1 − s) and B1 = (2(1 + s), 0). Hence,
t(AB1C) = d(1 − s2) < d = t(ABC). �

3. Four Useful Lemmas

The aim of this section is to prepare the ground for the proofs
of the main results that will be given in the next two sections.

First, we show that the problem is well-defined, that is, for ev-
ery triangle ABC, there is at least one isosceles triangle containing
ABC, whose area is smaller than or equal to the area of any other
isosceles container.
Lemma 3.1. Every triangle ABC has at least one minimum area

isosceles container.

Proof. It follows from Theorem 1.7 (b) that the area of a mini-
mum area isosceles container is at most 1+

√
5

2 times larger than
the area of the original triangle ABC. Therefore, the vertices of
any minimum area isosceles container must lie within a bounded
distance from ABC, and the statement follows by a standard com-
pactness argument. �
Lemma 3.2. Let ABC be a triangle and S PR a minimum area

isosceles container for ABC. Then A, B,C must lie on the bound-

ary of S PR, and each side of S PR contains at least one of them.

Proof. First, we show that each side of S PR contains a vertex
of ABC. Indeed, if one of the sides did not contain any vertex of
ABC, then we could slightly move it, parallel to itself, to obtain a
smaller isosceles container.

Assume next, for contradiction, that A, say, does not lie on the
boundary of S PR. Then we could slightly rotate ABC about B or
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Fig. 5 Illustration for the proof of Lemma 3.3.

C, to bring it into a position where only one of its vertices lies on
the boundary of S PR. However, in that case, at least one of the
sides of S PR would contain no vertex of ABC. �

Let S PR be an isosceles triangle and let mS ,mP,mR denote
the midpoints of the sides PR, S R, and S P, respectively. The
boundary of S PR splits into three polygonal pieces, m̂PmR, m̂RmS

and m̂S mP, each of which consists of two closed line segments.
Namely,

m̂PmR = mPS ∪ S mR,

m̂RmS = mRP ∪ PmS ,

m̂S mP = mS R ∪ RmP.

See Fig. 5.
Lemma 3.3. Let ABC be a triangle and S PR a minimum area

isosceles container for ABC. Then, each of the closed polygonal

pieces m̂PmR, m̂RmS , and m̂S mP contains precisely one vertex of

ABC.

Proof. By Lemma 3.2, the vertices A, B,C lie on the boundary of
S PR. Suppose for contradiction that the closed polygonal piece
m̂PmS contains two vertices of ABC. We may and do assume
without loss of generality that these vertices are A and C.

Let T1 and T2 denote the intersection points of the seg-
ment mPmS with AB and CB, respectively. The quadrilateral
CAT1T2 ⊆ RmPmS , so that t(CAT1T2) ≤ t(RmPmS ). Since
|T1T2| ≤ |mPmS |, we have t(T2T1B) ≤ t(mS mPmR). Consequently,
we get

t(ABC) ≤ t(RmPmS ) + t(mS mPmR) =
1
2

t(S PR).

Equality holds if and only if A = R, B = S ,C = mS or
A = mP, B = P,C = R.

On the other hand, by Theorem 1.7 (b), we obtain t(S PR) <
1+
√

5
2 t(ABC), the desired contradiction. �

Lemma 3.4. Let ABC be a triangle and S PR a minimal area

isosceles container for ABC. Then ABC and S PR have a com-

mon vertex.

Proof. By Lemma 3.2, the points A, B,C must lie on the bound-
ary S PR. Suppose for contradiction that none of them is a vertex
of S PR. In view of Lemmas 3.2 and 3.3, there are two possibili-
ties: each of the segments mPR,mRS ,mS P contains precisely one
vertex of ABC, or each of the segments mPS ,mRP,mS R contains
precisely one vertex of ABC. Suppose without loss of generality
that A ∈ mPR, B ∈ mRS ,C ∈ mS P, as in Fig. 6.

Fig. 6 Illustration for the proof of Lemma 3.4.

Let Q denote the center of the circle circumscribed around
S PR. It is easy to see that a small clockwise rotation about Q

will take ABC into a position such that all of its vertices lie in the
interior of the triangle S PR. This contradicts the minimality of
S PR and Lemma 3.2. �

4. Nandakumar’s Conjecture—Proofs of The-
orems 1.3 and 1.4

We start with the proof of Theorem 1.3, which immediately
implies Nandakumar’s conjecture (Theorem 1.2).
Proof of Theorem 1.3. Let S PR be a minimum area container
for ABC with apex R. By Lemma 3.2, A, B, and C are on the
boundary of S PR, and, by Lemma 3.4, the triangles S PR and
ABC share a vertex. Using Lemma 3.3 under the assumption that
ABC � S PR, we can distinguish 8 cases, up to symmetry (see
Fig. 7). Cases (1)–(3) represent those instances when ABC and
S PR have two common vertices. In these cases, S PR is a special
container of the first, the second, and the third kind, respectively,
so we are done.

In the remaining cases, ABC and S PR have only one vertex in
common. In cases (4)–(6), this vertex is a base vertex (say, S ) of
S PR. Finally, in cases (7)–(8), R is the unique common vertex of
ABC and S PR. It is sufficient to show that in cases (4)–(8), the
area of S PR is not minimal.

First, we discuss cases (5)–(8). Case (4) is more delicate and
is left to the end of the proof.

Cases (5) and (6) are analogous. Let D denote the vertex of
ABC lying on RP. In both cases, we have ABC ⊆ S PD. Clearly,
S PR is a special container of the third kind associated with S PD,
and by Lemma 2.2, it cannot be minimal. Since every container
for S PD is also a container for ABC, we conclude that S PR is not
a minimum area container for ABC.

In case (7), we can find an isosceles triangle with apex R which
contains ABC and whose base is properly contained in PS . Thus,
S PR was not minimal.

In case (8), one vertex of ABC is R, another (denoted by D) be-
longs to S mR, and the third lies on PmS . Since S PR is an isosce-
les triangle, we have �RDS ≥ 90◦. Hence, ABC can be slightly
rotated about R so that it remains within S PR, which leads to a
contradiction.

It remains to handle case (4). We distinguish two subcases.
Denote the apex angle �S RP by δ. If δ ≥ 60◦, then we can rotate
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Fig. 7 The 8 cases up to symmetry. Triangle ABC is shaded.

ABC about S . Indeed, vertex D of ABC belongs to mS P, while
the base of the altitude belonging to PR lies on mS R. Hence, we
have �S DP ≥ 90◦, and the image of ABC through a small clock-
wise rotation about S is still contained in S PR. Therefore, in this
case, S PR cannot be minimal either.

Therefore, from now on we assume δ < 60◦. Choose a suitable
coordinate system, in which the vertices of ABC are (0, 0), (s, 0),
and D = (p, q). We also have S = (0, 0) and R = (s + x, 0) for
some x > 0. Since δ < 60◦ < 90◦, vertex D is to the left of R, that
is, p < s + x.
By simple calculation,

P = (s + x, 0) +
(s + x)√

(p − (s + x))2 + q2
(p − (s + x), q). (1)

Denote by m the length of the altitude of S PR belonging to the
side S R. Then, m is equal to the second coordinate of P (see
Fig. 8). We have

m =
q(s + x)√

(p − (s + x))2 + q2
.

Let us compute the derivative of the function

f (x) = 2t(S PR) = q(s + x)2 · ((p − (s + x))2 + q2)− 1
2 .

We obtain

f ′(x) = 2q(s + x)
(
(p − (s + x))2 + q2)− 1

2

+ q(s + x)2(p − (s + x))
(
(p − (s + x))2 + q2)− 3

2

Fig. 8 Possible realizations of Case (4) when δ < 60◦.

= q(s + x)
(
(p − (s + x))2 + q2)− 3

2

· [(p − (s + x))(2p − (s + x)) + 2q2]
= q (s + x)

(
(p − (s + x))2 + q2

)− 3
2

︸�����������������������������������︷︷�����������������������������������︸
>0

·
⎡⎢⎢⎢⎢⎢⎣
(

3
2

p − (s + x)

)2

− 1
4

p2 + 2q2

⎤⎥⎥⎥⎥⎥⎦ .
Case (4/a1): q ≥ 1

2 p. Then, − 1
4 p2 + 2q2 > 0, and hence,

f ′(x) > 0 for all x ≥ 0. Thus, f is strictly increasing and since
x cannot be negative, f takes its minimum at x = 0. This means
that the area of a special container of the first kind where x = 0
(see the triangle with dashed sides on Fig. 8 (4/a)) is smaller than
the area of S PR for x > 0.

Case (4/a2): 2p < s + x. Then 1
2 p < (s + x) − 3

2 p, so that
( 3

2 p − (s + x))2 − ( 1
2 p)2 > 0. Again, we have f ′(x) > 0 for all

x ≥ 0 and, as above, we obtain a special container of the first kind
whose area is smaller than the area of S PR (see Fig. 8 (4/a)).

Case (4/b): q < 1
2 p and 2p ≥ s + x. Let Δ denote the triangle

with vertices (0, 0), (p, q), and (2p, 0). It follows from the in-
equality 2p ≥ s + x that Δ is an isosceles container of the second
kind associated with ABC (see Fig. 8 (4/b)). We show that Δ has
smaller area than S PR. To prove this, we have to verify that

t(Δ) = pq < q
(s + x)2

2
√

(p − (s + x))2 + q2
= t(S PR).

Using our assumption that (p, q) ∈ mS P, we obtain

p ≤ s + x +
(s + x)(p − (s + x))

2
√

(p − (s + x))2 + q2
.

The right-hand side of the last inequality is the first coordinate
of the midpoint mS of PR, where P is given by formula (1) and
R = (s + x, 0). Thus, it is sufficient to show that

(s + x) +
(s + x)(p − (s + x))

2
√

(p − (s + x))2 + q2
<

(s + x)2

2
√

(p − (s + x))2 + q2
,
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Fig. 9 An acute minimum area isosceles container cannot be a special con-
tainer of the second kind.

which reduces to 3p2+4q2 < 4(s+ x)p. The last inequality holds,
because p < s+x and, by our assumption, 2q ≤ p. This completes
the proof of Theorem 1.3. �
Proof of Theorem 1.4. By Theorem 1.3, every minimum area
isosceles container for a triangle ABC is one of its special con-
tainers. By Lemma 2.2, it must be a special container of the first
or of the second kind.

Suppose for a contradiction that a minimum area special con-
tainer S PR associated with the triangle ABC is acute, but it is of
the second kind. Assume without loss of generality that S = B

and R = A. (The other cases can be treated in a similar manner.)
By our notation, P = C2. We prove that t(ABC′) < t(ABC2) =
t(S PR) (see Fig. 9).

Indeed, we have |AB| = |AC2| = |AC′| and �C′AB <

�C2AB. Since S PR = ABC2 is acute, it follows that t(ABC′) <
t(ABC2). �
Corollary 4.1. If a minimum area isosceles container for ABC is

a special container of the second kind, then it must be AB1C.

Proof. By Theorem 1.4, if a special container of the second kind
has minimum area, then it has to be non-acute. If ABC2 is non-
acute, then ABC1 is obtuse and t(ABC2) > t(ABC1), because
|AB| = |AC1| = |AC2| and �ABC1 > �BAC2 ≥ 90◦. On the
other hand, as AB1C and ABC1 share a base angle at A and b < c,
it follows that t(ABC1) > t(AB1C). �

5. Quantitative results—Proofs of
Theorems 1.6 and 1.7 (a)

Proof of Theorem 1.6. By Theorem 1.3, a minimal area isosce-
les container for ABC is a special container associated with ABC.
In view of Lemma 2.2, it must be a special container of the first
or second kind. By Lemma 2.1 (a) and Corollary 4.1, among spe-
cial containers of the first kind, it is enough to consider ABC′

and AB′C, and among special containers of the second kind, only
AB1C. These immediately show that every triangle ABC admits
at most 3 minimum area isosceles containers.

If ABC is an obtuse or right triangle, then t(AB′C) > t(AB1C).
Indeed, in this case |AC| = |CB′| = |CB1|, both AB′C and
AB1C are obtuse or right triangles, and their apex angles satisfy
�ACB′ < �ACB1. Thus, there are only two candidates for a min-
imum area isosceles container: ABC′ and AB1C.

If ABC is an acute triangle and it has 3 minimum area isosce-
les containers, then t(AB′C) = t(ABC′) = t(AB1C). Since

t(BCB1) = t(BCC′), we obtain

(c − b) sin(α + β) = b sin(β − α). (2)

Note that this equation also holds when ABC is obtuse.
It follows from equation (2) that c

b =
2 sin(β) cos(α)

sin(α+β) . By
Lemma 2.1 (b), the equation t(AB′C) = t(ABC′) reduces to c

b =
b
a . Thus, sin(β)

sin(α) =
2 sin(β) cos(α)

sin(α+β) , so that sin(α + β) = sin(2α). There-
fore, either α = β, which is impossible, or 180◦−(α+β) = γ = 2α.

It follows from c
b =

b
a that

sin(2α)
sin(3α)

=
sin(3α)
sin(α)

. (3)

Since ABC is acute, its smallest angle is α, and 180◦ − 3α = β <
γ = 2α, we have that 36◦ < α < 45◦. Simple analysis shows that
equation (3) has exactly one solution α∗ in the interval [36◦, 45◦].
It can be approximated by computer. The other two angles of the
corresponding triangle are β∗ = 180◦ − 3α∗ and γ∗ = 2α∗. �
Example 5.1. By the proof of Theorem 1.6, any minimal area
isosceles container for ABC is either AB′C, or ABC′, or AB1C.
Here, we construct a family of acute triangles ABC whose only
minimal area isosceles containers are special containers of the
second kind, i.e., AB1C. Moreover, AB1C is obtuse.

Let α > α∗ and 90◦ > γ > 2α > γ∗. Then, denoting by
β = 180◦ − α − γ we obtain that

sin(γ)
sin(β)

>
sin(γ∗)
sin(β∗)

=
sin(β∗)
sin(α∗)

>
sin(β)
sin(α)

,

which implies that t(AB′C) < t(ABC′). The triangles AB1C and
AB′C are isosceles with legs of length b, so it is enough to show
that sin(�ACB1) = sin(180◦ − 2α) < sin(γ) = sin(�ACB′). How-
ever, this follows from the inequalities 90◦ > γ > 2α. The base
angle of AB1C satisfies α < 45◦, so that AB1C is obtuse.
Proof of Theorem 1.7 (a): Let r∗ denote the supremum of the ra-
tio of the area of a minimum area isosceles container of a triangle
to the area of the triangle itself. In view of Theorem 1.6, we have

r∗ = sup
triangle ABC

min

(
t(AB′C)
t(ABC)

,
t(ABC′)
t(ABC)

,
t(AB1C)
t(ABC)

)
.

If β ≥ 45◦, then sin(β) ≥ 1√
2
. Using the proof of Lemma 2.1 (b)

and the law of sines, we obtain

t(ABC′)
t(ABC)

=
c
b
=

sin(γ)
sin(β)

≤ 1
1√
2

=
√

2.

Equality holds here if and only if β = 45◦ and γ = 90◦, in which
case ABC is an isosceles triangle and the ratio of the area of the
minimum isosceles container to the area of ABC is 1.

If β < 45◦, then γ > 90◦. Hence, ABC is obtuse and, by the
proof of Theorem 1.6, the minimum area isosceles container is
ABC′ or AB1C. For fixed β and c, we can express the ratios of the
areas as functions of α. Let

f (α) =
t(ABC′)
t(ABC)

=
c
b

and

g(α) =
t(AB1C)
t(ABC)

=
2b cos(α)

b cos(α) + a cos(β)
=

1
1
2 +

tan(α)
2 tan(β)

,
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where 0 < α < β. Obviously, f (α) is strictly increasing and g(α)
is strictly decreasing on the open interval (0, β), and both func-
tions are continuous. We have

lim
α→0+

f (α) = 1, 1 < lim
α→β− f (α) < 2,

lim
α→0+

g(α) = 2, lim
α→β− g(α) = 1.

Therefore, the graphs of f and g intersect at a unique point z.
Thus, max

0<α<β
(min ( f (α), g(α))) = f (z) = g(z), which implies

t(ABC′) = t(AB1C). This means that t(BCB1) = t(BCC′), so
that equation (2) above holds. Using the law of sines, we obtain
( c

b )2 = 2 cos(z) < 2 and, hence, c
b <

√
2. If β → 0, then z → 0

and c/b → √2. This implies that r∗ =
√

2, but the supremum is
not realized by any triangle ABC. �
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[6] Fejes Tóth, L.: Lagerungen in der Ebene, auf der Kugel und im Raum,
Die Grundlehren der Mathematischen Wissenschaften (in German),
Vol.LXV, Springer-Verlag, Berlin (1953).

[7] Grötschel, M., Lovász, L. and Schrijver, A.: Geometric Algorithms
and Combinatorial Optimization, Springer (1988).

[8] Ismailescu, D.: Circumscribed polygons of small area, Discrete &
Computational Geometry, Vol.41, pp.583–589 (2009).

[9] Jerrard, R.P. and Wetzel, J.E.: Equilateral triangles and triangles,
Amer. Math. Monthly, Vol.109, No.10, pp.909–915 (2002).

[10] John, F.: Extremum problems with inequalities as subsidiary condi-
tions, Studies and Essays presented to R. Courant on his 60th birthday,
Interscience Publishers, pp.187–204 (1948).

[11] Kanazawa, A.: On the minimal volume of simplices enclosing a con-
vex body, Archiv der Mathematik, Vol.102, No.5, pp.489–492 (2014).
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Budapest in 2014. In 2015, he became as-
sistant professor at the Budapest Univer-
sity of Technology. From 2016 to 2018,
he was a postdoctoral research fellow at
the University of Luxembourg. Currently,
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