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Abstract: Every net of an isotetrahedron (I) or a rectangle dihedron (RD) is a Conway tile. Reversely, it is shown by
using Alexandrov’s theorem that every Conway tile can be folded into either I or RD. However, it was not known how
to fold a given Conway tile into I or RD. The purpose of this paper is to give an algorithm for folding a Conway tile
into I or RD. Moreover, for a given Conway tile we present a method to identify the exact shape of I or RD into which
it can be folded.
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1. Conway Criterion and Conway Tiles

We first state the Conway criterion which is used throughout
the paper.
Conway criterion [13]

A given region (figure) can tile the plane using only transla-
tions and 180◦ rotations if its perimeter can be divided into six
parts by six consecutive points A, B, C, D, E and F, all located on
its perimeter, such that:
(a) The perimeter part AB is congruent to the perimeter part ED
by translation τ, in which

τ(A) = E, τ(B) = D.

(b) Each of the perimeter parts BC, CD, EF and FA is centrosym-
metric, that is, each part coincides with itself when the region
(figure) is rotated by 180◦ around its midpoint.
(c) Some of the six points may coincide but at least three of them
must be distinct.

A region satisfying the Conway criterion is called a Conway
tile. A cutting tree, denoted by CT, of a polyhedron P or dihe-
dron D is a tree drawn on the surface of P or D which spans all
vertices of P or D. An unfolding (or a net) of P or D is a pla-
nar region obtained by cutting along all edges of a CT of P or D
(Fig. 1).
Theorem 1-1 [2], [7]

Every unfolding of an isotetrahedron or a rectangle dihedron

Fig. 1 A cutting tree and a net of P.
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is a Conway tile.

For a Conway tile N, a 4-base of N is defined as a set of four
midpoints of centrosymmetric parts of N under the assumption
that the midpoint of a centrosymmetric part XY is X (= Y) if X
coincides with Y. Thus, there exists a 4-base for any Conway tile
N. Notice that a Conway tile may have many different 4-bases
(Fig. 2).
Theorem 1-2 [9]

Let N be a Conway tile with its 4-base v1, v2, v3 and v4. Then

these four points form a parallelogram.

The four points in the 4-base of a Conway tile N play an im-
portant role when N is folded into an isotetrahedron or a rectangle
dihedron.
Theorem 1-3

Every Conway tile is foldable into either an isotetrahedron or

a rectangle dihedron whose vertices are four points of its 4-base.

Sketch of Proof
Let N be an arbitrary Conway tile. Let A, B, C, D, E and F

be the six consecutive points on the perimeter of N, which satisfy
the conditions of Conway criterion.

A perimeter of N consists of at most 4 centrosymmetric pairs
Bv1 and Cv1, Cv2 and Dv2, Ev3 and Fv3 and Fv4 and Av4 of the
perimeter parts, having their midpoints v1, v2, v3 and v4 and at
most one pair of congruent perimeter parts AB and ED.

Glue centrosymmetric pairs of the perimeter parts together and
also glue one pair of congruent perimeter parts. The gluing re-
sult is a topological sphere. Besides, the gluing result has just 4
points, where the sum of the angles is 180◦, which is proved as
follows. Let P be a point on the perimeter of N other than v1,

Fig. 2 Three different 4-bases {v1, v2, v3, v4} of a Conway tile.
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v2, v3 and v4, and the inner angle of P be α. Since P is on the
parallel congruent part or on the centrosymmetric part, P has a
unique point P′ with the inner angle α′ (= 360◦ − α), where P
and P′ are glued. Therefore, the sum of the angles of the other
points than v1, v2, v3 and v4 on the topological sphere is 360◦. By
Alexandrov’s theorem (see details [12]), N is folded into either
a polyhedron or a dihedron whose vertices are v1, v2, v3 and v4.
Therefore the resultant polyhedron or dihedron is either an isote-
trahedron or a rectangle dihedron whose four vertices are four
points of the 4-base of N. �

Let the gluing of the perimeter of a Conway tile N be
called “Conway gluing” when centrosymmetric pairs of parts of
perimeter of N are glued and a pair of congruent perimeter parts
of perimeter of N is glued.

In Refs. [5], [11], [12], all convex polyhedra and dihedra are
determined, into which a square is folded. Figure 3 illustrates
four cases of them where a square is folded into an isotetrahe-
dron or a rectangle dihedron. In all those cases, the perimeter of
a square is glued by Conway gluing.

Fig. 3 A, B, C, D, E and F on the perimeter of a square satisfying the
Conway criterion.

2. Foldability and Reversible Transformation

Since foldability of figures has a strong connection with their
reversibility, we explain the known results on reversible trans-
formation in this section.

Figure 4 illustrates the famous Dudeney’s Harberdasher’s puz-
zle. Haberdasher’s puzzle asks one to dissect an equilateral trian-
gle (referred to as P) into several pieces and rearrange them to
make a square (referred to as Q) after hinging the pieces like a
chain (Fig. 4). By scrutinizing the essence of the Haberdasher’s
puzzle, a reversible transformation between a pair of figures P
and Q is defined in Refs. [7], [8] as follows:
A pair of figures P and Q is said to be reversible if P and Q satisfy
the following conditions:
1. There exists a cutting tree CTQ along which P is dissected into

n pieces.
2. Hinge n pieces at n − 1 endvertices of CTQ to make a chain of

n pieces.
3. Fix an endpiece of the chain of pieces and rotate the remaining

pieces monotonously clockwise, counter-clockwise to obtain
P, Q respectively.

4. In this reversible transformation, all dissection lines of P (i.e.,
edge of CTQ inside P) are located on the perimeter of Q and
all perimeter parts of P are located in the interior of Q (which
form CTP inside Q), and vice-versa (reversible condition).
Notice that both an equilateral triangle and a square are

Conway tiles. By Conway gluing an equilateral triangle, a square,
respectively, an identical isotetrahedron is obtained (Fig. 5). In
other word, this istotetrahedron generates a reversible pair of
Haberdasher’s Puzzle.

In general, the following theorem holds for every reversible
pair of plane figures.
Theorem 2-1 [4]

A pair of figures P and Q is reversible if and only if there exists

a polyhedron or a dihedron W such that the cutting trees CTP and

CTQ do not intersect on the surface of W.

Fig. 4 Haberdasher’s Puzzle.

Fig. 5 An identical isotetrahedron generates a reversible pair of
Haberdasher’s Puzzle.
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Fig. 6 RP and RQ tile the plane like a checkerboard.

(a)

(b) checkerboard tiling by RP and RQ

Fig. 7 (a) illustrates a pair of Conway tiles P, Q and their trunk and conju-
gate trunk RP, RQ. (b) shows a checkerboard tiling by RP and RQ.
@Jin Akiyama

The polyhedron or a dihedron W in Theorem 2-1 is called a
mother (or generating) polyhedron for P and Q.

Theorem 2-1 suggests the following fact: Suppose A and B are

a reversible pair and W is their mother polyhedron or dihedron,

then try to fold B into W if it is hard to fold A into W.

A pair of Conway tiles P and Q is called non-intersecting if P
and Q satisfy the following two conditions ( 1 ) and ( 2 ):
( 1 ) A 4-base of P is identical to a 4-base of Q.
( 2 ) Two regions RP inside P and RQ inside Q (they are called

trunk and conjugate trunk, respectively in Ref. [7]) can
be drawn such that each perimeter CP of RP and CQ of RQ

passes through all vertices of a 4-base of P, Q, respectively,
and RP and RQ tile the plane alternately like a checkerboard
as shown in Fig. 6.

Theorem 2-2 [6], [9]
A pair of Conway tiles P and Q is reversible if and only if P

and Q are non-intersecting.

Example 2-1: A reversible pair of Conway tiles P and Q (Fig. 7).
It is easy to fold a Conway tile into an isotetrahedron I or a

rectangle dihedron RD if its 4-base parallelogram can be divided
into two identical acute or right triangles by its diagonal as illus-
trated in Fig. 8 (a) and (b). However, it becomes difficult to fold
a Conway tile P into I or RD whose 4-base parallelogram is thin
and long like one in Fig. 9. Notice that the 4-base parallelogram
of P can not be divided by its diagonal into two identical acute

(a)

(b)

Fig. 8 Easy cases in folding.

Fig. 9 One example of difficult cases in folding.

or right triangles. Folding a such Conway tile P comes down to
thinking about how to fold a stripe Q, which is reversible to P
around the 4-base of P. Therefore, we discuss about folding a
stripe into I or RD in the next section.

3. Fold a Long Stripe into an Isotetrahedron
or a Rectangle Dihedron

Two ways of folding a stripe into a rectangle dihedron are
known in Ref. [3]. We call these methods of folding, FF1, FF2,
respectively. Generalizing these methods, a stripe can be folded
into isotetrahedra.

In order to obtain our main results (Section 4), we use the re-
sults obtained in Ref. [1] which are generalization of FF1 and
FF2. Therefore, we summarize the results briefly below.
Generalization of FF1 and FF2 to fold stripes into isotetrahe-
dra.
—FF1—

We first divide a parallelogram (or a rectangle) stripe S into
4n(n + 1) acute or obtuse triangles as shown in Fig. 10 (a). This
example is the case n = 2. By folding S according to FF1 and
gluing pairs of adjacent perimeter parts folded by FF1, a topolog-
ical sphere TS whose head and tail faces are shown in Fig. 10 (b)
and (c) is obtained. Creasing each face of TS along the diagonals
v1v2 and v3v4, we obtain an istotetrahedron (Fig. 10 (d)). In gen-
eral, S is folded into isotetrahedra whose vertices v1, v2, v3 and v4
are the points of triangles with label 1, 2(n+ 1), 2n(n+ 1)+ 1 and
2(n + 1)2 of S by FF1. Notice that these four points compose of
one of 4-bases of S.
—FF2—

We divide a rectangle stripe S into 4(2n−1)(2n+1) triangles as
shown in Fig. 11 (a). This example is the case n = 2. The way of
dividing is the following: Each of long sides of S is divided into
(2n − 1)(2n + 1) segments with the same length d, P0P1, P1P2,
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(a) A trianglulated stripe S (Blue lines are fold lines of FF2). Let the line v2Pn(2n−1), v2Pn(2n+1) be �, m,
respectively. Each fold line is parallel to either � or m.

(b) Head face of a TS (c) Tail face of a TS (d) An isotetrahedron is folded

Fig. 11 Generalization of FF2. (b), (c) A topological sphere composed of two parallelograms. In this
figure, n = 2, v1 = the midpoint of P0Q0, v2 = Q6, v3 = P9, v4 = the midpoint of P15Q15.

(a) A triangulated stripe S (Blue lines are fold lines of FF1. Two fold lines �
and m pass through v2. Each fold line is parallel to either � or m).

(b) Head face of TS
(topological sphere)

(c) Tail face of TS
(topological sphere)

(d) An istotetrahedron is folded.

Fig. 10 Generalization of FF1.

· · · , Q0Q1, Q1Q2, · · · .
Let the midpoint of P0Q0, Qn(2n−1), Pn(2n+1)−1, the midpoint of

P(2n−1)(2n+1)Q(2n−1)(2n+1) be v1, v2, v3, v4, respectively. Notice that
these four points compose of one of the 4-bases of S. Last, draw
v1Q1, P(2n−1)(2n+1)−1v4, P0Q1, P1Q1, Pi−1Qi, PiQi, and Pi−2Qi,
(i = 2, 3, 4, · · · , (2n − 1)(2n + 1)). By folding S accoding to
FF2 and gluing pairs of adjacent perimeter parts folded by FF2,
a topological sphere TS whose head and tail faces are shown in
(Fig. 11 (b), (c)) is obtained. Creasing each face of TS along v2v3,
v4v1, we have an isotetrahedron in FFig. 11 (d).

Let a pair of head and tail faces of a topological sphere TS from
a stripe by FF1 be called a FF1-arrangement. And let a unit tri-
angle T into which a rectangle stripe is triangulated be called a
cell of FF1-arrangement.

(a)

(b)

Fig. 12 (a) AB and ED locate on the vertical sides of S. (b) AB and ED is
located on the holizontal sides of S.

Similarly, a pair of head and tail faces of topological sphere
TS from a stripe by FF2 is called a FF2-arrangement. For
a given stripe S, there are two important Conway-gluings. We
call them Conway-gluing Type 1 (simply CGT1) and Conway-
gluing Type 2 (simply CGT2). CGT1, CGT2 is a Conway gluing
of S when the perimeter of S is divided into six parts as illus-
trated in Fig. 12 (a), (b), respectively. In Fig. 12 (a) and (b), the
six points A,B,C,D,E and F follow the Conway criterion. The
difference between CGT1 and CGT2 results from the locations
of their parallel-congruent parts (i.e., AB and ED) of S. Notice
that a pair of parallel-congruent parts AB and ED in Fig. 12 (a) is
located on the vertical sides of S.

On the other hand, a pair of parallel-congruent parts AB and
ED in Fig. 12 (b) is located on the holizontal sides of S. In both
Fig. 12 (a) and (b), the four points v1, v2, v3 and v4 compose of a
4-base of S.

For S in Fig. 12 (a), the FF1-arrangement of S is called a
proper FF1-arrangement for n of S when S is triangulated
into 4n(n + 1) triangles as shown in Fig. 13 (a) (i.e., divide BD
into 2n(n + 1) segments PiPi+1. Divide v2E ∪ Av2 into 2n(n + 1)
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(a) Blue lines are fold lines. ☆: (2n − 1)d,★: (2n + 1)d, • = d2, ◦ = d1. Triangulated stripe S
which induces proper FF2-arrangement for n. In this figure, n = 3.

(b) Head face of TS (c) Tail face of TS

(d) (e) Head face of TS (f) Tail face of TS

Fig. 14 (b), (c) a proper FF2-arrangement for 3. (d) Triangulated stripe which induces FF2-arrangement
for n = 1. (e), (f) proper FF2-arrangement for 1.

(a) Blue lines are fold lines.

(b) Head face of TS (c) Tail of TS

Fig. 13 (a) Triangulated stripe S which induces proper FF1-arrangement for
n of S. In this figure n = 2. (b), (c) a proper FF1-arrangement for 2.

segments Qn+1Qn+2, Qn+2Qn+3, · · · , Q2n(n+1)Q1, Q1Q2, · · · ,
QnQn+1), and is folded and glued according to FF1 in Fig. 13 (b)
and (c).

For S in Fig. 12 (b), the FF2-arrangement of S is called a
proper FF2-arrangement for n of S when S is triangulated into
4(2n−1)(2n+1) triangles as shown in Fig. 14 (a) n = 3, (d) n = 1
and is folded and glued according to FF2 in Fig. 14 (b), (c) and
(e), (f). The way of dividing S in Fig. 14 (a), (d) is the following:

First, AB, ED is divided into 2n − 1 segments with the same
length d1, respectively.

Second, BC, EF is divided into 2n(2n − 1) segments with the
same length d2, respectively. Third, draw segments v1Q1, Pi−1Qi,
PiQi, Pi−1Qi+1, P(2n−1)(2n+1)−1Q(2n−1)(2n+1) and P(2n−1)(2n+1)−1v4 (i =
1, 2, · · · , (2n − 1)(2n + 1) − 1).
Theorem 3-1 [1]

S (Fig. 13 (a)) is folded into an isotetrahedron or a rectangle

dihedron which is made by creasing proper FF1-arrangement for

n of S (Fig. 15), when S is glued by CGT1 and its 4-base paral-

lelogram of S can not be divided into two acute or right triangles

by its diagonal.
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Fig. 15 An isotetrahedron obtained by CGT1 for S in Fig. 13 (seen from the
two different views).

(a)

(b)

Fig. 16 (a) An isotetrahedron obtained by CGT2 for S in Fig. 14 (a). (b) An
isotetrahedron obtained by CGT2 for S in Fig. 14 (d).

Theorem 3-2 [1]
S (Fig. 14 (d)) is folded into an isotetrahedron which is made by

creasing proper FF2-arrangement for n of S (Fig. 16 (b)), when

S is glued by CGT2 and its 4-base parallelogram of S can not

be divided into two acute or right triangles by its diagonal. In

particular, an isotetrahedron is made by creasing proper FF2-

arrrangement for 1 of S when the length of parallel-congruent

part (AB or ED) of S is longer than �/3, where � is the length

of S.

4. Fold a Long Conway Tile into an Istotetra-
hedron or a Rectangle Dihedron

We have already mentioned that it is easy to fold a Conway
tile N into an isotetrahedron or a rectangle dihedron if a 4-base
parallelogram of N is divided into two identical acute or right tri-
angles in Section 2. We now consider how to fold a long and thin
Conway tile whose 4-base parallelogram is not divided into two
acute or right triangles. That is, we consider the Conway tile N
like in Fig. 17 (Type 1) and Fig. 18 (Type 2).

The difference between Type 1 and Type 2 is exposed when
their parallelo-congruent parts AB and ED are glued. A 4-base
parallelogram of Type 1 is located inside a ring when AB and ED
of N is glued (Fig. 19 (a)). On the other hand, a 4-base parallelo-
gram of Type 2 is located inside a one-round spiral when AB and
ED of N is glued (Fig. 19 (b)).

If the 4-base parallelogram of N is located inside a ring after
gluing AB and ED of N, we call N ring type. If the 4-base par-
allelogram of N is located inside a one-round spiral after gluing

Fig. 17 A long Conway tile N of Type 1; ring type.

Fig. 18 A long Conway tile N of Type 2; Spiral type.

(a) The 4-base parallelogram is inside a ring

(b) The 4-base parallelogram is inside a one-round spiral

Fig. 19 The difference between two types of long and thin Conway tiles.

(a) M1

(b) M2

Fig. 20 N is reversible to the parallelogram. Ring type, spiral type is
reversible to M1 type, M2 type, respectively.

AB and ED of N, we call N spiral type.
Each of Conway tiles N of ring type and spiral type is re-

versible to the parallelogram M1, M2, respectively as to its 4-base
(or sometimes M1, M2 might be a deformed parallelogram, but
if so, the following argument is valid) which inscribes its 4-base
parallelogram (blue parallelogram in Fig. 20 (a), (b)).

From Theorem 2-1, an isotetrahedron I or a rectangle dihedron
RD obtained from a Conway tile of ring type is nothing but I or
RD obtained by folding M1 such that v′1v

′
2 & v1v2, v4v2 & v4v′2,

and v3v1 & v3v′1 of M1 are adjacent, respectively.
Similarly, I or RD obtgained from a Conway tile of spiral type

is nothing but I or RD obtained by folding M2 such that G′v4 &
Gv4, Hv2 & H′v2, G′H′′ & G′′H′, Gv1 & G′′v1, and H′′v3 & Hv3 of
M2 are adjacent, respectively. Therefore, folding a Conway tile
of ring type, spiral type into an isotetrahedron I or a rectangle di-
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(a)

(b) N in Fig. 17 with fold lines (Red lines)

(c) N in Fig. 17 is folded into RD

(d)

Fig. 21 How to fold N of ring type.

hedron RD comes down to folding a parallelogram stripe M1, M2

into I or RD according to FF1, FF2, from Theorem 3-1, Theorem
3-2, respectively.
Example 4-1 (Fold a Conway tile N of ring type in Fig. 17)
( 1 ) The perimeter of N is divided into four parts BC, CD, EF

and FA (B = A, E = D) such that BC, CD, EF, FA is cen-
trosymmetric around its midpoint v1, v3, v4 v2, respectively,
as shown in Fig. 17. The 4-base parallelogram v1v3v4v2 can
not be divided into two acute or right triangles by its diago-
nal.

( 2 ) Determine the suitable value of n. Reference [1] suggests
that the suitable value of n (n ≥ 2) is roughly determined
such that

√
2n(n + 1)w/

√
3n + 1 ≤ �′ ≤ 2n(n + 1)w for

the length �′ and the width w of the 4-base parallelogram
v1v3v4v2. In this case, n = 2.

( 3 ) Dissect the Conway tile N along v1v2, v2v4 and v3v1 and re-
verse N into a parallelogram v2v1v′1v

′
2 as shown in Fig. 21 (a).

Divide each of the segments v1v′1, v2v′2 into 2n(n + 1) (= 12
in this case) segments P0P1, P1P2, · · · , Pn(n+1)Pn(n+1)+1,
Pn(n+1)+1Pn(n+1)+2, · · · , P2n(n+1)−1P0; Qn+1Qn+2, Qn+2Qn+3,
· · · , Q2n(n+1)−1Q0, Q0Q1, · · · , QnQn+1, respectively, as shown
in Fig. 21 (a).

( 4 ) Make a ring from the parallelogram v2v1v′1v
′
2 in Fig. 21 (a)

by gluing v2v1 and v′2v
′
1. Then decompose the ring into

4n(n + 1) cells. In this case, the cell is a right triangle.
And fold the ring into a rectangle dihedron along the method
of FF1 (i.e., this rectangle dihedron RD is the proper FF1-
arrangement for 2 in this case). Reverse the parallelogram
v2v1v

′
1v
′
2 with fold-lines to a Conway tile N again as shown in

Fig. 21 (b). Fold N along fold-lines (Red lines in Fig. 21 (b)),
and then N is folded into a rectangle dihedron RD as shown
in Fig. 21 (c).

( 5 ) In fact, for a Conway tile N in Fig. 17 and its 4-base paral-
lelogram v2v1v3v4, the triangle Pnv2Pn+1 (i.e., P2Q3P3 in this
case) symbolizes the cell of M1 which plays an important
role in folding M1 into I or RD by FF1, after dividing v1v3
into n(n+1) segments with the same length. Since a triangle
P2Q3P3 in this case is a right triangle as shown in Fig. 21 (d),
it suggests that this Conway tile N is folded into a rectangle
dihedron with size 2 · P3Q3 × 3 · P2Q3 by FF1.

Example 4-2 (Fold a Conway tile N of spiral type in Fig. 18)
( 1 ) The perimeter of N is divided into six parts AB, BC, CD,

DE and FA such that AB is parallel-congruent to ED and
BC, CD, EF, FA is centrosymmetric around its midpoint v2,
v3, v4, v1, respectively, as shown in Fig. 18. A 4-base paral-
lelogram v1v2v3v4 can not be divided into two acute or right
triangles by its diagonal.

( 2 ) Draw the line v1v3, �1, �2 such that each �1, �2 passes through
v4, v2, respectively, where �1 is parallel to �2 (Fig. 22 (a)).
Denote by G, H, the intersection of �1 and v1v3, �2 and v1v3,
respectively. Dissect N along the segments v1v3, v4G and
v2H.

( 3 ) Reverse N to a parallelogram GG′HH′ as to its 4-base as
shown in Fig. 22 (b). Notice that the parallelogram v4v3v2v1
in GG′HH′ is congruent to the parallelogram v1v2v3v4 inside
N.

( 4 ) Since GH of v1v3 in N (Fig. 22 (a)) is shorter than Hv3
(= Gv1) for N (i.e., G′H′′ = G′′H′ < Hv3 = Gv1 in
Fig. 22 (b)), then n ≥ 2 from Theorem 3-2. In this case,
for n = 2, the parallelogram GG′HH′ is divided into sixty
(= 4×(2×2−1)×(2×2+1)) triangles as shown in Fig. 22 (c).
Fold it along the fold-lines according to FF2 for 2 and glue
adjacent pairs of perimeter parts of a stripe. Then, the topo-
logical sphere composed of proper FF2-arrangement for 2
is obtained (Fig. 22 (d)). Crease each face of the topologi-
cal sphere along v2v4 and v1v3 (red lines in Fig. 22 (d)). And
then, an isotetrahedron I is obtained (Fig. 22 (e). Therefore,
the parallelogram GG′HH′ can be folded into an isotetrahe-
dron I as shown in Fig. 22 (e)).

( 5 ) Reverse a parallelogram GG′HH′ with fold-lines to a
Conway tile N again. Fold N along these fold-lines
(Fig. 22 (f)), and then N is folded into an isotetrahedron
(Fig. 22 (g)) which is congruent to I in Fig. 22 (e).

We have our main results generalizing the argument in the two
examples mentioned above.
Theorem 4-1

Any Conway tile N with width w is folded into either an isote-

trahedron or a rectangle dihedron by the following procedure ap-

plying FF1 (FF2), if N is a ring type (a spiral type).
Procedure

The first two steps are common for all Conway tiles:
1. Find the 4-base v1, v2, v3 and v4 of a given Conway tile N.
2. If a 4-base parallelogram is divided into two identical acute or

right triangles T1 and T2, the Conway tile N can be folded into
an isotetrahedron with four identical faces to T1 (= T2) or a
rectangle dihedron whose face is identical to a rectangle com-
posed of T1 and T2. If the 4-base parallelogram of N cannot be
divided into right or acute triangles, glue the parallel-congruent
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(a) (b)

(c) GG′HH′ is a triangulated into 60 triangles according to FF2 for 2 Fold line: blue lines

(d) The gluing result is a topological sphere which is composed of
this FF2-arrangement for 2

(e) The stripe GG′HH′ is folded into an isotetrahedron I

(f) (g)

Fig. 22 How to fold N of spiral type.

parts (i.e., AB and ED) of N. In the case that N is ring type,
go to the FF1-procedure mentioned below. If not, go to the
FF2-procedure.

FF1-procedure
Without loss of generality, v1v3 (= v2v4) is longer than v1v2

(= v3v4) and the angle v2v1v3 is acute angle of the 4-base parallel-
ogram v1v2v3v4 of N. If the angle v2v1v3 is obtuse, turn over the
Conway tile N and rename the points v1, v2, v3, v4 into “v2, v1, v3,
v4”, respectively, and then the angle v2v1v3 is acute.
3. Determine n (≥ 2) such that

√
2n(n + 1)w/

√
3n + 1 ≤ �′ ≤

2n(n + 1)w, where �′ is the length of a 4-base parallelogram.
4. Divide the base side v1v3 of the 4-base parallelogram into

n(n + 1) segments P0P1, P1P2, · · · , Pn(n+1)−1Pn(n+1) with the
same length d = �′/n(n + 1), where P0 = v1 and Pn(n+1) = v3.

5. Draw the segments Pnv2 and v2Pn+1. The triangle Pnv2Pn+1

symbolizes the cell of the parallelogram stripe M1 below.
6. Dissect the Conway tile N along v1v2, v2v4, v4v3 and v3v1 and

reverse the Conway tile N to the parallelogram M1: v2v1v′1v
′
2

with the length 2�′ and the width w, where v′2, v′1 is a cen-
trosymmetric point to v2, v1 (= P0) around v4, v3 (= Pn(n+1)),
respectively.

7. Divide the segment v3v′1 into n(n+1) segments with the length

d; v3Pn(n+1)+1, Pn(n+1)+1Pn(n+1)+2, · · · , P2n(n+1)−1v1, where
v1 = P0 = P2n(n+1). Divide also the segment v2v′2 with the
length d into 2n(n + 1) segments Qn+1Qn+2, Qn+2Qn+3, · · · ,
Q2n(n+1)−1Q0, Q0Q1, · · · , where v4 = Q(n+1)2 , v2 = v′2 = Qn+1

and Q0 = Q2n.
8. Glue the side v2v1 and v′2v

′
1 of the parallelogram of M1 to make

a ring and decompose a parallelogram P0P2n(n+1)Q2n(n+1)Q0

into 4n(n + 1) triangles (i.e., cells), Q0P0Q1, P0Q1P1, · · ·
each of which is identical to the triangle Pnv2Pn+1 in Step 5
above.

9. Fold the parallelogram M1: P0P2n(n+1)Q2n(n+1)Q0 into an is-
totetrahedron I or a rectangle dihedron RD according to FF1
for n. From Theorem 3-1, the FF1-arrangement for n is the
topological sphere which induces I or RD by creasing it. I
or RD can be exactly described by FF1-arrangement of the
parallelogram M1 (Ref. [1]).

10. Reverse the parallelogram M1: P0P2n(n+1)Q2n(n+1)Q0 with
fold-lines to a Conway tile N again. Fold a Conway tile N
along the fold-lines, and then a Conway tile is folded into an
isotetrahedron or a rectangle dihedron which is congruent to
I or RD in Step 9.
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FF2-procedure
3. For the 4-base parallelogram v1v2v3v4 of N, let v1v3 be the

longer diagonal and v1v4 < v1v2 (i.e., v3v2 < v3v4).
4. Draw the line v1v3. Draw the line �1, �2 through v4, v2, re-

spectively such that �1 is parallel to �2. Denote by G, H the
intersection of v1v3 and �1, v1v3 and �2, respectively.

5. Dissect N along v1v3, Gv4 and Hv2 into four pieces, and then
reverse the Conway tile N to the parallelogram M2: GG′HH′,
which inscribes the parallelogram v4v3v2v1 which is identical
to the parallelogram v1v2v3v4 in N.

6. If GH of v1v3 in N is longer than Gv1 (= Hv3) in N, triangu-
late the parallelogram M2: GG′HH′ and fold it into an isote-
trahedron I or a rectangle dihedron RD in the manner of FF2
for 1. If not, triangulate the parallelogram M2: GG′HH′ into
4(2n−1)(2n+1) triangles and fold it into an isotetrahedron I or a
rectangle dihedron RD in the manner of FF2 for n. From Theo-
rem 3-2, I or RD can be exactly described by FF2-arrangement
of the parallelogram M2 (Ref. [1]).

7. Reverse the parallelogram M2: GG′HH′ with fold-lines to a
Conway tile N again. Fold a Conway tile N along the fold-
lines, and then the Conway tile N is folded into an isotetrahe-
dron or a rectangle dihedron which is congruent to I or RD in
Step 6.
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