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Abstract Using medical examination data, mathematical modeling was applied on a clinical 
diagnosis to predict disease prognosis. With the assistance of a logistic regression model, we 
indicated earlier optimal mathematical modeling to predict cerebral white matter lesions 
(sensitivity 72.0% and specificity 75.1%) with 15 variables, including age, gender, systolic 
blood pressure, LDL cholesterol (LDL), and hemoglobin A1c (HbA1c), from brain dock 
examinees data (total 1904: 988 men and 916 women). In this account, the optimization of 
prediction and generalization performance by applying deep learning technology has resulted 
in the optimal predictive model (sensitivity 76.9% and specificity 74.4%) employing the logistic 
regression neural network model of a 64-node environment, dropout = 0.2 and L1 = 0.015. This 
model revealed some improvements, such as area under the curve (AUC) 0.809, accuracy 
76.1%, and error rate 23.9%, compared with the previous record, and it was evidenced that deep 
learning could secure a more precise diagnostic prediction model through the medical 
examination data. Simultaneously, it was further shown that it is complicated and eventually 
impossible to interpret the prediction model by deep learning from the medical examination 
data compared with those by the linear prediction model based on causal reasoning. 

1. Introduction 

The applications of deep learning (DL) in a clinical environment are increasing [1]. 

Specifically, DL has shown itself to be useful in diagnostic imaging [1] and promising in 

the application of natural language processing to real-world data, including electronic 

medical records and receipt data [2]. In addition, the diagnostic prediction of diseases 

through medical examination data has been reviewed by employing assorted mathematical 

models, and we additionally reported an optimal prediction model using a logistic regression 

model to predict cerebral white matter lesions with medical examination data (sensitivity 

72.0% and specificity 75.1%) [3]. Despite this, although this model was maximized by 

model fitting through variable selection with the forward–backward stepwise selection 

approach, the generalization performance was not assessed, and consequently, the upgrade 

of the prediction performance was lacking. 

In this research, we explored establishing a more unerring diagnostic prediction model 

with medical examination data usage compared with previously stated models [3] via the 

enhancement of generalization performance using DL. The conclusions illustrated the 
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optimized prediction model (sensitivity 76.9% and specificity 74.4%) employing the logistic 

regression model with a neural network under 64 node conditions, dropout = 0.2, and 

coefficient λ in L1 regularization (L1) = 0.015. This model displayed numerous 

improvements, such as area under the curve (AUC) 0.809, accuracy 76.1%, and error rate 

23.9%, compared with the previous report, and it was demonstrated that DL could acquire 

a more exact diagnostic prediction model with the medical examination data. In contrast, 

with DL, it was further indicated that it is complicated to explanate clinical variables due to 

the difficulty acquiring coefficients based on causal inference. In this investigation, we 

communicate the betterment of the prediction performance of medical examination data by 

improving the generalization performance through DL and the complications of explanation 

clinical variables. 

2. Materials and Methods 

2.1 Subjects and ethical considerations 

This research was performed employing data from 1,904 subject examinations, including 

988 men and 916 women, who experienced head MRI and blood tests at the time of the brain 

dock course of a thorough medical examination at some point between April 1, 2016, and 

October 31, 2017, at the Shin Takeo Hospital, with the approval of the Ethics Committee of 

Shin Takeo Hospital and Kurume University. For patient privacy protection, the patient data 

were collected with connection-free anonymization by a third party and saved for research 

use only in a password-protected storage medium. 

2.2 Clinical data 

In this report, the following data were used, as illustrated in our prior research [3]. For 

the common examination, four attributes have been employed: age, gender, systolic blood 

pressure (SBP), and the presence of visceral steatosis (to ascertain metabolic syndrome). 

For blood and biochemical assessments, performed as a section of the complete medical 

analysis, two features were employed: LDL cholesterol (LDL) and hemoglobin A1c 

(HbA1c). For the ultrasonic trials, one property, carotid plaque score (PS) was applied. PS 

was computed as follows. The carotid artery was separated into four 15-mm-long portions: 

the central side of the common carotid artery (CCA), the peripheral side of the CCA, the 

bifurcation of the CCA, and the central side of the internal carotid artery. Then, the total of 

the peak values of intima–media thickness surpassing 1.1 mm was determined. In the 

inquiry into the specific health investigation, four questions, which were responded to by 

the participants when obtaining an exhaustive medical examination, were employed: 

concerning their experience with therapies to reduce blood pressure, medications to reduce 

blood sugar or insulin injection, treatments to decrease the cholesterol level of cholesterol 

or of neutral fat, as well as imbibing practice (regularly, occasionally, or scarcely drink 

[cannot drink]). 
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2.3 Analytical methods 

2.3.1 Data preprocessing 

In data modeling, age, gender, SBP, the establishment of metabolic syndrome, PS， LDL, 

HbA1c from clinical investigation data, background with treatments to reduce blood 

pressure, therapies to reduce blood sugar or insulin injection, remedies to decrease the level 

of cholesterol or of neutral fat, and consumption customs from the survey were applied as 

explanatory variables. The existence or deficiency of white matter lesions was used as the 

response variable. In the discrete variables, gender, the resolution of the metabolic syndrome, 

the experience with treatments to reduce blood pressure, the knowledge of pharmaceuticals 

to reduce blood sugar or insulin injection, the occasion with therapies to decrease the level 

of cholesterol or of neutral fat, and drinking habits were depicted into dummy variables. To 

resolve metabolic syndrome and drinking ways, which are not binary data, a dummy variable 

transformation by the One Hot approach [4] was implemented. The explanatory variables 

were normalized collectively with the continuous scale: age, PS, LDL, HbA1c, and SBP. 

2.3.2 Model building with DL 

The cross-entropy loss was employed as a loss function, and a method for stochastic 

optimization (Adam) [5] was used as the optimizer, and for the activation function, Rectified 

Linear Unit (ReLU) [6] was used in the intermediate layer, and the sigmoid function was 

implemented in the output layer. The model was enhanced by changing the conditions of the 

number of nodes, dropout rate [7], and L1 regularization [8]. 

2.3.3 Comparing the performance of DL 

A 10-fold cross-validation was employed for comparing the achievement of DL. Accuracy, 

error rate, sensitivity, specificity, positive predictive value (PPV), and negative predictive 

value (NPV) were applied as assessment indices founded on median cross-entropy loss of 

ten times. In 10-fold cross-validation, following the division of the data into 10, machine 

learning was accomplished using one of the divided data as validation data and the rest as 

training data, and the process was repeated ten times without repeat usage of validation data, 

and then the median of the evaluation indexes was computed. In the receiver operating 

characteristic (ROC) curve, the sensitivity was charted to the vertical axis, the false positive 

rate (1-specificity) was charted to the horizontal axis for each threshold, and the AUC was 

determined. When the Youden index (sensitivity – (1 − specificity)) was maximized, the 

threshold value resolved the cutoff value [9]. 

2.3.4 Execution environment 

Machine learning was accomplished by applying Google Colaboratory (Google Colab) 

with Python 3.6.8 and TensorFlow 1.15.0 as the back end from Keras 2.2.5 [10]. Each 

inspection for comparing operation was considered, implementing the following R package 

according to the previous research [3]. The subsequent software packages were applied: R 

ver3.5.1; glm() function (family = “binominal”) on stats (ver3.5.1) for logistic regression 

(LogReg); ksvm() function of kernlab (ver0.9.27) for support vector machines [11]; the 
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randomForest() function of the randomForest (ver4.6.14) for random forest (RF) [12]; and 

the NaiveBayes() function of the klaR (ver0.6.14) for Naive Bayes (NB) [13]. 

3. Results 

3.1 Hyperparameter optimization of DL 

In the DL determination with medical examination data, 10-fold cross-validation gauged 

the prediction performance. Hyperparameters, including the number of nodes, dropout rate 

(dropout), and L1 were optimized by applying varied situations. The optimum prediction 

performance was acquired with an environment of 64 nodes, dropout = 0.2, and L1 = 0.015 

(Figure 1). The vertical axis portrays the loss function (loss), and the horizontal axis depicts 

the number of epochs (epochs); the optimum learning model with a loss of approximately 

0.53 was demonstrated at 100 epochs. 

3.2 Comparing the performance of DL with different interpretive 
approaches 

Table 1 displays the outcomes of DL within the frame of node = 64, dropout = 0.2, and 

L1 = 0.015 and a parallel of different investigative approaches [3]. 

 

 

 

 

 
  

 
Figure 1. The optimum prediction performance under the conditions of 64 nodes, 

dropout = 0.2, and L1 = 0.015. 

Table 1. Comparing performance of DL with various analytical methods. 
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To compare the performance, a 10-fold cross-validation was executed and median values 

were determined. From top to bottom, logistic regression employing DL (LogReg (DL)), 

LogReg, NB, SVM, and RF have been illustrated. 

Consequently, LogReg (DL) exhibited the utmost performance in AUC (0.809), accuracy 

(76.1%), PPV (79.2%), and NPV (74.5%) and further afforded the least possible value of 

cross-entropy loss (0.529). Although it was subordinate to RF in sensitivity and LogReg and 

SVM in particularity, it was contemplated that the model with the premium generalization 

performance had been realized in the extensive view. The LogReg (DL) presented greater 

sensitivity and decreased specificity than LogReg. It is believed that LogReg (DL) displayed 

high sensitivity for the sake of attempting to expand the generalization ability and 

optimizing to augment the detection ability. Figure 2 illustrates the ROC curves of LogReg 

(DL) and LogReg. 

3.3 Example of a model created in DL 

An example of the model based on the node of the first layer for which the weight and 

bias were acquired in the model attained by conducting DL in the environment of 64 nodes, 

dropout = 0.2, and L1 = 0.015 is exhibited as follows. Because the quantity of nodes was 

actually 64, there are 64 models: 

−0.014− 0.000046𝑥(+0.00022𝑥+ − 0.00015𝑥- − 0.00020𝑥. + 0.00034𝑥0 − 0.00012𝑥1

− 0.000045𝑥2 + 0.0000047𝑥4 − 0.000034𝑥5 + 0.000047𝑥(6 − 0.000021𝑥(( 

−0.000033𝑥(+ + 0.00011𝑥(- − 0.00012𝑥(. + 0.000044𝑥(0, 

where 𝑥1 = age; 𝑥2 = gender (𝑥2 = 0 for male, and 𝑥2 = 1 for female); 𝑥3 = PS; 𝑥4 = LDL; 

𝑥5 = SBP; 𝑥6 = HbA1c; 𝑥7 and 𝑥8 = the determination of metabolic syndrome; 𝑥7 = the 

background with treatments to reduce blood pressure (x7 = 0 for “No,” x7 ＝ 1 “Yes”); x8 

= the knowledge of therapies to reduce blood sugar or insulin injection (x8 = 0 for “No,” x8 

＝ 1 “Yes”); x9 = the understanding of pharmaceuticals to decrease the level of cholesterol 

or of neutral fat (x9 = 0 for “No,” x9 ＝ 1 “Yes”); x10, x11, and x12 = the specification of 

metabolic syndrome (x10 = 1, x11 = 0, and x12 = 0 for non-metabolic syndrome; x10 = 0, x11 = 

1, and x12 = 0 for the reserve of metabolic syndrome; x10 = 0, x11 = 0, and x12 = 1 for metabolic 

Figure 2. ROC curves of LogReg (DL) and LogReg. 
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syndrome); and x13, x14, and x15 = imbibing practices (x13 = 1, x14 = 0, and x15 = 0 for “rarely 

drink (cannot drink)”; x13 = 0, x14 = 1, and x15 = 0 for “sometimes”; and 𝑥13 = 0, 𝑥14 =0, and 

𝑥15 = 1 for “everyday”). 

Following these nodes of the first layer, the classification is implemented in conformity 

with the output value in the output layer through the intermediate layer. Hence, such bias 

and value of the individual weight have various implications from the partial regression 

coefficient of the conventional regression model and may not be easily compared. In the 

preceding examination [3], the succeeding equation was achieved as a discriminant model: 

log
𝑃𝑟(𝑌? = 1|	𝑋? = 𝑥?)
𝑃𝑟(𝑌? = 0|	𝑋? = 𝑥?)

= −0.28 + 1.1𝑥?( + 0.45𝑥?+ + 0.16𝑥?- + 0.06𝑥F. + 0.12𝑥?0 

	−0.04𝑥?1 + 0.43𝑥?2 	+ 0.15𝑥?4 + 0.42𝑥?5 + 0.37𝑥?(6 + 0.15𝑥?(( + 0.24𝑥?(+ + 0.04𝑥?(-, 

where the illustrative variables were identified as follows: x1 = age; x2 = gender (x2 = 0 for 

male, x2 = 1 for female); x3 = PS; x4 = LDL; x5 = SBP; x6 = HbA1c; x7 and x8 = the assessment 

of metabolic syndrome (x7 = 0 and x8 = 0 for non-metabolic syndrome; x7 = 1 and x8 = 0 for 

the reserve of metabolic syndrome; and x7 = 1 and x8 = 1 for metabolic syndrome); x9 = the 

awareness of medicinal products to reduce blood pressure (x9 = 0 for “No,” x9 = 1 for “Yes”); 

x10 = the comprehension of medical care to reduce blood sugar or insulin injection (x10 = 0 

for “No,” x10 = 1 for “Yes”); x11 = the perception of remedies to decrease the level of 

cholesterol or of neutral fat (x11 = 0 for “No,” x11 = 1 for “Yes”); and x12 and x13 = the 

imbibing customs (x12 = 0 and x13 = 0 for “rarely drink (cannot drink)”; x12 = 1 and x13 = 0 

for “sometimes”; and x12 = 1 and x13 = 1 for “everyday”). For the i-th patient's data xi, Pr(Yi 

= 1|Xi = xi) = the prospect that the i-th patient had the white matter lesions, and Pr(Yi = 0|Xi 

= xi) = the possibility that the i-th patient did not have white matter lesions. 

The values of the particular coefficient of both weight and bias displayed a difference by 

three to four digits. The small value of the weight in DL is judged as the product of 

decreasing the weight by L1 regularization. 

4. Discussions 

In this analysis, we accomplished a machine learning model with increased generalization 

performance by logistic regression through DL compared with the previous investigation 

predicated on the medical examination data of 1,904 subjects who received head MRI and 

blood tests in the exhaustive medical inspection [3]. In DL, by hyperparameter optimization, 

comprising the number of nodes, dropout rate, and L1, the optimum state with the cross-

entropy loss = 0.529 was procured under the circumstances of 64 nodes, dropout = 0.2, and 

L1 = 0.015. Adjusting the hyperparameters depicts a great impact on the model, and in this 

inquiry, trial and error was necessary because overfitting and scant knowledge were 

discovered subject to the setting context. In this inspection, by hyperparameter optimization 

completed by hand, the consideration of automatic optimization has been ongoing [14], 

which could deliver accelerated and more actual hyperparameter optimization. In this 

observation, DL displayed a more elevated sensitivity and declined specificity than that of 

logistic regression in the preceding study. This suggests that although the patient is negative, 
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a positive test conclusion can potentially occur, cerebral white matter lesions are perhaps to 

be presumed albeit the patient is normal comparing with the conventional approach. 

Moreover, it may be advantageous when the discovery of patients with assumed lesions 

from the total populace is requested instead of the unequivocal diagnosis. 

Although conclusions were not revealed in this research, neither ridge regression (L2 

regularization) [15] nor elastic net regression (L1–L2 regularization) [16] was feasible to 

secure a model with lower loss error and greater generalization performance than the lasso 

regression (L1 regularization) [8]. It was thought that because the model in this analysis had 

minimum 15 explanatory variables and the model is somewhat intricate, the consequence of 

the loss due to L2 regularization is less than that of L1 regularization. In other words, there 

is a compromise amid the bias and the variance component in regularization [16]. In a 

sophisticated model with small λ, the bias is apt to be small and the variance large, and 

within a high variance situation of that sort, the influence of suppressing overfitting by 

regularization is believed to be diminutive. Because the L2 regularization is more vulnerable 

to changes in λ than L1 regularization, it is regarded that the consequence of L2 

regularization is reduced under such circumstances. 

Typically, in machine learning, the connection between the response and explanatory 

variable is a black box, and just the discrimination outcome is output. In this analysis, we 

removed several nodes from the developed machine learning model and established their 

weights and biases. The findings did not mandatorily agree with traditional medical 

understanding, given the model is a blend of those nodes. Specifically, it was arduous to 

decipher the model. With respect to the clarification of DL models, it is feasible to compute 

the prominence or assistance employing software packages including LIME [17], SHAP 

[18], and Anchor [19] and to elucidate the involved black box models with strong 

intelligibility. Various approaches [20] have been put forward in which a problematic black 

box model is substituted by an extremely clear and explicable decision tree or a rule-based 

model. Nevertheless, they are incapable of expounding the true model adequately. 

Accordingly, it remains a continuing research to be determined. 
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