
SiGamal: A supersingular isogeny-based PKE

Tomoki Moriya1,a) Hiroshi Onuki1 Tsuyoshi Takagi1

Abstract: We propose two new supersingular isogeny-based public key encryptions: SiGamal and C-SiGamal.
These public key encryptions are developed by giving an additional point of the order 2r to CSIDH. SiGamal
seems similar to ElGamal encryption, while C-SiGamal is a compressed version of SiGamal. We prove that
SiGamal and C-SiGamal obtain IND-CPA security without using hash functions under a new assumption:
the P-CSSDDH assumption. This assumption comes from the expectation that no efficient algorithm can
distinguish between a random point and a point that is the image of a public point under a hidden isogeny.
Finally, we experimented group actions in SiGamal and C-SiGamal. In our experimentation, the computa-
tional costs of group actions in SiGamal-512 with a 256-bit plaintext message space are about 2.62 times
that of a group action in CSIDH-512.

Keywords: isogeny-based cryptography, isogenies, CSIDH, public key encryption

1. Preliminaries

1.1 Basic mathematical concepts

Here, we explain the basic mathematical concepts behind

isogeny-based cryptography.

1.1.1 Elliptic curves.

Let L be a field, and let L′ be an algebraic extension field

of L. First, an elliptic curve E defined over L is a nonsin-

gular algebraic curve that is defined over L and has genus

one. Denote by E(L′) the L′-rational points of the elliptic

curve E. Here, E(L′) is an abelian group (III. 2 in [17]).

Next, a supersingular elliptic curve E over a finite field L
of characteristic p is defined as an elliptic curve that satis-

fies #E(L) ≡ 1 (mod p), where #E(L) is the cardinality

of E(L). Furthermore, let L be a field whose characteristic

is odd. Then, an elliptic curve E defined by the following

equation is called a Montgomery curve:

E : bY 2Z = X3+aX2Z+XZ2 (a, b ∈ L and b(a2−4) ̸= 0).

Let E and E′ be elliptic curves defined over L. Define

an isogeny ϕ : E → E′ over L′ as a rational map over L′

that is a nonzero group homomorphism from E(L) to E′(L),
where L is the algebraic closure of L. A separable isogeny

satisfying #kerϕ = ℓ is called an ℓ-isogeny. Denote by

EndL′(E) the endomorphism ring of E over L′, and repre-

sent it as Endp(E) when L′ is a prime field Fp. Note also

that an isogeny ϕ : E → E′ defined over L′ is called an

isomorphism over L′ if it has the inverse isogeny over L′.

If G is a finite subgroup of E(L), then there exists an

isogeny ϕ : E → E′ such that its kernel is G and E′ is unique

up to an L-isomorphism (Proposition III.4.12 in [17]). This

1 Department of Mathematical Informatics, The University of
Tokyo, Japan

a) tomoki moriya@mist.i.u-tokyo.ac.jp

isogeny can be efficiently calculated by using Vélu formulas

[19]. We denote a representative of E′ by E/G.

Next, we define the j-invariant of a Montgomery curve

E : bY 2Z = X3+aX2Z+XZ2 (a, b ∈ L and b(a2−4) ̸= 0)

by the following equation:

j(E) :=
256(a2 − 3)3

a2 − 4
.

It is known that the j-invariants of two elliptic curves are

the same if and only if the elliptic curves are L-isomorphic.

Finally, we define E[k] (k ∈ Z>0) as the k-torsion sub-

group of E(L). For an endomorphism ϕ of E, we sometimes

denote kerϕ by E[ϕ].

1.1.2 Ideal class groups.

Let L be a number field, and O be an order in L. A

fractional ideal a of O is a non-zero O-submodule of L that

satisfies αa ⊂ O for some α ∈ O\{0}. Moreover, an invert-

ible fractional ideal a of O is defined as a fractional ideal of

O that satisfies ab = O for some fractional ideal b of O. The
fractional ideal b can be represented as a−1. If a fractional

ideal a is contained in O, then it is called an integral ideal

of O. Let I(O) be a set of integral ideals of O.
Next, let I(O) specifically be a set of invertible fractional

ideals of O. I(O) is then an abelian group derived from

multiplication of ideals with the identity O. Let P (O)
be a subgroup of I(O) defined by P (O) = {a | a =

αO (for some α ∈ L×)}. We call the abelian group cl(O)
defined by I(O)/P (O) the ideal class group of O. Denote

by [a] an element of cl(O) that is an equivalence class of a.

1.1.3 Notation.

The Fp-endomorphism ring Endp(E) of a supersingular

elliptic curve E defined over Fp is isomorphic to an order

in an imaginary quadratic field [5]. Denote by Eℓℓp(O) the

set of Fp-isomorphism classes of any elliptic curve E whose

Fp-endomorphism ring Endp(E) is isomorphic to O.

Computer Security Symposium 2020
26 - 29 October 2020

© 2020 Information Processing Society of Japan －1164－

1.2 A group action of an ideal class group

In this subsection, we explain an important group action

that is a main part of our proposed encryption system. First,

Waterhouse gave the following theorem.

Theorem 1.1 (Theorem 4.5 in [20]). Let O be an order

of an imaginary quadratic field and E be an elliptic curve

defined over Fp. If Eℓℓp(O) contains the Fp-isomorphism

class of supersingular elliptic curves, then the action of the

ideal class group cl(O) on Eℓℓp(O),

cl(O)× Eℓℓp(O) −→ Eℓℓp(O)

([a], E) 7−→ E/E[a],

is free and transitive, where a is an integral ideal of O, and
E[a] is the intersection of the kernels of elements in a.

In general, we cannot efficiently compute the group ac-

tion in Theorem 1.1. Castryck, Lange, Martindale, Panny,

and Renes, however, proposed a method for computing this

group action efficiently in a special case [2]. They focused

on the action of cl(Z[πp]) on Eℓℓp(Z[πp]), where πp is the

p-Frobenius map over elliptic curves. In [2], they proved the

following theorem.

Theorem 1.2 (Proposition 8 in [2]). Let p be a prime

satisfying p ≡ 3 (mod 8). Let E be a supersingular elliptic

curve defined over Fp. Then, Endp(E) ∼= Z[πp] holds if and
only if there exists a ∈ Fp such that E is Fp-isomorphic

to a Montgomery curve Ea : Y
2Z = X3 + aX2Z + XZ2,

where πp is the p-Frobenius map. Moreover, if such an a

exists then it is unique.

In other words, a Montgomery curve that belongs to an

Fp-isomorphism class E/E[a] is unique. Denote this Mont-

gomery curve by [a]E.

Let the prime p be 4 · ℓ1 · · · ℓn − 1, where the ℓ1, . . . , ℓn

are small distinct odd primes. Let integral ideals li (i =

1, . . . , n) in Z[πp] be (ℓi, πp − 1), and integral ideals li

(i = 1, . . . , n) in Z[πp] be (ℓi, πp + 1). Because π2
p + p = 0

over supersingular elliptic curves defined over Fp, it is easy

to check that [li]
−1 = [li] over such elliptic curves. The

actions of [li] and [li] are efficiently computed by Theorem

1.1 and Vélu formulas on Montgomery curves [11]. There-

fore, an action of [l1]
e1 · · · [ln]en ∈ cl(Z[πp]) can be efficiently

computed, where e1, . . . , en are integers whose absolute val-

ues are small. According to the discussion in [2], from some

heuristic assumptions, it holds that

#cl(Z[πp]) ≈ #{[l1]e1 · · · [ln]en | e1, . . . , en ∈ {−m, . . . ,m}},

wherem is the smallest number that satisfies 2m+1 ≥ 2n
√
p,

and we call m a key bound. Therefore, it suffices to con-

sider the action of [l1]
e1 · · · [ln]en , instead of the action of

a random element of cl(Z[πp]). Algorithm 1 specifies this

sequence of group actions.

In this paper, we extend this computational method for

our proposed protocol. In our protocol, we use a prime p

that satisfies p = 2r · ℓ1 · · · ℓn − 1, where r ≥ 3 and the

ℓ1, . . . , ℓn are small distinct odd primes. Therefore, we need

the following theorem.

Algorithm 1 Evaluation of a class group action [2]

Require: a ∈ Fp such that Ea is supersingular, and a list of inte-

gers (e1, . . . , en)

Ensure: a′ such that [le1

1 · · · l
en
n]Ea = Ea′

1: while some ei ̸= 0 do

2: Sample a random x ∈ Fp

3: x(P)← x

4: Set s← +1 if x3 + ax2 + x is a square in Fp, else s← −1
5: Let S = {i | sign(ei) = s}
6: if S = ∅ then
7: Go to line 2

8: end if

9: k ←
∏

i∈S ℓi, x(P)← x(((p+ 1)/k)P)

10: for all i ∈ S do

11: x(Q)← x((k/ℓi)P)

12: if Q ̸= (0 : 1 : 0) then

13: Compute an ℓi-isogeny ϕ : Ea → Ea′ with kerϕ = ⟨Q⟩
14: a← a′, x(P)← x(ϕ(P)), k ← k/ℓi, ei ← ei − s

15: end if

16: end for

17: end while

18: return a

Theorem 1.3 (Proposition 3 in [1]). Let p > 3 be a prime

that satisfies p ≡ 3 (mod 4), and let E be a supersingular

elliptic curve defined over Fp. If Endp(E) ∼= Z[πp] holds,
then there exists a ∈ Fp such that E is Fp-isomorphic to

Ea : Y
2Z = X3 + aX2Z + X2Z. Moreover, if such an a

exists then it is unique.

From Theorem 1.3, even if we use a prime p = 2r ·
ℓ1 · · · ℓn − 1, we can compute the action of cl(Z[πp]) in the

same way as that proposed in [2] (i.e., Algorithm 1).

Moreover, we consider mapping points in E to [a]E by

an isogeny whose kernel is E[a]. Because we use isoge-

nies to compute [a]E, it is easy to map a point P ∈ E

to [a]E. In general, however, the image of P is not unique,

since there are various isogenies E → E[a] whose kernels

are E[a]. Especially, in general, the image of P over an

isogeny E → [a]E → [a][b]E and that of P over an isogeny

E → [b]E → [a][b]E are not same. The following theorem

guarantees that the image of P is unique up to {±1}.
Theorem 1.4. Let E be a supersingular elliptic curve de-

fined over Fp. Let Φ[a],(F) denote an isogeny ϕ : F → [a]F

such that kerϕ = F [a]. If the following isogenies are de-

fined over Fp, then they satisfy the following equations:

Φ[b],([a]E) ◦ Φ[a],(E) = [±1] ◦ Φ[a],([b]E) ◦ Φ[b],(E).

To prove Theorem 1.4, we need the following lemma.

Lemma 1.1. Let E1 and E2 be supersingular elliptic

curves defined over Fp. Let G be a finite subgroup of E(Fp)

defined over Fp (i.e., πp(G) = G). Let ϕ : E1 → E2 and

ψ : E1 → E2 be separable isogenies defined over Fp. If

kerϕ = kerψ = G, then ϕ = ψ, or ϕ = [−1] ◦ ψ.

Proof. From Theorem 9.6.18 in [6], there are unique isoge-

nies λ1 : E2 → E2 and λ2 : E2 → E2 defined over Fp such

that ψ = λ1 ◦ ϕ and ϕ = λ2 ◦ ψ. Furthermore, from the

uniqueness of isogenies in Theorem 9.6.18 in [6], it holds

－1165－

that λ1 = λ−1
2 . Therefore, λ2 is an automorphism of E2

defined over Fp.

Next, from Theorem III.10.1 in [17], if j(E2) ̸= 0 and

j(E2) ̸= 1728, then there are no automorphisms other than

[±1]. Therefore, we have λ2(x, y) = (x,±y) = [±1](x, y).
Since E2 is supersingular, if j(E2) = 0, then p ≡ 2 (mod 3),

and if j(E2) = 1728, then p ≡ 3 (mod 4). Therefore, from

Theorem III.10.1 in [17], even if j(E2) = 0 or j(E2) = 1728,

there are no automorphisms defined over Fp other than [±1],
and we have λ2(x, y) = (x,±y) = [±1](x, y).

Now, we can prove Theorem 1.4.

Proof of Theorem 1.4. From Lemma 1.1, it suffices to

show that

ker (Φ[b],([a]E) ◦ Φ[a],(E)) = ker (Φ[a],([b]E) ◦ Φ[b],(E)).

Indeed, this holds from Proposition 3.12 in [20].

As shown in above, the image of P ∈ E under the isogeny

defined by the integral ideal a in End(E) is unique up to

[±1]. We denote this equivalence class of two points by aP .

Note that, even if [a] = [a′], it does not always hold that

aP = a′P . In fact, when [a][a] = [1], we have aaP = N(a)P ,

where N(a) is the norm of a.

All elements of I(Z[πp]) appearing in this paper are de-

fined by (α)le1
1 · · · l

en
n P , where α is an integer. An equiva-

lence class (α)le1
1 · · · l

en
n P is a class of images of αP under

the isogeny defined by le1
1 · · · l

en
n .

1.3 CSIDH

CSIDH (Commutative Supersingular Isogeny Diffie-

Hellman) is a Diffie-Hellman-type key exchange protocol [2].

It is based on actions of the ideal class group cl(Z[πp]) on

Eℓℓp(Z[πp]).
The exact protocol is as follows. Suppose that Alice and

Bob want to share a shared key denoted by SKshared.

Setup Let p be a prime that satisfies p = 4 · ℓ1 · · · ℓn − 1,

where ℓ1, . . . , ℓn are small distinct odd primes. Then,

let p and E0 : Y
2Z = X3 +XZ2 be public parameters.

Key generation Randomly choose an integer vector

(e1, . . . , en) from

{−m, . . . ,m}n. Define [a] = [le1
1 · · · l

en
n] ∈ cl(Z[πp]).

Then, calculate the action of [a] on E0 and the Mont-

gomery coefficient a ∈ Fp of [a]E0 : Y
2Z = X3 +

aX2Z + XZ2. The integer vector (e1, . . . , en) is the

secret key, and a ∈ Fp is the public key.

Key exchange Alice and Bob have pairs of keys, ([a], a)

and ([b], b), respectively. Alice calculates the action

[a][b]E0. Bob calculates the action [b][a]E0. Denote

the Montgomery coefficient of [a][b]E0 by SKAlice and

that of [b][a]E0 by SKBob.

From the commutativity of cl(Z[πp]) and Theorem 1.2,

SKAlice = SKBob holds. This value is the shared key

SKshared.

CSIDH is secure under the following assumption.

Definition 1.1 (Commutative Supersingular Decisional

Diffie-Hellman assumption (CSSDDH assumption)). Let p

be a prime that satisfies p = 4 ·ℓ1 · · · ℓn−1, where ℓ1, . . . ℓn

are small distinct odd primes. Let E0 be the elliptic curve

Y 2Z = X3+XZ2, and [a], [b], and [c] be random elements

of cl(Z[πp]). Set λ as the bit length of p.

The CSSDDH assumption holds if, for any efficient al-

gorithm (e.g., any probabilistic polynomial time (PPT) al-

gorithm) A,∣∣∣∣∣∣∣∣ Pr
 b = b∗

∣∣∣∣∣∣∣∣
[a], [b], [c]← cl(Z[πp]), b $←− {0, 1},

F0 := [a][b]E0, F1 := [c]E0,

b∗ ← A(E0, [a]E0, [b]E0, Fb)

− 1

2

∣∣∣∣∣∣∣∣ < negl(λ).

Remark 1.1. In the above definition, we sample ele-

ments of cl(Z[πp]) by taking (e1, . . . , en) uniformly from

{−m, . . . ,m}n that represents [le1
1 · · · l

en
n] ∈ cl(Z[πp]). This

is not a uniform sampling method from cl(Z[πp]). For in-

stance, refer to [13].

1.4 Pohlig-Hellman algorithm [15]

Pohlig and Hellman proposed an algorithm in 1978 to

solve the discrete logarithm problem [15]. The Pohlig-

Hellman algorithm indicates that, if a cyclic group G has

smooth order, then the discrete logarithm problem over G

can be efficiently solved. In this subsection, we explain

this algorithm to solve the discrete logarithm problem over

Z/2rZ.
Let µ be an element of Z/2rZ, and P be a generator of

Z/2rZ. Let µ0, . . . , µr−1 be numbers in {0, 1} that satisfy

µ =
∑r−1

j=0 µj2
j . For given P and µP , we want to compute

µ efficiently.

Step 0: First, we compute 2r−1 · µP . If µ0 = 0, then

2r−1 · µP = 0, while if µ0 = 1, then 2r−1 · µP ̸= 0.

Therefore, we can obtain the value of µ0 by computing

2r−1 · µP .

Step i (1 ≤ i ≤ r − 1): Define µ(i) = µ −
∑i−1

j=0 µj2
j .

From the definition of µ0, . . . , µr−1, it is obviously true

that µ(i) =
∑r−1

j=i µj2
j . We thus compute µ(i)P =

µP −
∑i−1

j=0 µj2
jP . Furthermore, we compute 2r−i−1 ·

µ(i)P . If µi = 0, then 2r−i−1 · µ(i)P = 0, while if

µi = 1, then 2r−i−1 · µ(i)P ̸= 0. Therefore, we can

obtain the value of µi by computing 2r−i−1 · µ(i)P .

As a result, from the r− 1 steps above, we obtain the value

of µ.

1.5 Public key encryption

In this subsection, we introduce the definition and security

of public key encryption.

1.5.1 Definition of public key encryption

Definition 1.2 (Public key encryption (PKE)). An algo-

rithm P(λ) is called a public key encryption protocol (i.e.,

a PKE protocol) if it consists of the following algorithms

that can be computed efficiently (e.g., PPT algorithms):

KeyGen,Enc,Dec.

KeyGen: Given a security parameter λ as input, output

public keys pk, secret keys sk, and a plaintext message

spaceM.

－1166－

Enc: Given a plaintext µ ∈M and pk, output a cipher-

text c.

Dec: Given c and sk, output a plaintext µ̃.

Definition 1.3 (Correctness). If a public key encryption

protocol P(λ) holds for any plaintexts µ, i.e.,

Dec(Enc(µ,pk), sk) = µ,

then P(λ) is correct.

1.5.2 Security of public key encryption

Here, we introduce some security definitions.

Definition 1.4 (OW-CPA secure). Let P be a public key

encryption with a plaintext message spaceM. We say that

P is OW-CPA secure if, for any efficient adversary A,

Pr

 µ = µ∗

∣∣∣∣∣∣ (pk, sk)← KeyGen(λ), µ
$←−M,

c← Enc(pk, µ), µ∗ ← A(pk, c)

 < negl(λ),

where µ
$←− M means that µ is uniformly and randomly

sampled fromM.

Definition 1.5 (IND-CPA secure). Let P be a public key

encryption with a plaintext message spaceM. We say that

P is IND-CPA secure if, for any efficient adversary A,∣∣∣∣∣∣∣∣ Pr
 b = b∗

∣∣∣∣∣∣∣∣
(pk, sk)← KeyGen(λ), µ0, µ1 ← A(pk),

b
$←− {0, 1}, c← Enc(pk, µb),

b∗ ← A(pk, c)

− 1

2

∣∣∣∣∣∣∣∣ < negl(λ).

Definition 1.6 (IND-CCA secure). Let P be a public key

encryption with a plaintext message spaceM. We say that

P is IND-CCA secure if, for any efficient adversary A,∣∣∣∣∣∣∣∣∣ Pr
 b = b∗

∣∣∣∣∣∣∣∣∣
(pk, sk)← KeyGen(λ), µ0, µ1 ← AO(·)(pk),

b
$←− {0, 1}, c← Enc(pk, µb),

b∗ ← AO(·)(pk, c)

− 1

2

∣∣∣∣∣∣∣∣∣ < negl(λ),

where O(·) is a decryption oracle that outputs Dec(sk, c∗)

for all c∗ ̸= c.

1.5.3 A natural ElGamal-like PKE based on

CSIDH

Here, we explain a natural way to construct a PKE based

on CSIDH without using hash functions.

KeyGen: Let p be a prime that satisfies p = 4 ·ℓ1 · · · ℓn−1,

where ℓ1, . . . , ℓn are small distinct odd primes. Let E0

be an elliptic curve Y 2Z = X3+XZ2. Alice takes ran-

dom elements [a] = [le1
1 · · · l

en
n] ∈ cl(Z[πp]) and then

computes E1 := [a]E0. Alice publishes (E0, E1) as

public keys and keeps (e1, . . . , en) as a secret key. Let

{0, 1}log2 p be a plaintext message spaceM.

Enc: Let µ be a plaintext in M. Bob takes random el-

ements [b] = [l
e′
1

1 · · · l
e′
n

n] in cl(Z[πp]) and computes a

point E3 := [b]E0, E4 := [b]E1. Let the Montgomery

coefficient of E4 be S. Then, Bob computes c := µ⊕ S
and sends (E3, c) to Alice as a ciphertext.

Dec: Alice computes [a]E3 and gets the Montgomery coef-

ficient of [a]E3, which is S. Alice then computes c⊕ S
as a plaintext.

It is trivial that c ⊕ S = µ, and this key encryption pro-

tocol is thus correct.

Theorem 1.5. This key exchange protocol is not IND-

CPA secure.

Proof. Let (E3, c) be a ciphertext of a plaintext µb, where

b = 0, 1. An adversary A computes µ0⊕ c and µ1⊕ c. Note

that the probability that a random elliptic curve defined over

Fp becomes supersingular is exponentially small. If µb′ ⊕ c
represents a supersingular elliptic curve, then b = b′ holds

with high probability. Therefore, A can guess b, and the

protocol is not IND-CPA secure.

By using an entropy-smoothing hash function H, how-

ever, we can construct an IND-CPA secure protocol under

the CSSDDH assumption (Definition 1.1). In this protocol,

the ciphertext is (E3, µ⊕H(S)) instead of (E3, µ⊕S). Refer
to §3.4 in [16] for the details.

2. SiGamal

In this section, we explain the first proposed protocol:

SiGamal.

2.1 Encryption protocol of SiGamal

In this subsection, we explain the precise protocol of SiGa-

mal.

KeyGen: Let p be a prime that satisfies p = 2r ·ℓ1 · · · ℓn−1,
where ℓ1, . . . , ℓn are small distinct odd primes. Let E0

be the elliptic curve Y 2Z = X3 + XZ2, and P0 be a

random point in E0(Fp) of order 2r. Alice takes ran-

dom elements a = (α)le1
1 · · · l

en
n ∈ I(Z[πp]) and com-

putes E1 := [a]E0 and P1 := aP0, where α is a uni-

formly random element of (Z/2rZ)×. Alice then pub-

lishes (E0, P0) and (E1, P1) as public keys, and keeps

(α, e1, . . . , en) as a secret key. Let {0, 1}r−2 be a plain-

text message space.

Enc: Let µ ∈ {0, 1}r−2 be a plaintext. Bob embeds µ in

(Z/2rZ)× via µ 7→ 2µ+ 1 ∈ (Z/2rZ)×. Bob takes ran-

dom elements b = (β)l
e′
1

1 · · · l
e′
n

n ∈ I(Z[πp]), where β is

a uniformly random element of (Z/2rZ)×. Next, Bob

computes a point (2µ + 1)P1, E3 := [b]E0, P3 := bP0,

E4 := [b]E1, and P4 := b((2µ + 1)P1). Bob then sends

(E3, P3, E4, P4) to Alice as a ciphertext.

Dec: Alice computes aP3 and solves the discrete logarithm

problem over Z/2rZ for aP3 and P4 by using the Pohlig-

Hellman algorithm. Let M be the solution of this com-

putation. If the most significant bit of M is 1, then

Alice changes M to 2r −M . Finally, Alice computes

(M − 1)/2 as a plaintext µ̃.

Remark 2.1. In the above protocol, any point is described

by its x-coordinate. For instance, to be precise, Bob sends

(E3, x(P3), E4, x(P4)) to Alice.

Remark 2.2. In this paper, we construct SiGamal based

on CSIDH key exchange [2]. Similarly, we can construct

SiGamal based on SIDH key exchange [7] according to [9].

In that case, we take a prime p satisfying p = 2r3eA5eB−1,
where 3eA ≈ 5eB .

Moreover, we can construct SiGamal based on CSURF

[1]. In the CSURF algorithm, we need to compute 2-

－1167－

isogenies. Therefore, we embed a plaintext µ to a subgroup

of order ℓr, where ℓ is an odd prime.

Theorem 2.1. SiGamal is correct.

Proof. By Theorem 1.4, aP3 is bP1 or −bP1. Therefore,

Alice gets 2µ + 1 or 2r − (2µ + 1). Since the bit length of

µ is less than r − 2, the most significant bit of 2µ + 1 is

always 0. Thus, if the most significant bit of M is 1, then

M = 2r − (2µ + 1). Therefore, after adjusting this, Alice

gets 2µ+1 asM . Hence, µ̃ = µ, and SiGamal is correct.

2.2 Security of SiGamal

In this subsection, we prove the security of SiGamal.

First, we define new assumptions: the P-CSSCDH as-

sumption and the P-CSSDDH assumption. These assump-

tions are based on the idea that it is hard to compute the

image of a fixed point over a hidden isogeny. In [4], [18],

problems of computing images over isogenies in SIDH set-

tings are considered hard to solve. Moreover, Petit pro-

vided a method to compute an isogeny between two given

elliptic curves in an SIDH setting by using image points

of sufficiently large degree under the isogeny [14]. Because

the isogeny problem is hard, a problem of computing image

points in the SIDH setting is considered hard. When we

translate these problems into those in the CSIDH setting,

the P-CSSCDH assumption and the P-CSSDDH assumption

are one of natural constructions of assumptions. Therefore,

we consider these new assumptions below to be correct.

Definition 2.1 (Points-Commutative Supersingular

Isogeny Computational Diffie-Hellman assumption (P-C-

SSCDH assumption)). Let p be a prime that satisfies

p = 2r · ℓ1 · · · ℓn − 1, where ℓ1, . . . ℓn are small distinct odd

primes. Let E0 be the elliptic curve Y 2Z = X3 + XZ2,

P0 be a uniformly random point in E0(Fp) of order 2r,

and a and b be random elements of I(Z[πp]). Set λ as the

bit length of p.

The P-CSSCDH assumption holds if, for any efficient

algorithm A,

Pr

 abP0 = P ∗

∣∣∣∣∣∣ P0
$←− E0(Fp)order 2r , a, b← I(Z[πp]),

P ∗ ← A(E0, P0, [a]E0, aP0, [b]E0, bP0, [a][b]E0)

 < negl(λ).

Definition 2.2 (Points-Commutative Supersingular

Isogeny Decisional Diffie-Hellman assumption (P-CSS-

DDH assumption)). Let p be a prime that satisfies

p = 2r · ℓ1 · · · ℓn − 1, where ℓ1, . . . ℓn are small distinct odd

primes. Let E0 be the elliptic curve Y 2Z = X3 + XZ2,

P0 be a uniformly random point in E0(Fp) of order 2r,

and a and b be random elements of I(Z[πp]) whose norms

are odd. Furthermore, let Q be a uniformly random point

of order 2r in ([a][b]E0)(Fp). Set λ as the bit length of p.

The P-CSSDDH assumption holds if, for any efficient

algorithm A,∣∣∣∣∣∣∣∣∣ Pr
 b = b∗

∣∣∣∣∣∣∣∣∣
P0

$←− E0(Fp)order 2r , a, b← I(Z[πp]), b $←− {0, 1},

Q
$←− ([a][b]E0)(Fp)order 2r , R0 := abP0, R1 := Q,

b∗ ← A(E0, P0, [a]E0, aP0, [b]E0, bP0, [a][b]E0, Rb)

− 1

2

∣∣∣∣∣∣∣∣∣ < negl(λ).

Remark 2.3. An equivalence class abP0 is uniquely de-

termined from

E0, P0, [a]E0, aP0, [b]E0, bP0, [a][b]E0.

Now, we prove this fact.

Let a, a′, b, and b′ be elements of I(Z[πp]) such that

[a] = [a′], [b] = [b′], aP0 = a′P0, bP0 = b′P0, and the

norms of a, a′, b, and b′ are coprime to the order of P0.

Now, we prove that abP0 = a′b′P0. From the definition

of an ideal class group, there exist α, β ∈ Q(πp)
× such

that a = a′α and b = b′β. Then, α(P0) = ±P0 holds,

because the norms of a and a′ are coprime to the order of

P0, and aP0 = a′P0. Similarly, β(P0) = ±P0. Therefore,

abP0 = a′b′αβP0 = a′b′P0.

Remark 2.4. In the above definitions, we sample ele-

ments of I(Z[πp]) by taking (α, e1, . . . , en) uniformly from

(Z/2rZ)× × {−m, . . . ,m}n that represents αle1
1 · · · l

en
n ∈

I(Z[πp]).
Next, we prove the security of SiGamal under the above

assumptions.

Theorem 2.2. If the P-CSSCDH assumption holds, then

SiGamal is OW-CPA secure.

Proof. Assume that SiGamal is not OW-CPA secure. In

that case, there exists an efficient algorithm (adversary) A′

that, with high probability, outputs a hidden plaintext µ

from

(E0, P0, [a]E0, aP0), ([b]E0, bP0, [a][b]E0, (2µ+ 1)abP0).

Now, we construct a new algorithm A that outputs abP0

from

(E0, P0), ([a]E0, aP0), ([b]E0, bP0), [a][b]E0

with high probability (i.e., ω
(

1
poly(λ)

)
). Taking a random

point Q of order 2r from [a][b]E0, we compute

µ := A′((E0, P0, [a]E0, aP0), ([b]E0, bP0, [a][b]E0, Q)).

Here, Q = (2µ + 1)abP0 holds with high probability. Note

that 2µ + 1 belongs to (Z/2rZ)×. From Q and µ, we com-

pute 1
2µ+1Q. That is, algorithm A outputs 1

2µ+1Q, which

is abP0 with high probability.

It is obvious that A is an efficient algorithm. Therefore,

the P-CSSCDH assumption does not hold.

Theorem 2.3. If the P-CSSDDH assumption holds, then

SiGamal is IND-CPA secure.

Proof. Assume that SiGamal is not IND-CPA secure. In

that case, there exists an efficient algorithm (adversary) A′

judging whether a given ciphertext was encrypted from µ0

or µ1. Denote the advantage of A′ (i.e., the left side of

the inequality in Definition 1.5) by AdvA′(λ). Note that

AdvA′(λ) = ω
(

1
poly(λ)

)
.

Now, we construct a new algorithmA that outputs b, with

a probability of ω
(

1
poly(λ)

)
+ 1

2 , from

E0, P0, [a]E0, aP0, [b]E0, bP0, [a][b]E0, Rb,

－1168－

where R0 = abP0 and R1 = Q. Taking b̃ ∈ {0, 1} uniformly

at random, we compute (2µb̃ + 1)Rb. Let

b∗ := A′((E0, P0, [a]E0, aP0), ([b]E0, bP0, [a][b]E0, (2µb̃ + 1)Rb)).

If b̃ = b∗, then A outputs 0, while if b̃ ̸= b∗, A outputs 1.

Next, we discuss the probability that A outputs the cor-

rect b. If b = 0, then b∗ = b̃ with a probability of

AdvA′(λ)+ 1
2 or−AdvA′(λ)+ 1

2 . If b = 1, then the adversary

A′ cannot get any information about µb̃, since (2µb̃ + 1)Rb

is a uniformly random point. Therefore, if b = 1, b∗ ̸= b̃

with a probability of 1
2 . Consequently, the probability that

A outputs the correct b is

1

2

(
±AdvA′(λ) +

1

2
+

1

2

)
= ±1

2
AdvA′(λ) +

1

2
= ω

(
1

poly(λ)

)
+

1

2
.

Therefore, as algorithm A is an efficient algorithm, the

P-CSSDDH assumption does not hold.

Note that SiGamal is not IND-CCA secure, because any-

one can easily compute a ciphertext of a plaintext 3µ + 1:

([b]E0, bP0, [b]E1, 3(2µ + 1)bP1) from the ciphertext of a

plaintext µ: ([b]E0, bP0, [b]E1, (2µ+ 1)bP1).

Remark 2.5. In the SiGamal protocol, Bob can omit to

send [a][b]E0 in the ciphertext ([b]E0, bP0, [a][b]E0, (2µ +

1)abP0). Note that Bob sends only the x-coordinate of

(2µ+ 1)abP0. When Bob omits to send [a][b]E0, it is hard

to compute the ciphertext of a plaintext 3µ+1 from that of

a plaintext µ, because the elliptic curve [a][b]E0 is hidden.

The question of whether SiGamal with hidden [a][b]E0 is

IND-CCA secure is an open problem.

Remark 2.6. SiGamal is attacked by computing a group

element [a] from E0 and [a]E0. This attacking method is

same as that for CSIDH. Therefore, the security level of

SiGamal is same as that of CSIDH in the same security

parameter.

3. C-SiGamal (Compressed-SiGamal)

In this section, we explain the second proposed protocol:

C-SiGamal, which is a compressed version of SiGamal. The

bit length of a ciphertext in C-SiGamal is half that of a

ciphertext in SiGamal, but the protocol of C-SiGamal is a

little bit more complicated than that of SiGamal.

3.1 Encryption protocol of C-SiGamal

In this subsection, we explain the precise protocol of C-

SiGamal.

Let Ea be a supersingular elliptic curve Y 2Z = X3 +

aX2Z +XZ2. Let PEa
be a point in Ea such that PEa

=

ℓ1 · · · ℓnP̃Ea
, where P̃Ea

is the point in Ea(Fp) that has the

largest x-coordinate in {−2,−3, . . . ,−p + 1} among points

whose orders are divisible by 2r. We use this point to con-

struct C-SiGamal.

The protocol of C-SiGamal is as follows.

KeyGen: Let p be a prime that satisfies p = 2r ·ℓ1 · · · ℓn−1,
where ℓ1, . . . , ℓn are small distinct odd primes. Let E0

be the elliptic curve Y 2Z = X3 + XZ2, and P0 be a

random point in E0(Fp) of order 2r. Alice takes ran-

dom elements a = (α)le1
1 · · · l

en
n ∈ I(Z[πp]) and com-

putes E1 := [a]E0 and P1 := aP0. Alice then pub-

lishes (E0, P0) and (E1, P1) as public keys, and keeps

(α, e1, . . . , en) as a secret key. Let {0, 1}r−2 be a plain-

text message space.

Enc: Let µ be a plaintext. Bob takes random elements

b = (β)l
e′
1

1 · · · l
e′
n

n in I(Z[πp]) and computes E3 := [b]E0,

P3 := bP0, E4 := [b]E1, and P4 := bP1. Bob computes

(2µ+1)PE4
and gets µ∗ satisfying (2µ+1)PE4

= µ∗P4

by using the Pohlig-Hellman algorithm. Bob then com-

putes P ′
3 := µ∗P3 and sends (E3, P

′
3) to Alice as a ci-

phertext.

Dec: Alice computes E4 = [a]E3 and aP ′
3. Alice then

solves the discrete logarithm problem over Z/2rZ for

aP ′
3 and PE4

by using the Pohlig-Hellman algorithm.

Let M be the solution of this computation. If the

most significant bit of M is 1, then Alice changes M

to 2r − M . Finally, Alice computes (M − 1)/2 as a

plaintext µ̃.

Theorem 3.1. C-SiGamal is correct.

Proof. The proof of this theorem is similar to that of The-

orem 2.1.

3.2 Security of C-SiGamal

In this subsection, we prove the security of C-SiGamal.

Theorem 3.2. If the P-CSSCDH assumption holds, then

C-SiGamal is OW-CPA secure.

Proof. Assume that C-SiGamal is not OW-CPA secure. In

that case, there is an efficient algorithm (adversary) A′ that,

with high probability, outputs a hidden plaintext µ from

(E0, P0, [a]E0, aP0), ([b]E0, µ
∗bP0).

Now, we construct a new algorithm A that outputs abP0

from

(E0, P0), ([a]E0, aP0), ([b]E0, bP0), [a][b]E0

with high probability (i.e., ω
(

1
poly(λ)

)
). Taking a random

element ν in (Z/2rZ)× and the point P[a][b]E0
in [a][b]E0,

we compute

µ := A′((E0, P0, [a]E0, aP0), ([b]E0, νbP0)).

Here, (2µ + 1)P[a][b]E0
= νabP0 holds with high probabil-

ity. Then, we compute 2µ+1
ν P[a][b]E0

. That is, algorithm A
outputs 2µ+1

ν P[a][b]E0
, which is abP0 with high probability.

It is obvious that A is an efficient algorithm. Therefore,

the P-CSSCDH assumption does not hold.

Theorem 3.3. If the P-CSSDDH assumption holds, then

C-SiGamal is IND-CPA secure.

Proof. Assume that C-SiGamal is not IND-CPA secure.

In that, there exists an efficient algorithm (adversary) A′

judging whether a given ciphertext was encrypted from µ0

or µ1. Denote the advantage of A′ (i.e., the left side of

－1169－

Table 1 Comparison of key sizes of CSIDH, SiGamal, and C-
SiGamal

CSIDH SiGamal C-SiGamal

sizes of plaintexts − r − 2 r − 2
Alice’s public key 2 log2 p 4 log2 p 4 log2 p

a ciphertext 2 log2 p 4 log2 p 2 log2 p

the inequality in Definition 1.5) by AdvA′(λ). Note that

AdvA′(λ) = ω
(

1
poly(λ)

)
.

Now, we construct a new algorithmA that outputs b, with

a probability of ω
(

1
poly(λ)

)
+ 1

2 , from

E0, P0, [a]E0, aP0, [b]E0, bP0, [a][b]E0, Rb,

where R0 = abP0 and R1 = Q. Taking the point P[a][b]E0

in [a][b]E0 and b̃ ∈ {0, 1} uniformly at random, we compute

a point (2µb̃ + 1)Rb and a value µ∗
b̃
∈ (Z/2rZ)× such that

µ∗
b̃
P[a][b]E0

= (2µb̃ + 1)Rb. Then, let

b∗ := A′((E0, P0, [a]E0, aP0), ([b]E0, µ
∗
b̃bP0)).

If b̃ = b∗, then A outputs 0, while if b̃ ̸= b∗, A outputs 1.

Next, we discuss the probability that A outputs the cor-

rect b. If b = 0, then b∗ = b̃ with a probability of

AdvA′(λ) + 1
2 or −AdvA′(λ) + 1

2 . If b = 1, then the ad-

versary A′ cannot get any information about µb̃, because

(2µb̃ + 1)Rb is a uniformly random point and µ∗
b̃
is a uni-

formly random value. Therefore, if b = 1, then b∗ ̸= b̃ with

a probability of 1
2 . Consequently, the probability that A

outputs the correct b is

1

2

(
±AdvA′(λ) +

1

2
+

1

2

)
= ±1

2
AdvA′(λ) +

1

2
= ω

(
1

poly(λ)

)
+

1

2
.

As algorithm A is an efficient algorithm, the P-CSSDDH

assumption does not hold.

Finally, note that C-SiGamal is not IND-CCA secure for

the same reason that SiGamal is not.

3.3 Comparison the key size of each protocol

In this subsection, we compare key sizes of CSIDH, SiGa-

mal, and C-SiGamal. The result of comparison is shown in

Table 1, where p is a prime in the setting of each protocol,

and r is an exponent of a prime factor 2 of p+ 1.

From this table, the bit length of a ciphertext in SiGamal

is twice that of a ciphertext in CSIDH; however that of a ci-

phertext in C-SiGamal is the same as that of a ciphertext in

CSIDH. Therefore, though C-SiGamal is more complicated

than SiGamal, the cost of sending ciphertexts in C-SiGamal

is as small as that in CSIDH.

4. Experimentation

In this section, we show the results of our experimentation

to estimate computational costs of our proposed protocols.

In our experimentation, we fixed security levels of all pro-

tocols to the security level of CSIDH-512. In other words,

we chose primes that satisfy their bits are about 512 in all

experimentations.

Table 2 Computational costs of group actions

parameters (p128, P128) (p256, P256) CSIDH-512

bit lengths of p 522 515 512
M 511,531 866,000 328,301
S 158,849 302,400 116,953
a 480,134 838,330 332,933

total 662,617 1,149,836 438,510

4.1 Parameters

In this subsection, we propose two parameters for SiGamal

and C-SiGamal: (p128, P128) for the case when the plain-

text message space is {0, 1}128, and (p256, P256) for the case

when the plaintext message space is {0, 1}256. Let the bit

lengths of p128 and p256 be about 512 to adapt the security

level of SiGamal and C-SiGamal to that of CSIDH-512.

4.1.1 (p128, P128)

Let p128 be a prime 2130 · ℓ1 · · · ℓ60− 1, where ℓ1 through

ℓ59 are the smallest distinct odd primes, and ℓ60 is 569. The

bit length of p128 is 522. Set a key bound m128 over p128 as

10. Finally, let a point P128 of order 2130 in E0(Fp128) be

ℓ1 · · · ℓ60P̃128, where P̃128 is a point whose x-coordinate is

331.

4.1.2 (p256, P256)

Let p256 be a prime 2258 · ℓ1 · · · ℓ43− 1, where ℓ1 through

ℓ42 are the smallest distinct odd primes, and ℓ43 is 307. The

bit length of p256 is 515. Set a key bound m258 over p258 as

32. Finally, let a point P256 of order 2258 in E0(Fp256) be

ℓ1 · · · ℓ43P̃256, where P̃256 is a point whose x-coordinate is

199.

4.2 Computational costs of SiGamal and C-

SiGamal

Here, we show the results of our experimentation about

SiGamal and C-SiGamal. The protocols of SiGamal and

C-SiGamal consist of group actions, scalar multiplications,

and the Pohlig-Hellman algorithm. Computational com-

plexity of scalar multiplications is O(r), and that of the

Pohlig-Hellman algorithm is O(r2). Their computational

costs affect little on all computational costs of SiGamal and

C-SiGamal.

We implemented group actions of cl(Z[πp]) over p128,

p256, and as a reference value, p0. Here, p0 is a prime pro-

posed in the original CSIDH paper [2]: a prime 4ℓ1 · · · ℓ74−1
such that ℓ1 . . . ℓ73 are the smallest distinct odd primes and

ℓ74 = 587, and a key bound m0 is 5. We implemented algo-

rithms of group actions in SiGamal over p128 and p256 and

Algorithm 1 over p0 according to [11]. Then, for each case we

measured the average computational cost over 50,000 trials.

Refer to Appendix A.1 in [12] for the computational costs

of each formula for the Montgomery curves. The results are

listed in Table 2, in which we denote field multiplication by

M, field squaring by S, and field addition, subtraction, or

doubling by a. The quantity “total” means the total number

of M, where 1S = 0.8M and 1a = 0.05M.

Remark 4.1. There are techniques for improving the

efficiency of group actions in CSIDH, such as SIMBA

[10], optimal addition chains for scalar multiplications [3],

－1170－

Table 3 Computational costs of SiGamal and C-SiGamal (num-
bers of M)

parameters (p128, P128) (p256, P256)
a bit length of µ 128 256

protocols SiGamal C-SiGamal SiGamal C-SiGamal

key generation 663,411 1,154,035
encryption 1,327,899 1,434,944 2,306,317 2,703,339
decryption 761,058 768,602 1,538,498 1,545,253

and key space optimization [8]. These techniques can be

adapted to SiGamal and C-SiGamal.

Next, we implemented protocols of SiGamal and CSiGa-

mal. The result is shown in Table 3. As shown in this table,

the computational costs of the encryption algorithms of C-

SiGamal over p128 are about 108% than that of two group

actions, and those over p256 are about 117% than that of

two group actions. Moreover, that of the decryption algo-

rithms of SiGamal and C-SiGamal over p128 are about 116%

than that of one group action, and those over p256 are about

134% than that of one group action.

From Table 2, the computational cost of a group action

over (p256, P256) is about 2.62 times that of a group action of

CSIDH-512. Therefore, SiGamal and C-SiGamal need more

computation than CSIDH. However, when we use CSIDH

for secure communication, we need to use hash functions

since a shared key in CSIDH is a supersingular elliptic curve.

If these hash functions are attacked, the communication is

less secure, even if CSIDH is not broken. In fact, ElGa-

mal like encryption based on CSIDH in the subsection 1.5.3

is not IND-CPA secure without using hash functions. On

the other hand, when we use SiGamal or C-SiGamal, the

security of communication is guaranteed by the security of

SiGamal or C-SiGamal. Moreover, bit lengths of shared keys

in CSIDH are determined by the security parameter (i.e.,

the bit length of the prime p) and hash functions, while

bit lengths of plaintexts in SiGamal and C-SiGamal are de-

termined by r. Because the only condition that r satisfies

is r < log2 p, bit lengths of plaintexts in SiGamal and C-

SiGamal are determined relatively freely. Summary, SiGa-

mal and C-SiGamal are less efficient than CSIDH; however,

SiGamal and C-SiGamal is superior to CSIDH in terms of

security and functionality.

5. Conclusion

We have proposed new isogeny-based public key encryp-

tions: SiGamal and C-SiGamal. We developed SiGamal by

giving CSIDH additional points of order 2r, where r − 2 is

the bit length of a plaintext. The protocol of SiGamal is

similar to that of ElGamal encryption, while C-SiGamal is

a compressed version of SiGamal. These protocols do not

use hash functions.

In addition, we have proved that, if the new P-CSSCDH

assumption holds, then SiGamal and C-SiGamal are OW-

CPA secure, and if the new P-CSSDDH assumption holds,

then SiGamal and C-SiGamal are IND-CPA secure.

Finally, we experimented group actions in SiGamal and

C-SiGamal and measured their computational costs. The

computational costs of these group actions in SiGamal and

C-SiGamal with r = 258 are about 2.62 times that of a

group action in CSIDH-512.

References

[1] Wouter Castryck and Thomas Decru. CSIDH on the
surface. In International Conference on Post-Quantum
Cryptography–PQCrypto 2020, page 1404. Springer, 2020.

[2] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz
Panny, and Joost Renes. CSIDH: an efficient post-quantum
commutative group action. In International Conference on
the Theory and Application of Cryptology and Information
Security–ASIACRYPT 2018, pages 395–427. Springer, 2018.

[3] Daniel Cervantes-Vázquez, Mathilde Chenu, Jesús-Javier
Chi-Domı́nguez, Luca De Feo, Francisco Rodŕıguez-
Henŕıquez, and Benjamin Smith. Stronger and faster side-
channel protections for csidh. In International Conference
on Cryptology and Information Security in Latin America–
LATINCRYPT 2019, pages 173–193. Springer, 2019.

[4] Cyprien Delpech de Saint Guilhem, Péter Kutas, Christophe

Petit, and Javier Silva. SÉTA: Supersingular encryption from
torsion attacks. IACR Cryptology ePrint Archive, 2019:1291,
2019. https://ia.cr/2019/1291.

[5] Christina Delfs and Steven D Galbraith. Computing isoge-
nies between supersingular elliptic curves over Fp. Designs,
Codes and Cryptography, pages 425–440, 2016.

[6] Steven D Galbraith. Mathematics of Public Key Cryptogra-
phy. Cambridge University Press, 2012.

[7] David Jao and Luca De Feo. Towards quantum-resistant
cryptosystems from supersingular elliptic curve isogenies. In
International Workshop on Post-Quantum Cryptography–
PQCrypto 2011, pages 19–34. Springer, 2011.

[8] Nakagawa Kohei, Onuki Hiroshi, Takayasu Atsushi, and Tak-
agi Tsuyoshi. L1-norm ball for CSIDH: Optimal strategy
for choosing the secret key space. IACR Cryptology ePrint
Archive, 2020:181, 2020. https://ia.cr/2020/181.

[9] Christopher Leonardi. A note on the ending elliptic curve
in SIDH. IACR Cryptology ePrint Archive, 2020:262, 2020.
https://ia.cr/2020/262.

[10] Michael Meyer, Fabio Campos, and Steffen Reith. On Li-
ons and Elligators: An efficient constant-time implemen-
tation of CSIDH. In International Conference on Post–
Quantum Cryptography–PQCrypto 2018, pages 307–325.
Springer, 2019.

[11] Michael Meyer and Steffen Reith. A faster way to the
CSIDH. In International Conference on Cryptology in India–
INDOCRYPT 2018, pages 137–152. Springer, 2018.

[12] Tomoki Moriya, Hiroshi Onuki, and Tsuyoshi Takagi. How
to construct CSIDH on Edwards curves. In Topics in
Cryptology–CT-RSA 2020, pages 512–537. Springer, 2020.

[13] Hiroshi Onuki and Tsuyoshi Takagi. On collisions related to
an ideal class of order 3 in CSIDH. Technical report, 2019.
https://ia.cr/2019/1209.

[14] Christophe Petit. Faster algorithms for isogeny problems us-
ing torsion point images. In International Conference on
the Theory and Application of Cryptology and Information
Security–ASIACRYPT 2017, pages 330–353. Springer, 2017.

[15] Stephen Pohlig and Martin Hellman. An improved algo-
rithm for computing logarithms over GF (p) and its cryp-
tographic significance. IEEE Transactions on information
Theory, 24(1):106–110, 1978.

[16] Victor Shoup. Sequences of games: a tool for taming com-
plexity in security proofs. IACR Cryptology ePrint Archive,
2004:332, 2004. https://ia.cr/2004/332.

[17] Joseph H Silverman. The arithmetic of elliptic curves, vol-
ume 106. Springer Science & Business Media, 2009.

[18] Oleg Taraskin, Vladimir Soukharev, David Jao, and Ja-
son LeGrow. An isogeny-based password-authenticated key
establishment protocol. IACR Cryptology ePrint Archive,
2018:886, 2018. https://ia.cr/2018/886.

[19] Jacques Vélu. Isogénies entre courbes elliptiques. CR Acad.
Sci. Paris, Séries A, pages 305–347, 1971.

[20] William C Waterhouse. Abelian varieties over finite fields. In

Annales scientifiques de l’École Normale Supérieure, pages
521–560, 1969.

－1171－

