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OT-based Graph Similarity using Shortest-path Length

Abstract: One important challenge of similarity measure between unlabeled graphs is capturing the struc-
tural identity of nodes in the respective graphs. Most existing methods of graph matching such as graph
kernel and embedding are adversely affected by unsatisfactory performance because they address the local
structure of neighborhoods and rely on labels and attributes of nodes or edges. To this end, considering
graph analysis tasks on unlabeled graphs, we propose a simple structural node representation by shortest-
path length between nodes. We propose the SPL-graph edit distance to measure the node feature similarity
easily. Then, aiming at embedding structural information into sample distributions, we propose a novel
OT-based graph similarity measure by fusing this SPL-graph edit distance to the ground distance in optimal
transport problem. As numerical evaluations reveal, the proposed method, designated as SOT, remarkably
and stably outperforms state-of-the-art methods on several real-world unlabeled graphs, surprisingly gaining
50% and 36% accuracy improvement respectively in the ENZYMES and IMDB-M datasets. It also yields
comparable or better performance than others for labeled graphs.

1. Introduction

Graph kernel [1], [2] and graph embedding [4], [5], [6],
[7] have recently achieved remarkable progress in graph
matching. However, many of them have two inherent lim-

itations. The first limitation is that existing graph decom-
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position approaches and their simple similarity measures
are likely to lose global topological information. In fact,
many existing methods have been undertaken to compare
neighborhood subgraphs centered at focused nodes, desig-
nated as root nodes. Consequently, they cannot efficiently
handle cases in which a huge number of nodes are located
far away from those root nodes. To alleviate this diffi-
culty, some factorization-based methods attempt to seek
low-dimensional representations of nodes assuming that
the node adjacency matrix or connectivity matrix is glob-
ally low-rank. However, it is not always true when the ma-

trix consists of a complex structure. A second limitation
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is that many of them rely heavily on labels and attributes
of nodes or edges. However, many unlabeled graphs exist
such as social networks, where individual nodes have no
distinct identification or attributes, except through their
interconnectivity.

In recent years, Optimal Transport (OT) is rapidly
gaining popularity in a multitude of application areas
in machine learning fields. One reason for this popu-
larity is that many practical tasks in machine learning
amount to calculation of the distance between probabil-
ity measures or between their samples. This distance
is called the Wasserstein distance. Another reason is
that some recently developed approximate or regularized
solvers have drastically reduced its potentially high com-
putational cost. In a different line of issues, translation
of graph-structured data into structured distributions is
difficult to accomplish without loss of its structural in-
formation such as internal mutual relation among nodes.
Although the Gromov—Wasserstein (GW) discrepancy [9]
and its variant [10] represent graph-structured data ex-
ploiting its edge structure, their performances are not sat-
isfactory, as the numerical section shows. The fused GW
(FGW) [11] uses attributes and labels of nodes, but it also
yields unsatisfactory results.

To this end, considering graph analysis tasks on unla-
beled graphs, we propose a novel Wasserstein-distance-
based graph similarity between two unlabeled graphs.
More specifically, we first propose a simple structural node
representation by shortest-path lengths between nodes,
called SPL-node feature. Then, without embedding this
SPL-node feature into a vector space, the SPL-graph edit
distance is proposed for direct measurement of feature
similarity between two nodes belonging to the two graphs.
This distance is finally used as the ground distance to solve
the optimal transport (OT) problem to derive the Wasser-
stein distance. The proposed method, designated as SOT,
truly overcomes the shortcoming that the Wasserstein dis-
tance cannot capture such internal relations within its dis-
tribution.

Our contributions are summarized as explained below.

e We introduce a concept of shortest-path-based dis-

tance to extract structural features of a node to cap-
ture its connections to others in a local and global
manner.

e We propose the SPL-graph edit distance and its sim-

ple calculation algorithm to measure similarity be-
tween two node features effectively by extending the

notion of graph edit distance.
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e We embed Graph-structured data into the same met-
ric space to translate a graph matching problem into

a discrete Monge’s OT problem.

1.1 Related Work

The Wasserstein distance is an effective method for dis-
tribution comparison. A surge of approaches that are ap-
plicable to graph feature comparison has since occurred.
However, it cannot directly capture the internal relation
within the distribution. To address this difficulty, [9]
proposed the Gromov—Wasserstein (GW) distance. How-
ever, the GW distance is non-convex. It is often NP-
hard. [10] also proposed the GW discrepancy with an
entropy-regularization term. It uses the projected gradi-
ent descent method using the Sinkhorn algorithm. The
Fused Gromov-Wasserstein (FGW) [11] is an extension
of the GW discrepancy to handle attributes and labels as
well as structural information. GOT [12] was designed
for graph alignment problems. It skillfully transforms
the entirety of the graph into a normal distribution with
zero mean value and Laplacian matrix variance. Also,
it measures the distance between distributions according
to the Wasserstein distance. The Wasserstein—Weisfeiler—
Lehman Graph Kernels (WWL) [3] is the first method pro-
posed to solve graph matching by transformation into the
OT problem. This work demonstrated that the combina-
tion of the graph matching problem and the OT problem
work together well. Although we followed the same line
of this approach, our proposed similarity is measured by
the simplified graph edit distance between the proposed
structural node features in terms of local and global per-
spectives without reliance on labels and attributes. The
resultant algorithm is calculable by linear complexity with

a practical meaning.

2. Preliminaries

Graph G is structured data with a node set V and an
edge set E C V x V, denoted as G(V, E). The shortest
path is the path between two nodes in the graph, of which
the sum of the weights of the edges along its path is mini-
mized. We refer to its length as the shortest-path length.
The bold typeface lower-case and upper-case letters such
as x and X respectively represent a vector and a matrix.
Also, X; ; represents the element at (4, j) of X. RY is the
nonnegative n-dimensional vector, and R"*" denotes the
nonnegative m X n size matrix. ) stands for the proba-
bility simplex with n bins. Also, §, is the Dirac function

at x. (-and-) denote the Euclidean dot-product between
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vectors. o is the Hadamard product. || - || is 2 norm.
Definition 1 (Graph edit distance [8]). Graph edit dis-
tance (GED) is a measure of the graph dissimilarity. The
traditional GED is defined as the sum of the minimum op-
eration cost of deleting, inserting, and substituting nodes
and edges necessary to transform one graph into another.
Definition 2 (Optimal Transport). Optimal transporta-
tion (OT) is derived from the Monge’s OT problem, which
1s intended to obtain the minimum transportation cost and
transport plan between two distributions. Because of the
strict conditions of Monge’s OT problem, it is difficult to
solve. The existing OT usually refers to Kantorovich’s
OT problem.

We define two simplexes of histograms with m and n on
the same matrix space. They are defined as >, = {a €
Ry " a;=1}and 3o, ={be R} : Y7 b =1}.

Then we define two probability measures

a= f:ai(swi and = zn:bj(s"cj’
i=1 j=t1

where x; # x; for i # j is assumed without loss of gener-
ality. We denote the ground cost matrix as C € R"*".
The element at (i,7) of the C represents the transport
cost between bin ¢ and bin j (locations z; and y;), where
the C; ; is also called the ground distance. The optimal

transport between two histograms is defined as
tefab -, S CPu
where U(a, b) is defined as
U(a,b)={P € RVaxIVsl . P11y, | =a, PT1}y,, = b},

where P is a coupling matrix that describes the transport
plan. Eq. (1) is a linear programming problem and a con-
vex optimization problem. We can add the entropy term
H(P)=— Zi,j P; ;(log(P;; —1)) to Eq. (1), then Eq. (1)

can be reformulated as

P; P 2
L&(a,b) Pg(gb)ZC,] i —cHP), (2

where £(> 0) is the learning rate. When ¢ is close to 0,
the solution of Eq. (2) is close to the original solution
of Eq. (1). This problem is solvable using the Sinkhorn
algorithm [13], [14]. Finally, the solution P* is the opti-
mal transport plan. The total transport cost of (C,P*)

is equal to the Wasserstein distance W(a, f3).
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3. Shortest-path Length Node Feature
and Its Graph Edit Distance

This section presents a proposal of the shortest-path
length node feature, which represents internal structural
relations of a node with other nodes within a graph. Then,
by extending the notion of the graph edit distance defined,
the SPL-graph edit distance to measure the dissimilarity
between two shortest-path length node features is pro-
posed. This obtained distance is used to form the ground
distance C for the proposed Wasserstein graph similarity

in the succeeding section.

3.1 Shortest-path length node feature

When considering a distance between two graphs, a
common method is measurement of the distance between
features of the corresponding two nodes belonging to these
two graphs. This paper is a particular attempt to seek a
relative position or relative structural identity of a node
inside the graph, and to encode it by a simple but power-
ful descriptor. For this particular purpose, we first intro-
duce a new concept of shortest-path length node feature,
denoted as SPL-node feature in short, which consists of
shortest-path lengths of one node with all remaining nodes
within the graph.

More concretely, we calculate all the shortest-path
lengths from the focused node to all the remaining nodes,
and encode the set of these lengths as the descriptor.
The shortest-path length between the i-th node and the
j-th node, where j # ¢ and j € |V| is designated as
Sp(vi,vj)€ Z, where v;,v; € V, which refers to the i-th
node in the graph. Consequently, the SPL-node feature
F of node v; in the graph is defined as

F(v;) ={Sp(vi,v;) | je|VI],j#i} fori=1,...,|V].

3.2 SPL-graph edit distance for node similarity
This subsection presents derivation of node similarity
between two SPL-node features. As the formulation of
F(v;) shows, the SPL-node features of two nodes have dif-
ferent lengths. Vector norms cannot be applied directly
to measure the feature distances. Moreover, even if the
two features have the same length, simple vector compari-
son does not reflect the meanings and the structure of the
SPL-node feature. Therefore, we decided to introduce the
structural concept into the SPL-node features that are

derived originally from F(v;). We therefore regard the



RHRNIEF RARIRE
IPSJ SIG Technical Report

SPL-node feature as a graph*'. Therefore, one possible
and effective approach to measure the feature distance is
the conventional GED, which usually refers to the mini-
mum operation cost to convert one graph to another, or
vice versa. Here, denoting this distance between graphs
Ga(Va,E4) and Gp(Vp, Ep) as dg, g, the graph edit

distance can be formally defined as

Q
dg0n = <el,...,eQI§2%(gA,gB>;C(eq)’
where P(Ga,Gp) denotes the set of edit operation paths
to convert G4 to Gp. Also, e, stands for the g-th edit
operation along the edit path, where the operation in-
cludes deletion, insertion, and substitution of nodes or
edges. In addition, @ is the total number of the edit oper-
ations; c(eq) represents the cost of the edit operation e.
Because this is known to be NP-hard, several methods
have been proposed to obtain an approximate solution.
Among them, a possible approach is string edit distance
e.g., Levenshtein-distance [15], against sorted F, which is
also an approximate solution of GED. However, in gen-
eral, we face high computational costs attributable to the
application of sophisticated algorithms, e.g., dynamic pro-
gramming.

Consequently, we propose a SPL-graph edit distance,
denoted as d5FP¥, by extending the notion of GED. It is
efficient to represent the similarity between two nodes,
which will be revealed in the numerical section. For this
SPL-graph edit distance, we first introduce the notion of
SPL-graph S; of which the root node is the focused node
v;. The main difference from the original G is that the
remaining other nodes v;(i # j) connected directly to v;
with a single edge with length equal to the shortest-path
length between them in the original G.

We propose an algorithm to calculate the SPL-graph
edit distance between SPL-graphs S4 and S, i.e., dginSB.
Noteworthy points in the design of the algorithm are sum-
marized.

e Disable substitution operation: We disable the

substitution operation. Only insertion and deletion
operations are allowed. This simple modification in

the operational strategy gives us an extremely simple

*1 For this explanation, we adopt the term “SPL-graph” to rep-

resent graph edit distance. In fact, as the practical algorithm
to calculate the distance shows later, it does not necessarily
require this notion. The calculation can perform directly on
F(v;). However, for ease of explanation of the proposed al-
gorithm, we adhere to use the notion of “graph” by following
the operation of GED.
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calculation algorithm of the distance, and enables sig-
nificant reductions of computational costs by avoid-
ing complicated algorithms such as dynamic program-
ming.

e Simple distance calculation: We execute inser-
tion and deletion operations only when the number
of nodes with equal lengths to the root node are dif-
ferent in the two SPL-graphs. Consequently, these
different numbers, the different frequencies of length
values in F(v;), are fused directly into the distance
calculation (refer to (a) in Eq. (3)).

e Weighting operational cost: We must also incor-
porate consideration of the amplitude of the value in
F(v;) on which the edit operation is performed. The
edge length in the SPL-graph represents the struc-
tural distance from the focused node with others.
Therefore, the operation costs on different lengths
must be differentiated, such as the costs between
those of the edge length “1” and “10” (refer to (b)
in Eq. (3)).

e Symmetric operational cost: We guarantee the
symmetric property of the costs for the conversion be-

C(eRy)

for all ¢ so that the costs of the insertion and deletion

tween two graphs. Therefore, we set c(e,) =

operations are the same (refer to (c) in Eq. (3)).
Consequently, denoting the number of the element of

dSPL

which value is equal to k as ¢(k), d3 8, 1 calculated as

A3 = AP (F(v), F(v;))
K

C
~~ ~~
(e) F=1

k- |pi(k) — ¢;(K)|, (3)
_,_/

®) (a)

where ¢;(-) and ¢;(-) respectively denote the values of ¢(-)

corresponding to §; and ;. Furthermore, K is defined as

K = max(nimax7 njmax)’

where nim. and n; - respectively denote the largest
number in F(S4) and F(Sp).

4. Wasserstein Graph Similarity

This section presents the Wasserstein graph similarity
exploiting the SPL-graph edit distance as the ground cost
matrix C in the optimal transport problem. The proposed
similarity enables us to perform various graph analysis

tasks such as graph matching and graph alignment.

4.1 Optimal Transport Matrix for graph similar-
ity
The proposed Wasserstein graph similarity measures
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the distances to match the nodes of one graph with the
nodes of another, which is formulated as the graph node
alignment problem. This is analogous to the discrete
Monge’s OT problem.

Presuming that we have two graphs G4(Va, E4) and
Gp(Vp,Ep). We embed G4 and Gp into the same met-
All the nodes of the two graphs are lo-
STy, } € X and

ric space.
cated respectively at points in {z1,..
{y1,-- -, yjvp} € Y. Here, we consider each node of G4
as the starting point. We also consider each node of Gp
as the endpoint for the transport setting in the optimal
transport problem. The two histograms of a and b are
defined respectively in the probability simplex Z|VA| and
ZIVBI' Furthermore, as a discrete measure a with weights

: _ \Val
STy, We write o = ) i aidy,,

a on the locations z;, . .
where « represents the distribution of nodes in G4, and
where a; refers to the relative importance of the node.
Similarly, we define the measure § = Z‘j‘fl‘ b;dy,.
Finally, inputting the SPL-graph edit distance into

Ce ]RLYA‘XWBl in Eq. (2), one obtains P* by calculating

> &M (Fa(vi), Fal(vy)) - Pij.
i€[|Vall,i€lVa]]
(4)

P* = arg min
PecU(a,b)

4.2 Application to graph matching

We introduce two approaches of the graph similarity
measure and their classification method. One is a com-
mon method that uses the Wasserstein-distance directly

to measure two SPL-distributions is given as

W(Ga,G8) = (C,P7). Q)

We combine Eq. (5) with the Laplacian kernel function
to construct SOT kernel (SOT-K), defined as

Ksor(Ga,Gg) = e MW(94.95),

We also proposed another approach to perform classi-
fication using RBF kernel for SVM, which receives the
graph distances as a feature vector. In this case, this op-
eration also makes the ratio of between-class distance to
within-class distance larger because 5 norm enlarges the
ratio of large distance to small distance. This operation
might perform better under the RBF kernel. Therefore,

the new graph distance is given as
£(94,G8) = [|C o P7|l2. (6)

We use Eq. (6) to construct a graph distance feature vec-

tor, defined as
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Esor(G:i) = {L(Gi, gj)};v=1 .

We designate this graph embedding method as SOT em-
bedding (SOT-E).
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