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最短経路長に基づく最適輸送問題を用いたグラフ類似度評価
の検討

方 鐘熙2,a) 黄 健明1,b) 笠井 裕之2,c)

概要：ラベル付けされていないグラフ間の類似度測定の重要な課題の 1つは，それぞれのグラフ内のノー
ドの構造的同一性を捉えることである．グラフカーネルや Embeddingなどの既存のグラフマッチング手
法の多くは，近傍の局所的な構造を扱いノードや辺のラベルや属性情報に依存しているため，性能が不十
分である． そこで，ラベル無しグラフ上でのグラフ解析を目標とし，ノード間の最短経路長による単純な
構造ノード特徴量表現手法を提案する．また，ノードの特徴量の類似性を容易に測定するために，SPLグ
ラフ編集距離を提案する．次に，構造情報をサンプル分布に埋め込むことを目的として，最適輸送問題に
おいて，この SPLグラフ編集距離と ground distanceを統合させた新しい OTベースのグラフ類似度測定
法を提案する．本稿では提案手法を SOTと呼ぶ．ラベルの無い実世界グラフデータセットを用いた評価
実験において，提案方式 SOTは，最新の手法と比較して，ENZYMESと IMDB-Mのデータセットにお
いて，それぞれ 50%，36%の精度向上を達成した．また，ラベル付きグラフに対しても，他の手法と同等
かそれ以上の性能を示すことを確認した．

OT-based Graph Similarity using Shortest-path Length

Abstract: One important challenge of similarity measure between unlabeled graphs is capturing the struc-
tural identity of nodes in the respective graphs. Most existing methods of graph matching such as graph
kernel and embedding are adversely affected by unsatisfactory performance because they address the local
structure of neighborhoods and rely on labels and attributes of nodes or edges. To this end, considering
graph analysis tasks on unlabeled graphs, we propose a simple structural node representation by shortest-
path length between nodes. We propose the SPL-graph edit distance to measure the node feature similarity
easily. Then, aiming at embedding structural information into sample distributions, we propose a novel
OT-based graph similarity measure by fusing this SPL-graph edit distance to the ground distance in optimal
transport problem. As numerical evaluations reveal, the proposed method, designated as SOT, remarkably
and stably outperforms state-of-the-art methods on several real-world unlabeled graphs, surprisingly gaining
50% and 36% accuracy improvement respectively in the ENZYMES and IMDB-M datasets. It also yields
comparable or better performance than others for labeled graphs.

1. Introduction

Graph kernel [1], [2] and graph embedding [4], [5], [6],

[7] have recently achieved remarkable progress in graph

matching. However, many of them have two inherent lim-

itations. The first limitation is that existing graph decom-
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position approaches and their simple similarity measures

are likely to lose global topological information. In fact,

many existing methods have been undertaken to compare

neighborhood subgraphs centered at focused nodes, desig-

nated as root nodes. Consequently, they cannot efficiently

handle cases in which a huge number of nodes are located

far away from those root nodes. To alleviate this diffi-

culty, some factorization-based methods attempt to seek

low-dimensional representations of nodes assuming that

the node adjacency matrix or connectivity matrix is glob-

ally low-rank. However, it is not always true when the ma-

trix consists of a complex structure. A second limitation
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is that many of them rely heavily on labels and attributes

of nodes or edges. However, many unlabeled graphs exist

such as social networks, where individual nodes have no

distinct identification or attributes, except through their

interconnectivity.

In recent years, Optimal Transport (OT) is rapidly

gaining popularity in a multitude of application areas

in machine learning fields. One reason for this popu-

larity is that many practical tasks in machine learning

amount to calculation of the distance between probabil-

ity measures or between their samples. This distance

is called the Wasserstein distance. Another reason is

that some recently developed approximate or regularized

solvers have drastically reduced its potentially high com-

putational cost. In a different line of issues, translation

of graph-structured data into structured distributions is

difficult to accomplish without loss of its structural in-

formation such as internal mutual relation among nodes.

Although the Gromov–Wasserstein (GW) discrepancy [9]

and its variant [10] represent graph-structured data ex-

ploiting its edge structure, their performances are not sat-

isfactory, as the numerical section shows. The fused GW

(FGW) [11] uses attributes and labels of nodes, but it also

yields unsatisfactory results.

To this end, considering graph analysis tasks on unla-

beled graphs, we propose a novel Wasserstein-distance-

based graph similarity between two unlabeled graphs.

More specifically, we first propose a simple structural node

representation by shortest-path lengths between nodes,

called SPL-node feature. Then, without embedding this

SPL-node feature into a vector space, the SPL-graph edit

distance is proposed for direct measurement of feature

similarity between two nodes belonging to the two graphs.

This distance is finally used as the ground distance to solve

the optimal transport (OT) problem to derive the Wasser-

stein distance. The proposed method, designated as SOT,

truly overcomes the shortcoming that the Wasserstein dis-

tance cannot capture such internal relations within its dis-

tribution.

Our contributions are summarized as explained below.

• We introduce a concept of shortest-path-based dis-

tance to extract structural features of a node to cap-

ture its connections to others in a local and global

manner.

• We propose the SPL-graph edit distance and its sim-

ple calculation algorithm to measure similarity be-

tween two node features effectively by extending the

notion of graph edit distance.

• We embed Graph-structured data into the same met-

ric space to translate a graph matching problem into

a discrete Monge’s OT problem.

1.1 Related Work

The Wasserstein distance is an effective method for dis-

tribution comparison. A surge of approaches that are ap-

plicable to graph feature comparison has since occurred.

However, it cannot directly capture the internal relation

within the distribution. To address this difficulty, [9]

proposed the Gromov–Wasserstein (GW) distance. How-

ever, the GW distance is non-convex. It is often NP-

hard. [10] also proposed the GW discrepancy with an

entropy-regularization term. It uses the projected gradi-

ent descent method using the Sinkhorn algorithm. The

Fused Gromov–Wasserstein (FGW) [11] is an extension

of the GW discrepancy to handle attributes and labels as

well as structural information. GOT [12] was designed

for graph alignment problems. It skillfully transforms

the entirety of the graph into a normal distribution with

zero mean value and Laplacian matrix variance. Also,

it measures the distance between distributions according

to the Wasserstein distance. The Wasserstein–Weisfeiler–

Lehman Graph Kernels (WWL) [3] is the first method pro-

posed to solve graph matching by transformation into the

OT problem. This work demonstrated that the combina-

tion of the graph matching problem and the OT problem

work together well. Although we followed the same line

of this approach, our proposed similarity is measured by

the simplified graph edit distance between the proposed

structural node features in terms of local and global per-

spectives without reliance on labels and attributes. The

resultant algorithm is calculable by linear complexity with

a practical meaning.

2. Preliminaries

Graph G is structured data with a node set V and an

edge set E ⊆ V × V , denoted as G(V,E). The shortest

path is the path between two nodes in the graph, of which

the sum of the weights of the edges along its path is mini-

mized. We refer to its length as the shortest-path length.

The bold typeface lower-case and upper-case letters such

as x and X respectively represent a vector and a matrix.

Also, Xi,j represents the element at (i, j) of X. Rn
+ is the

nonnegative n-dimensional vector, and Rm×n
+ denotes the

nonnegative m×n size matrix.
∑

n stands for the proba-

bility simplex with n bins. Also, δx is the Dirac function

at x. ⟨·and·⟩ denote the Euclidean dot-product between
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vectors. ◦ is the Hadamard product. || · ||2 is ℓ2 norm.

Definition 1 (Graph edit distance [8]). Graph edit dis-

tance (GED) is a measure of the graph dissimilarity. The

traditional GED is defined as the sum of the minimum op-

eration cost of deleting, inserting, and substituting nodes

and edges necessary to transform one graph into another.

Definition 2 (Optimal Transport). Optimal transporta-

tion (OT) is derived from the Monge’s OT problem, which

is intended to obtain the minimum transportation cost and

transport plan between two distributions. Because of the

strict conditions of Monge’s OT problem, it is difficult to

solve. The existing OT usually refers to Kantorovich’s

OT problem.

We define two simplexes of histograms with m and n on

the same matrix space. They are defined as
∑

m = {a ∈
Rm

+ :
∑m

i=1 ai = 1} and
∑

n = {b ∈ Rn
+ :

∑n
j=1 bj = 1}.

Then we define two probability measures

α =
m∑
i=1

aiδxi and β =

n∑
j=1

bjδxj ,

where xi ̸= xj for i ̸= j is assumed without loss of gener-

ality. We denote the ground cost matrix as C ∈ Rm×n
+ .

The element at (i, j) of the C represents the transport

cost between bin i and bin j (locations xi and yj), where

the Ci,j is also called the ground distance. The optimal

transport between two histograms is defined as

LC(a,b) = min
P∈U(a,b)

∑
i,j

Ci,jPi,j , (1)

where U(a,b) is defined as

U(a,b)={P ∈ R|VA|×|VB | : P1|VA| = a, PT
1|VB | = b},

where P is a coupling matrix that describes the transport

plan. Eq. (1) is a linear programming problem and a con-

vex optimization problem. We can add the entropy term

H(P)=−
∑

i,j Pi,j(log(Pi,j −1)) to Eq. (1), then Eq. (1)

can be reformulated as

Lε
C(a,b)= min

P∈U(a,b)

∑
i,j

Ci,jPi,j − εH(P), (2)

where ε(> 0) is the learning rate. When ε is close to 0,

the solution of Eq. (2) is close to the original solution

of Eq. (1). This problem is solvable using the Sinkhorn

algorithm [13], [14]. Finally, the solution P∗ is the opti-

mal transport plan. The total transport cost of ⟨C,P∗⟩
is equal to the Wasserstein distance W(α, β).

3. Shortest-path Length Node Feature

and Its Graph Edit Distance

This section presents a proposal of the shortest-path

length node feature, which represents internal structural

relations of a node with other nodes within a graph. Then,

by extending the notion of the graph edit distance defined,

the SPL-graph edit distance to measure the dissimilarity

between two shortest-path length node features is pro-

posed. This obtained distance is used to form the ground

distance C for the proposed Wasserstein graph similarity

in the succeeding section.

3.1 Shortest-path length node feature

When considering a distance between two graphs, a

common method is measurement of the distance between

features of the corresponding two nodes belonging to these

two graphs. This paper is a particular attempt to seek a

relative position or relative structural identity of a node

inside the graph, and to encode it by a simple but power-

ful descriptor. For this particular purpose, we first intro-

duce a new concept of shortest-path length node feature,

denoted as SPL-node feature in short, which consists of

shortest-path lengths of one node with all remaining nodes

within the graph.

More concretely, we calculate all the shortest-path

lengths from the focused node to all the remaining nodes,

and encode the set of these lengths as the descriptor.

The shortest-path length between the i-th node and the

j-th node, where j ̸= i and j ∈ |V | is designated as

Sp(vi, vj)∈ Z, where vi, vj ∈ V , which refers to the i-th

node in the graph. Consequently, the SPL-node feature

F of node vi in the graph is defined as

F(vi) = {Sp(vi, vj) | j ∈ |V |, j ̸= i} for i = 1, . . . , |V |.

3.2 SPL-graph edit distance for node similarity

This subsection presents derivation of node similarity

between two SPL-node features. As the formulation of

F(vi) shows, the SPL-node features of two nodes have dif-

ferent lengths. Vector norms cannot be applied directly

to measure the feature distances. Moreover, even if the

two features have the same length, simple vector compari-

son does not reflect the meanings and the structure of the

SPL-node feature. Therefore, we decided to introduce the

structural concept into the SPL-node features that are

derived originally from F(vi). We therefore regard the
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SPL-node feature as a graph*1. Therefore, one possible

and effective approach to measure the feature distance is

the conventional GED, which usually refers to the mini-

mum operation cost to convert one graph to another, or

vice versa. Here, denoting this distance between graphs

GA(VA, EA) and GB(VB , EB) as dGA,GB
, the graph edit

distance can be formally defined as

dGA,GB
= min

(e1,...,eQ)∈P(GA,GB)

Q∑
q=1

c(eq),

where P(GA,GB) denotes the set of edit operation paths

to convert GA to GB . Also, eq stands for the q-th edit

operation along the edit path, where the operation in-

cludes deletion, insertion, and substitution of nodes or

edges. In addition, Q is the total number of the edit oper-

ations; c(eq) represents the cost of the edit operation eq.

Because this is known to be NP-hard, several methods

have been proposed to obtain an approximate solution.

Among them, a possible approach is string edit distance

e.g., Levenshtein-distance [15], against sorted F , which is

also an approximate solution of GED. However, in gen-

eral, we face high computational costs attributable to the

application of sophisticated algorithms, e.g., dynamic pro-

gramming.

Consequently, we propose a SPL-graph edit distance,

denoted as dSPL, by extending the notion of GED. It is

efficient to represent the similarity between two nodes,

which will be revealed in the numerical section. For this

SPL-graph edit distance, we first introduce the notion of

SPL-graph Si of which the root node is the focused node

vi. The main difference from the original G is that the

remaining other nodes vj(i ̸= j) connected directly to vi

with a single edge with length equal to the shortest-path

length between them in the original G.
We propose an algorithm to calculate the SPL-graph

edit distance between SPL-graphs SA and SB , i.e., d
SPL
SA,SB

.

Noteworthy points in the design of the algorithm are sum-

marized.

• Disable substitution operation: We disable the

substitution operation. Only insertion and deletion

operations are allowed. This simple modification in

the operational strategy gives us an extremely simple

*1 For this explanation, we adopt the term “SPL-graph” to rep-
resent graph edit distance. In fact, as the practical algorithm
to calculate the distance shows later, it does not necessarily
require this notion. The calculation can perform directly on
F (vi). However, for ease of explanation of the proposed al-
gorithm, we adhere to use the notion of “graph” by following
the operation of GED.

calculation algorithm of the distance, and enables sig-

nificant reductions of computational costs by avoid-

ing complicated algorithms such as dynamic program-

ming.

• Simple distance calculation: We execute inser-

tion and deletion operations only when the number

of nodes with equal lengths to the root node are dif-

ferent in the two SPL-graphs. Consequently, these

different numbers, the different frequencies of length

values in F(vi), are fused directly into the distance

calculation (refer to (a) in Eq. (3)).

• Weighting operational cost: We must also incor-

porate consideration of the amplitude of the value in

F(vi) on which the edit operation is performed. The

edge length in the SPL-graph represents the struc-

tural distance from the focused node with others.

Therefore, the operation costs on different lengths

must be differentiated, such as the costs between

those of the edge length “1” and “10” (refer to (b)

in Eq. (3)).

• Symmetric operational cost: We guarantee the

symmetric property of the costs for the conversion be-

tween two graphs. Therefore, we set c(eq) = C(∈ R+)

for all q so that the costs of the insertion and deletion

operations are the same (refer to (c) in Eq. (3)).

Consequently, denoting the number of the element of

which value is equal to k as ϕ(k), dSPL
Si,Sj

is calculated as

dSPL
Si,Sj

:= dSPL(F(vi),F(vj))

:= C︸︷︷︸
(c)

K∑
k=1

k︸︷︷︸
(b)

· |ϕi(k)− ϕj(k)|︸ ︷︷ ︸
(a)

, (3)

where ϕi(·) and ϕj(·) respectively denote the values of ϕ(·)
corresponding to Si and Sj . Furthermore, K is defined as

K = max(nimax, njmax),

where nimax and njmax respectively denote the largest

number in F(SA) and F(SB).

4. Wasserstein Graph Similarity

This section presents the Wasserstein graph similarity

exploiting the SPL-graph edit distance as the ground cost

matrixC in the optimal transport problem. The proposed

similarity enables us to perform various graph analysis

tasks such as graph matching and graph alignment.

4.1 Optimal Transport Matrix for graph similar-

ity

The proposed Wasserstein graph similarity measures
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the distances to match the nodes of one graph with the

nodes of another, which is formulated as the graph node

alignment problem. This is analogous to the discrete

Monge’s OT problem.

Presuming that we have two graphs GA(VA, EA) and

GB(VB , EB). We embed GA and GB into the same met-

ric space. All the nodes of the two graphs are lo-

cated respectively at points in {x1, . . . , x|VA|} ∈ X and

{y1, . . . , y|VB |} ∈ Y. Here, we consider each node of GA

as the starting point. We also consider each node of GB

as the endpoint for the transport setting in the optimal

transport problem. The two histograms of a and b are

defined respectively in the probability simplex
∑

|VA| and∑
|VB |. Furthermore, as a discrete measure α with weights

a on the locations xi, . . . , x|VA|, we write α =
∑|VA|

i=1 aiδxi ,

where α represents the distribution of nodes in GA, and

where ai refers to the relative importance of the node.

Similarly, we define the measure β =
∑|VB |

j=1 bjδyj
.

Finally, inputting the SPL-graph edit distance into

C ∈ R|VA|×|VB |
+ in Eq. (2), one obtains P∗ by calculating

P∗ = arg min
P∈U(a,b)

∑
i∈[|VA|],j∈[|VB |]

dSPL(FA(vi),FB(vj)) ·Pi,j .

(4)

4.2 Application to graph matching

We introduce two approaches of the graph similarity

measure and their classification method. One is a com-

mon method that uses the Wasserstein-distance directly

to measure two SPL-distributions is given as

W(GA,GB) = ⟨C,P∗⟩. (5)

We combine Eq. (5) with the Laplacian kernel function

to construct SOT kernel (SOT-K), defined as

KSOT(GA,GB) = e−λW(GA,GB).

We also proposed another approach to perform classi-

fication using RBF kernel for SVM, which receives the

graph distances as a feature vector. In this case, this op-

eration also makes the ratio of between-class distance to

within-class distance larger because ℓ2 norm enlarges the

ratio of large distance to small distance. This operation

might perform better under the RBF kernel. Therefore,

the new graph distance is given as

L(GA,GB) = ||C ◦P∗||2. (6)

We use Eq. (6) to construct a graph distance feature vec-

tor, defined as

ESOT(Gi) = {L(Gi,Gj)}Nj=1 .

We designate this graph embedding method as SOT em-

bedding (SOT-E).
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