
2020年度情報処理学会関西支部 支部大会

A-01

Applying RNN into system identification

Chen Cheng† Yukikazu Nakamoto†

Abstract

In the field of embedded control systems, we often use the

method of system identification to model a plant that is a control

target. System identification requires usually statistical methods to

build mathematical models of dynamical systems from measured

data and tune many parameters for that model. These are

troublesome. Another approach to model a plant is to use neural

network, especially recurrence neural networks (RNN). A user can

build a model using RNN without. We describe preliminary

experiment in applying RNN into modeling a plant.

1．Introduction

In the field of control systems, we often use the method of

system identification to model a plant. System identification uses

statistical methods to build mathematical models of dynamical

systems from measured data. A common approach is to start from

measurements of the behavior of the system (outputs) and the

external influences (inputs) and try to determine a mathematical

relation between them without details of what is actually

happening inside the system. It requires, however, selecting an

appropriate mathematical model and tuning many parameters for

that model. These are troublesome. Another approach to model a

plant is to use neural network, especially recurrence neural

networks (RNN) (e.g. [1]). There are, however, unclear points in

its design comparing with CNN. This paper addresses a

preliminary design of RNN to model plants.

2．Method

This paper addresses how to construct a machine-learning

program to model plants. To achieve this purpose, we make a

machine-learning carry out the following steps.

1. Prepare input and output data of a plant: We collect the

plant data by executing a model containing plants and

controllers in MATLAB/Simulink.

2. Construct a machine-learning program: We make neural

networks in different machine learning method, such as

Recurrent Neural Network (RNN) and Convolution

Neural Network (CNN) for comparison. Using the plant

data as training data, we have trained the neural networks.

3. Execute prediction of neural networks: The neural

networks receive the time series of input and output data

from / to a plant until time t-1 and an input value at time

t, and output a plant values at time t.

4. Compare By import these models back to Simulink, we

can compare the performance of them. Finding the

differences of the several methods in control systems is

also our purpose.

We choose RNN for machine learning because RNN is considered

to be suitable for prediction with time series data such as a

behavior of a plant.

3. Building and training Recurrence Neural Network
In this section, we present how to build and train RNN model

using training data.

Preparation of training data

The first step is to prepare the dataset for the RNN. We prepare

data set for RNN by using an automatic transmission controller as

a plant model in MATLAB/Simulink [2] (See Fig.1). The version

of MATLAB is R2019b. The input of the model is throttle and

brake while the output is vehicle speed. We extract data of vehicle

speed, throttle, and brake of the plant model as input values. After

the extraction, we need to normalize the input variables.

We implement RNN as shown Fig.2 using Python 3, Tensorflow

2.0 and Keras 2.3.1.using Long Short-Term Memory (LSTM) [3]

cells and train RNN with Then, The RNN predict a vehicle speed

at the current time with vehicle speed, throttle and brake data

during the previous period.

We define the LSTM with 300 neurons in one hidden layer with

initializing parameters to zero and 1 neuron in the output layer for

predicting vehicle speed. We use the Mean Square Error (MSE)

loss function and the efficient Adam version of stochastic

Figure 1. An automatic transmission controller model in MATLAB/Simulink [2]

†University of Hyogo

Figure 2. Architecture of RNN

gradient descent. The model be fit for 100 training epochs with a

batch size of 32.

4. Evaluation of Model
After the model is fit, we can predict for the entire test dataset.

We compare the prediction values with the test dataset and invert

the scaling from the normalized data. We also invert scaling on the

test dataset with the expected vehicle speed. With the predictions

and the actual values in their original scale, we calculate an error

score Root Mean Squared Error (RMSE) for the model. The result

in Fig.3. shows that there is no difference between the actual values

and the predicted ones. In Fig.3, X-axis is time (second) and Y-

axis is a vehicle speed.

Figure 3. Actual values and predicted values by RNN

Next, we change the number of neurons in the first hidden

layer to see how it effects the training. Besides 300, we have

also tried build RNN with100 and 200 neuros. We show the

result in Fig.4. Y-axis is training loss while X-axis is training

epoch. From the figure, we can consider that we can get better

results the larger number of neurons in the same training

epoch.

Figure 4. Training loss in RNN (from epoch 0 to 10)

For the comparison with CNN, we also use the same data to train

and test CNN model. CNN is constructed by Flatten layer and

Dense layer (Fig 5). In the same way as we do with the RNN

model, we obtain results of the prediction and actual values. Unlike

RNN, we can clearly find the difference between them. As

mentioned earlier, we use RMSE to quantify this difference. RMSE

of CNN model is 0.21 while RNN is only 0.17.

Figure 5. Architecture of CNN

Figure 6. Actual values and predicted values by CNN

5. Conclusion
In this research, we consider that it is feasible to simulate a

control system with a deep learning method, which is our goal.

About the difference between RNN and CNN, there is almost no

difference in the result of training step. It could be caused by the

complexity of this system and need more research. Besides this, it

is also significant how to implement such model with other

platform like MATLAB/Simulink. This is the future research.

References

[1] G. Pillonetto, F. Dinuzzo, T. Chen, G. Nicolao and L. Ljung,

"Kernel methods in system identification, machine learning

and function estimation: A survey," 2014, Automatica,

vol.50, no.3, 657-682.

[2] Mathworks, “Modeling an Automatic Transmission

Controller,” 2020. URL: https://jp.mathworks.com

/help/simulink/slref/modeling-an-automatic-transmission-

controller.html?lang=en

[3] S. Hochreiter and J. Schmidhuber, "Long short-term

memory". Neural Computation. vol.9, no.8, pp.1735–1780

(1997).

Dense layer

Flatten layer

LSTM

Full connected layer

hidden
layer

https://jp.mathworks.com/

