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Abstract: Distance cartograms are deformed maps in which the distance of each of the preselected point pairs in the
geographic map is changed in step with a specified value such as a travel time. In distance cartogram construction, the
preselected points are fixed in the first step whereas the locations of other points are converted in the second step. This
paper proposes a new point location conversion method for the second step. The conversion process is modeled as a
phenomenon in a three-dimensional vector field. Each point in the geographic map is connected with the corresponding
point in the cartogram by a streamline of the field. The connection relationship becomes a smooth homeomorphism
required in distance cartogram construction. The experimental results demonstrate its effectiveness.
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1. Introduction

Distance cartograms are deformed maps in which the dis-
tance of each of the preselected point pairs in the geographic
map is changed in step with a specified value such as a travel
time [1], [2], [3]. The construction process of a distance car-
togram generally consists of two steps [1], [2]. The locations of
the points included in the preselected pairs such as those corre-
sponding to train stations are fixed in the first step, whereas the
locations of other points such as those comprising railroads are
converted in the second step. In this paper, we focus on the sec-
ond step. To maintain the readability of the cartogram, the con-
version must be smooth (i.e., continuous and differentiable) and
homeomorphic [1], [2]. Although several methods to maintain the
above properties have been proposed [4], [5], their performances
are still insufficient as will be shown in Section 3.

To guarantee the above properties, we propose a new point lo-
cation conversion method used in the second step. We model the
conversion process as a phenomenon in a three-dimensional vec-
tor field [6]. We arrange the geographic map and the cartogram
in the vector field so that a point in the geographic map is con-
nected with that in the cartogram by a streamline [6] of the field.
When no zero-vector point exists in the field, there is a unique
streamline passing through any point [6]. In the case that the vec-
tor field is smooth, therefore, the above point connection becomes
a one-to-one onto smooth mapping. As a result, the conversion
becomes a smooth homeomorphism [7].

We conducted experiments in which simple artificial mapping
models and an actual geographic dataset were used. We com-
pared the proposed method with the other three methods previ-
ously proposed. The experimental results showed that the pro-
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posed method could provide the best characteristics.

2. Point Location Conversion Method

This section describes the details of the point location conver-
sion method. Suppose that the set of the points in the geographic
map, PGn(xGn, yGn) *1 for 1 ≤ n ≤ N (N: total number of points),
was already converted into the set of the corresponding points in
the cartogram, PCn(xCn, yCn) for 1 ≤ n ≤ N, in the first step of the
cartogram constructon process. To eliminate the influence of the
scale difference between the geographic map and the cartogram,
we separately standardize the coordinates of the points in the ge-
ographic map and those in the cartogram (origin: centroid of all
points, mean distance from the centroid: unity) as follows:
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xαn − x̂α

d̂α
, y′αn =

yαn − ŷα
d̂α

(1)
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1
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√
(xαn − x̂α)2 + (yαn − ŷα)2 (α : G or C)

where x′αn and y′αn are the standardized coordinates of the point
P′αn (corresponding to the non-standardized original point Pαn).

We arrange the geographic map and the cartogram in a three-
dimensional space as shown in Fig. 1. The geographic map is put
on the xy plane, whereas the cartogram is put on the z = 1 plane
parallel to the xy plane. In Fig. 1, each point in the geographic
map is connected by a line with the corresponding point in the
cartogram. We give each connected point pair a unit vector as
follows:

*1 In this paper, the symbol x is used as the coordinate of the horizontal
axis, whereas y as that of the vertical axis. This symbol assignment is
contrary to that in the Japanese surveying and mapping community (x:
northing, y: easting) [8]. We select the above assignment in accordance
with mathematical conventions.
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Fig. 1 Concept of vector field analysis.
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where en is the unit vector given to the line of the nth point pair
(Line P′GnP′Cn, hereafter the nth line) and i, j and k are the funda-
mental vectors for the x, y and z axes, respectively. The direction
of en is identical to that from P′Gn in the geographic map (z = 0)
to P′Cn in the cartogram (z = 1). Consequently, every unit vector
necessarily has a positive z-component value.

We assume that the vector field F(x, y, z) shown below exists
in the three-dimensional space:

F(x, y, z) =

∑N
n=1 w(dn(x, y, z))en∑N

n=1 w(dn(x, y, z))
, w(dn) =

1

d q
n

(3)

dn(x, y, z) =
√

(x′n(z) − x)2 + (y′n(z) − y)2,

x′n(z) = x′Gn + t(z)enx, y
′
n(z) = y′Gn + t(z)eny, t(z) = z/enz

where dn(x, y, z) is the distance of the point (x, y, z) from the inter-
section of the nth line with the plane including (x, y, z) (Plane Σ in
Fig. 1, parallel to the xy plane), x′n(z) and y′n(z) are the coordinates
of the intersection and q is the parameter to adjust the strength of
the weight function w(dn). F(x, y, z) is the weighted mean of ens
(with the inverse distance weight), and becomes smooth every-
where when q > 1 [9]. F(x, y, z) has a positive (i.e., non-zero)
z-component everywhere because each of the z-components of
ens is necessarily positive.

As a result, only one streamline of F(x, y, z) passes through
any point in the three-dimensional space *2, and each streamline
necessarily connects any point in the geographic map (e.g., P′s in
Fig. 1) with only one point in the cartogram (e.g., P′e in Fig. 1) *3.

*2 For a smooth vector field in which no zero-vector point exists, there is
only one streamline passing through any point [6].

*3 This is caused because the z-component of F is positive everywhere.
This means that streamlines of F never turn into the negative z-direction.
Therefore, both the geographic map and the cartogram are intersected by
a streamline only once.

Fig. 2 Algorithm for streamline tracing (Runge-Kutta method, M: division
number of the interval [0, 1] in the z axis).

Each of the points in the cartogram is also connected with only
one point in the geographic map. The above connection can be
regarded as a one-to-one onto mapping f : G → C (G: set of all
points in the geographic map and C: set of all points in the car-
togram). When q > 1, both f and f −1 are continuous and differ-
entiable because F(x, y, z) is smooth everywhere. Consequently,
f becomes a smooth homeomorphism *4.

We adopt the above homeomorphism as a point location con-
version method. A streamline of F(x, y, z) is obtained by giving a
starting point and solving the equation shown below [6]:

dx
Fx(x, y, z)

=
dy

Fy(x, y, z)
=

dz
Fz(x, y, z)

(4)

where Fx(x, y, z), Fy(x, y, z) and Fz(x, y, z) are the x-, y- and z-
components of F(x, y, z), respectively. From Eq. (4), two differ-
ential equations are derived as follows:

dx
dz
=

Fx(x, y, z)
Fz(x, y, z)

,
dy
dz
=

Fy(x, y, z)

Fz(x, y, z)
(5)

We numerically solve Eq. (5). First, the standardized point lo-
cation in the geographic map, P′s(x′s, y′s, 0), is input as a starting
point (x′s = (xs − x̂G)/d̂G and y′s = (ys − ŷG)/d̂G, xs and ys are the
non-standardized original coordinates). This point is the point
to be converted into that in the cartogram. Next, the algorithm
shown in Fig. 2 (Runge-Kutta method [10]) is executed. The exe-
cution is completed when the streamline reaches the z = 1 plane.
Finally, the x- and y-coordinates at the intersection of the z = 1
plane with the streamline, x′e and y′e, are output. These values are
converted into the non-standardized coordinates in the cartogram
(xe = x′ed̂C + x̂C and ye = y

′
ed̂C + ŷC).

As for the computational complexity of the above algorithm,
that of the calculation of F(x, y, z), i.e., Eq. (3), is O(N). On the
other hand, the number of loop processing in Fig. 2 depends only

*4 The conditions to be satisfied in a homeomorphism are as follows. (1) f
is a one-to-one onto mapping and (2) f and f −1 are continuous [7].
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Fig. 3 Cartogram construction for simple artificial mapping models.

on the division number of the interval [0, 1] in the z axis, M *5.
This means that this number is given independently of the param-
eters of the geographic map and the cartogram. As a result, the
computational complexity of the whole algorithm becomes O(N).

3. Results

This section presents the experimental results of the proposed
vector field (VF) method. First, simple artificial mapping mod-
els are used to compare the performance of the VF method with
those of the following three methods previously proposed: the
combination of the Delaunay triangulation and barycentric inter-
polation (DTBI) [2], the improved moving least squares trans-
formation (IMLS) [4] and the triangle-similarity transformation
(TS) [5]. Next, the map of the six prefectures of the northeast-
ern area of Japan is used to evaluate the characteristics of the VF
method.

Figure 3 shows the results of the artificial mapping models.
The geographic map consists of 6 points and 10 regular-interval
parallel lines (150 points per line, total 1,500 points), and is con-
verted into two cartograms: Cartograms A and B. The locations
of the 6 points in the cartograms are fixed in advance (i.e., re-
garded as already fixed in the first step of the cartogram construc-
tion process), and the 10 lines are then converted into those in
each cartogram by the VF method or the other methods. In both A
and B, the point located at the highest position in the geographic
map is moved downward (B is more highly deformed than A).

In the cases that the methods other than the VF method are
used, the violation of homeomorphism is seen in all the cases of
B. In the cases of DTBI and TS, the violation of smoothness is
also seen in B. DTBI shows the violation of both smoothness and
homeomorphism even in A. On the other hand, in the cases that
the VF method is used (division number of the z axis: M = 5 and
the parameter in the weight function: q = 2), both A and B show

*5 We set M = 5 through preliminary trial-and-error experiments.

Table 1 Numbers of smooth-homeomorphism violations.

Cartogram DTBI IMLS TS VF

Non-differentialble point A 16 0 0 0
(Smoothness) B 16 0 12 0

Intersection of lines A 8 0 0 0
(Homeomorphism) B 26 34 18 0

no violation of smooth homeomorphism.
The above results are summarized in Table 1. Specifically,

the numbers of non-differentiable points represent the violation of
smoothness, whereas the numbers of intersections of the 10 lines
represent the violation of homeomorphism. As shown in Table 1,
DTBI shows the worst characteristics (total number of smooth-
homeomorphism violations: largest). Although DTBI is a com-
monly used method for the second step of the distance cartogram
construction process, its performance is insufficient for maintain-
ing the smooth homeomorphism. On the other hand, both IMLS
and TS are better than DTBI as a whole. No violation of smooth
homeomorphism in A is seen in both cases. However, the vio-
lation of homeomorphism in B is caused in both cases (IMLS is
even worse than DTBI), and that of smoothness is caused in TS
depending on the degree of deformation. As for the VF method,
there is no violation of smooth homeomorphism in both A and B.
The above tendencies suggest that the VF method is extremely
robust against a highly deformed point location conversion, com-
pared with the other methods.

Figure 4 shows the results of cartogram construction for the
six prefectures of the northeastern area of Japan. The geographic
map consists of 17 points, a railroad network and boundaries
between prefectures. The locations of the 17 points in the car-
togram are fixed in advance by analyzing the travel-time dataset
of Ref. [11] *6. On the other hand, the locations of the points in-

*6 The travel-time dataset shown in Fig. 5 of Ref. [11] is used. The loca-
tions of the 17 points in the cartogram are fixed by applying the method
of Ref. [3] to the above dataset. The obtained point-location configura-
tion is identical to that used in Ref. [5].
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Fig. 4 Cartogram construction for the six prefectures of the northeastern area of Japan.

cluded in the railroad network and the boundaries between pre-
fectures (978 points) are converted by the VF method. In Fig. 4,
two cartograms differing in the value of the parameter q are shown
(division number of the z axis: M = 5 in both cases). The smooth
homeomorphism is realized in both cases. On the other hand, the
shapes of the two cartograms are different, even though the same
17-point configuration is given. This means that users can adjust
the shape of a cartogram to a certain extent by changing the q

value.
The calculation time is 297 ms for both the q = 2 and q = 3

cases (CPU: Intel Core i3-350M). From the above results, we
can estimate that the calculation time falls within a range of a few
dozen seconds even when the data size is about 100 times that of
the present cases, because the computational complexity of the
VF method is O(N) as already mentioned in Section 2.

4. Conclusion

The main contribution of this paper is that the proposed VF
method realizes a smooth homeomorphism in the second step of
distance cartogram construction. The experimental results show
the robustness of the VF method against a highly deformed con-
figuration in a cartogram. This report also suggests the adjusta-
bility of the proposed method to obtain a cartogram with a more
preferable shape. To clarify the application range of the proposed
method will be the subject of future work.
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