
Application of DREAM to the Board Game
Geister

Chen Chen1,a) Tomoyuki Kaneko2,b)

Abstract: Counterfactual Regret Minimization (CFR) is an effective method to compute approximate Nash
Equilibria for large zero-sum, imperfect information games. Deep neural networks extend tabular CFR to
Deep CFR, which is able to be applied to larger games. DREAM is a model-free neural CFR variant evalu-
ated on card games with a short history. In this paper, we apply DREAM to the board game Geister where
the game length might reach a hundred with necessary enhancements to observe whether it can generate a
good policy.

Keywords: Counterfactual Regret Minimization, DREAM, board game, Geister, deep neural networks

1. Introduction

Counterfactual Regret Minimization (CFR) is an effec-

tive method to approximate Nash Equilibria for large zero-

sum extensive games with imperfect information. CFR

variants have achieved great success in solving large poker

games [1], [2]. In the research by Bowling et al., the game

of heads-up limit hold’em is weakly solved using a variant

of CFR called CFR+ [2].

However, tabular CFR methods need to calculate for ev-

ery game state and often need domain-specific expert knowl-

edge to reduce the game scale, so they are not applica-

ble to many interesting games. Neural CFR methods that

mimic tabular CFR methods using neural networks have

achieved good performance in popular poker games [3], [4],

but they often need a perfect simulator of the game to ex-

plore multiple actions at decision points to achieve high

performance [5]. In the research by Steinberger et al.,

a model-free neural CFR variant called DREAM achieves

state-of-the-art performance and is even competitive with

non-model-free methods in popular poker games Leduc and

FHP [5].

CFR variants have made great contributions to card

games, however, there is little research on CFR applied to

board games. In board games, there are often repetitions

in game states, and the game may contain loops that make

the game never end, which makes it difficult for CFR to be

applied. In our previous research, we applied a variant of

Deep CFR to the full game of Geister and acquired an ap-

propriate policy [6], [7]. In this paper, we apply DREAM

with enhancements to the board game Geister to observe

whether it can compute a good policy for the game.

1 Graduate School of Arts and Sciences, The University of Tokyo
2 Graduate School of Interdisciplinary Information Studies, The

University of Tokyo
a) chenchen-319@g.ecc.u-tokyo.ac.jp
b) kaneko@graco.c.u-tokyo.ac.jp

2. Background

2.1 Notations

In this paper, we followed a standard notation in the

study [5]. In a partially observable stochastic game,

• There are N = {1, 2, · · · , N} players. For player i, −i
stands for all other players.

• A world state w is the exact state of the game world. In

each world state w, agent i will receive a reward Ri(w)

that can be zero.

• At world state w, player i’s legal actions are denoted

by Ai(w), and a = {a1, a2, · · · , aN} ∈ A denotes the

players’ actions.

• A transition function T (w, a) determines the next world

state w′ after players taking actions a. After a transi-

tion, an observation Oi(w, a,w′) is given to player i,

which is the observation of the world state under the

view of player i. A chance player who determines the

outcome of a random event in the game is included

in the transition function and information about other

players’ actions is given to player i in the observation.

• A history (also called a trajectory) h is a finite sequence

of legal actions and world states.

• An infostate (also called an action-observation history)

si for player i is a sequence of player i’s observations

and actions. An infostate contains histories that player

i cannot distinguish one from another. Legal actions at

infostate si are denoted as A(si).

• π is a policy profile consisting of a policy πi for each

player i.

• Expected value vπi (h) is the expected sum of future re-

wards for player i in history h when all players act ac-

cording to π. The expected value for an action in a

history is denoted vπi (h, ai). Similarly, the expected

value for an infostate and for an action in the infostate

are denoted vπi (si) and vπi (si, ai).

The 25th Game Programming Workshop 2020

© 2020 Information Processing Society of Japan - 111 -

• xπ(h) stands for the probability of reaching history h if

players act according to π. xπi (h) is player i’s contribu-

tion to the probability.

3. Game of Geister

Geister is a two-player board game on a 6×6 game board.

Each player has four good ghosts and four evil ghosts, whose

type is not revealed to the opponent player. In each turn

a player can move one of his ghosts one step vertically or

horizontally. Moving into a square containing an opponent’s

ghost will capture the opponent’s ghost and move it off from

the board. Moving into a square containing an ally ghost

is not allowed. A player can also move off one of his good

ghosts from one of the opponent’s corner squares. A player

wins when one of the three conditions is satisfied [8]:

• All the player’s evil ghosts are captured.

• All the opponent’s good ghosts are captured.

• One of the player’s good ghosts is moved off the board

from one of the opponent’s corner squares.

Figure 1 shows a sample board of the game Geister.

Fig. 1 A sample board of the game Geister. The type of 5 is
not revealed.

4. Related Research

In this paper, we use an algorithm called DREAM [5],

which is a combination of outcome-sampling MC-CFR [9],

variance reduction [10] and Single Deep CFR [4]. We intro-

duce these works in the following subsections.

4.1 Counterfactual Regret Minimization

CFR was first developed by Zinkevich et al. to approxi-

mate a Nash equilibrium for very large instances of imperfect

information extensive games [1].

CFR is an iterative method that traverses the entire game

tree repeatedly. The algorithm keeps track of the cumula-

tive counterfactual regret for each action ai in each infostate

si and calculates the average policy over all iterations.

Let πti be the policy used by player i on iteration t. The

counterfactual regret on iteration t is defined as

rti(si, ai) = xπ
t

−i(si)
(
vπ

t

i (si, ai)− vπ
t

i (si)
)

(1)

and the cumulative conterfactual regret is

RTi =
T∑
t=1

rti(si, ai) (2)

π(si, ai) denotes the probability that action a is chosen at

infostate si. With regret matching, the policy on iteration

T + 1 is

πT+1
i (si, ai) =

RT,+i (si,ai)∑

a′
i
∈Ai(si)

RT,+i (si,a
′
i)

if
∑
a′i∈A(si)

RT,+i (si, a
′
i) > 0

1
|A(si)| otherwise

(3)

where RT,+i (si, ai) = max(RTi (si, ai), 0).

Now, player i’s average policy π̄Ti , which is the ε-Nash

equilibrium policy, for infostate si is defined as

π̄Ti (si, ai) =

∑T
t=1 x

πt

i (si)π
t(si, ai)∑T

t=1 x
πt
i (si)

(4)

Zinkevich et al. applied counterfactual regret minimiza-

tion to the game of Poker. With abstraction and chance-

sampling, which samples a deterministic action at chance

nodes, the resulting policy has outperformed all of the com-

petitors from the bankroll portion of the 2006 AAAI Com-

puter Poker Competition [1].

4.2 Linear CFR

Brown and Sandholm introduced a variant of CFR called

Linear CFR [11]. Linear CFR does similar iterations to

CFR, but weighs the updates to the regret and average pol-

icy on iteration t by t. Linear CFR empirically accelerates

CFR by two orders of magnitude [11].

4.3 MC-CFR

Lanctot et al. described Monte Carlo counterfactual re-

gret minimization (MCCFR) based on CFR, which aims to

avoid traversing the entire game tree [9]. All possible ter-

minal histories are partitioned into blocks, and on each it-

eration one of the blocks is chosen and only the terminal

histories in that block are considered, while expectation val-

ues of counterfactual regret to be updated are unaltered.

Two sampling schemes are introduced: external sampling

and outcome sampling. In external-sampling MCCFR, only

the actions of the opponent and chance are sampled. In

outcome-sampling MCCFR, each block contains a single ter-

minal history so that every action is sampled. In OS, a sam-

pling profile ξti (si) is used rather than πt to choose actions,

where ξti (si, ai) = ε 1
|Ai(si)| + (1 − ε)πti(si, ai) for player i

and ξtj(sj , aj) = πtj(sj , aj) for player j other than player i.

Empirically, MCCFR converges faster than CFR [9].

4.4 VR-MC-CFR

Schmid et al. introduced Variance Reduced Outcome

Sampling with Baselines (VR-MC-CFR) [10]. VR-MC-CFR

is a variant of MC-CFR that dramatically accelerates the

convergence of outcome-sampling MC-CFR by reducing the

The 25th Game Programming Workshop 2020

© 2020 Information Processing Society of Japan - 112 -

variance in each update. It uses a bootstrapped value called

baseline-adjusted sampled expected value instead of the es-

timated value in MC-CFR. The history-action baseline used

here is typically the average expected value, but it can be

any user-defined scalar funtion closely correlated with the

expected value [10].

4.5 Deep CFR

Brown at el. proposed Deep Counterfactual Regret Min-

imization (Deep CFR) in the study [3]. Deep CFR is pro-

posed to be the first non-tabular CFR variant to be success-

ful in large games [3].

Deep CFR uses deep neural networks to approximate the

behavior of CFR algorithm. The neural network approxi-

mates the advantage rather than regret values. Advantage

is the difference in expected payoff between playing ai and

playing according to πti(si) at infostate si.

Deep CFR algorithm keeps reservoir sampling buffers for

players’ advantage and policy. On each iteration, Deep CFR

conducts K times of traversals of the game tree according to

external-sampling MC-CFR. The network approximates the

advantage value for infostate si and generates a policy by a

slightly different way of regret matching, which will choose

the action with the greatest advantage when the advantage

values for all actions are non-positive [3].

During the traversal, the traverser’s advantages are added

to his advantage buffer and the opponent’s policies will be

added into the policy buffer. After all traversals on each

iteration, a value network is trained from scratch using the

advantage buffer of the traverser. After all iterations, a new

policy network, which has the same architecture as the value

network except that the last layer applies softmax activa-

tion, is trained from scratch using the policy buffer. A loss

function that satisfies Bregman divergence can be used for

the networks, such as mean squared error loss [3].

Deep CFR also incorporates Linear CFR, which weighs

the advantage and policy on iteration t by t [11]. Without

relying on advanced domain knowledge, Deep CFR shows

strong performance in large poker games relative to domain-

specific abstraction techniques [3].

4.6 Single Deep CFR

Single Deep CFR (SD-CFR) proposed by Steinberger [4]

is a modification of Deep CFR that does iterations in a sim-

ilar way to Deep CFR, except that it stores all the value

networks on each iteration instead of training the policy net-

work. It mimics the average policy by sampling one of the

value networks and using its policy for the entire game. It

eliminates the approximation error in Deep CFR resulted

from training a network to predict the average policy [4].

4.7 DREAM

Steinberger et al. introduced a regret-based deep learning

algorithm called Deep Regret minimization with Advantage

baselines and Model-free learning (DREAM) [5]. DREAM

is trained using CFR iterations similar to SD-CFR and also

combines a neural-based baseline as in VR-MC-CFR.

DREAM incorporates outcome-sampling with an ad-

justable exploration parameter ε to collect samples for neu-

ral network training. Similar to SD-CFR, the samples for

training value networks are stored in a reservoir buffer. The

samples are weighted by 1

xξ
t

i (si)
during neural training [5].

DREAM uses a baseline network Q̂ti(s
∗(h), ai) as a base-

line, where s∗(h) is the set of infostates for all players. Q̂ti
is trained using expected SARSA on a circular buffer of col-

lected samples. Using Q̂ti as a baseline, the baseline-adjusted

sampled expected value for DREAM at history h is defined

as

ṽπ
t

i,DREAM (h, ai|z) =

Q̂ti(s
∗(h), ai)

+
ṽπ
t

i,DREAM (h′|z)−Q̂ti(s
∗(h),ai)

xξ
t

i (si,ai)

if ai = a′i

Q̂ti(s
∗(h), ai) otherwise

(5)

ṽπ
t

i,DREAM (h|z) =

Ri(h) if h = z∑
ai∈Ai(h) π

t
i(h, ai)ṽ

πt

i,DREAM (h, ai|z)

otherwise

(6)

where z is the terminal history finally reached and play-

ing action a′i leads to the next history h′. Also, we

have ṽπ
t

i,DREAM (si(h), ai|z) = ṽπ
t

i,DREAM (h, ai|z) and

ṽπ
t

i,DREAM (si(h)|z) = ṽπ
t

i,DREAM (h|z).

The sampled immediate advantage is defined as

d̃ti,DREAM (si, ai) = ṽπ
t

i,DREAM (si, ai)− ṽπ
t

i,DREAM (si).

(7)

As DREAM also adopts Linear CFR, training loss of d̃ti is

weighted by t [5].

To compute the average policy, DREAM follows the way

used in SD-CFR, which is to store all value networks on the

disk, and sample one of them to determine the policy for the

whole game. When implementing Linear CFR, the proba-

bility of sampling network on iteration t is proportional to

t. As all networks are stored on the disk, it is also possible

to calculate the average policy of them [5].

DREAM samples only one action at each desicion point,

yet achieved state-of-the-art performance among model-free

methods in popular benchmark games and is even competi-

tive with non-model-free algorithms [5].

5. Proposed Methods

In this paper, we apply DREAM for board games — a

combination of outcome-sampling MC-CFR [9], variance re-

duction [10], Single Deep CFR [4] and necessary enhance-

ments — to the full game of Geister. The combination of

the first three techniques is proposed as DREAM in the

paper [5], and the combination of outcome-sampling [9],

Deep CFR [3] and enhancements is proposed in our pre-

vious works [6], [7]. This work is the first attempt to apply

The 25th Game Programming Workshop 2020

© 2020 Information Processing Society of Japan - 113 -

DREAM to board games. We will introduce the details of

enhancements and implementation in the next subsections.

5.1 Enhancements

Geister is a board game that is not necessarily finite.

As the number of infostates increases exponentially to the

length of the game, it is hardly possible to deal with such

large numbers of infostates due to the fact that all CFR vari-

ants need to search until the end of the game. Therefore,

we have to make enhancements to address these issues.

Abstraction: While CFR algorithms typically iterate

over infostates with perfect recall, containing the full history

of a board game will lead to a huge number of infostates,

which is difficult to handle. To scale down the number of

infostates, we give up perfect recall to abstract the game.

We make a similar assumption to the one in our previous

study that for an experienced board game player, he is able

to obtain enough information from the current board [7].

We extract the information of the current board with ad-

ditional information about the number of the players’ total

moves (called move length or history length) as infostates

and input them to our neural networks, whose architectures

will be introduced in Section 5.2.

Length limitation: To avoid endless games, we limit

the move length to a certain preset number called length

limitation when training agents, which is the same way as

the one in our previous study [7]. When the move length

reaches the length limitation, the game is forcibly termi-

nated with a draw. Although the agents are trained under

the length limitation, they are able to play the game with

or without it.

We also make other efforts to train the agents more effi-

ciently.

Random initialization: In the original game of Geis-

ter, players arrange their own ghosts at the beginning of the

game. However, in our Geister implementation, the arrange-

ments of the players’ ghosts will be generated randomly at

the beginning of the game to efficiently explore the game.

Finishing blow assistance: If a player is able to move

his good ghost off the board from the opponent’s corner, he

will be forced to do so and becomes the winner of the game.

To keep the game fair, these rules are also applied to random

players.

In our implementation, the length limitation is set to 100

in training. We perform self-play to evaluate the trained

agents. In our evaluation, the length limitation is set to

300, which is the same value as the one in GPW Geister AI

competitions. For the result of self-play, we only focus on

the win rate, the ratio of wins in all games.

5.2 Network Architecture

Geister is a board game, and the information from the

board can be easily processed by a convolutional layer. We

extract a six-channel structure to represent the abstracted

infostate similarly to that in our previous study [7]. The

detail of the structure is presented in Table 1.

Table 1 The Structure of the Abstracted Infostate

Channel No. Contents
1 The good ghosts of the player.
2 The evil ghosts of the player.
3 The ghosts of the opponent player.
4 The status of the opponent’s taken good ghosts.
5 The status of the opponent’s taken evil ghosts.
6 The progress of the game.

In channel 1, 2 and 3, for each ghost on the board, the

corresponding cell is filled with 1, otherwise 0. In channel

4 and 5, every cell is filled with the number of taken ghosts

divided by 3. Channel 6 is a channel representing playing

progress, whose every cell is filled with move length divided

by length limitation, which are described in the Section 5.1.

We build our network architecture with some similar fea-

tures to that of Deep CFR [3]. For value networks, the input

data first go through a 2×2 and a 1×1 kernel convolutional

layers, both containing 16 channels. The convolutional lay-

ers are activated by a tanh function. Then the data are

flatten and go through 3 fully connected layers. Before the

output layer, there is a batch normalization layer. The fully

connected layers consist of xi+1 = ReLU(Ax[+x]), where

the optional skip connection [+x] is the same as that in

Deep CFR [3]. It is applied when layers have the same input

and output dimension. The output layer is activated by a

linear activation function, which outputs the approximated

advantage for each of the 32 possible actions. A sketch of

the value network architecture is shown in Figure 2.

For baseline networks, they share the same architecture as

value networks, expect that the input of baseline networks

contains both players’ infostates. In the first CNN layer, the

player’s infostate goes through the first 8 channels and the

opponent’s goes through the remaining 8 channels to form a

16-channel data for the next layer. The following layers are

identical to those of the advantage networks and the final

output is the approximated baseline values for 32 actions.

Note that the baseline networks are only used in training, so

the agents playing the game have no access to the baseline

networks nor the opponent’s private information.

As it may contain illegal moves, when the networks pre-

dict advantage or baseline values, we eliminate the values of

illegal moves from the output of the networks. While the

architectures are identical, the weights of networks are not

shared at all to stablize the training process. Every player

possesses an independent baseline network and an indepen-

dent value network during the training.

5.3 Details in DREAM Implementation

We implemented DREAM algorithm mainly following the

description in the DREAM paper [5]. However, we train

the networks using a different approach. DREAM trains

the baseline network for 1 000 minibatches of 512 samples

on each iteration, and trains the value network for 3 000 or

10 000 minibatches of 2 048 samples in different games [5].

In our implementation, we train one epoch of the whole

buffer from the weights on the previous iteration for both

the baseline network and value network to simplify the im-

The 25th Game Programming Workshop 2020

© 2020 Information Processing Society of Japan - 114 -

Fig. 2 Advantage Network Architecture

plementation and reduce execution time while making full

use of the samples in the buffers.

The game result of Geister can be known only at the ter-

minal of the game, so in our training process, only the ter-

minal state returns a (possibly) non-zero reward, which is

1 for win, -1 for loss and 0 for draw. Other states return a

reward equal to zero.

We implemented the CFR iteration in an alternative way,

which only updates network weights for one player on each

iteration. For a two-player game like Geister, after 2T it-

erations, every player’s networks are updated T times. We

use T instead of total iterations 2T as the weight in Linear

CFR.

When generating policy using regret matching, we fol-

lowed the approach in Deep CFR, where the action with

the greatest advantage is chosen at probability 1 when ad-

vantage values for all actions are non-positive.

For calculating the average policy, we store all the value

networks on the disk, and calculate the policy using regret

matching for all networks. We followed the Linear CFR im-

plementation that the policy on iteration t is weighted by t

and the weighted average of them derives the average policy.

6. Experiments and Results

6.1 Preconditions

We implemented DREAM with necessary enhancements

on board games to the full game of Geister. Our implemen-

tation is written in Python 3 language. Neural networks

are implemented using PyTorch. Our training programs are

run on an AMD RyzenTM ThreadripperTM 1950X 16-Core

Processor machine with two NVIDIA GeForcer GTX 1080

Ti GPUs. The Python 3 interpreter version is 3.6.9 and

the Pytorch version is 1.5.0. In our previous study [7], the

performance suffers from lack of exploration. To cope with

this problem, we increase the number of traversals on each

iteration and decrease the number of iterations to keep the

training time in a reasonable range.

We choose a batch size of 3 584, which is equal to the num-

ber of CUDA cores of our GPUs. We set the capacity of both

advantage buffers and baseline buffers to be 2 150 400, which

is exactly 600 batches. Once the buffer is full, the advan-

tage buffers will be updated according to reservoir sampling

while the baseline buffers are circular buffers. We run the

algorithm for 200 iterations and all networks’ weights are

stored on the hard disk. On each iteration, the game is tra-

versed 3 840, 7 680 or 10 240 times. The length limitation is

100. To evaluate the effectiveness of the baseline network,

we also trained an agent without baseline network with 3 840

traversals, in total four different settings. Note that these

hyperparameters are not finely tuned. When training the

networks, we use a mean square error loss function and up-

date the parameters using the Adam optimizer with a learn-

ing rate of 0.001 and gradient norm clipping to 1., the same

as the settings in Deep CFR [3]. In training value networks,

we incorporate Linear CFR [11] so that the losses of samples

on iteration t are weighted by t.

The policy used by our agents is the weighted average pol-

icy of the value networks on all iterations. When the agent

needs to make a move, the 6-channel structure is extracted

from the board, and is given to all value networks to predict

the advantages. Then a policy is calculated for each value

network by regret matching. The policy from iteration t is

weighted t to generate the average policy, as is described in

Section 5.3. After that, an action is sampled according to

the average policy and the agent makes the move.

6.2 Result

We ran the program under the preconditions introduced

above and trained 4 agents from stratch in 4 independent

executions for each setting. The average execution time of

training for each setting is shown in Figure 3.

We can observe from the figure that the execution time

is highly dependent on the number of traversals. Skipping

training baseline networks also results in a reduction in ex-

ecution time. Note that our traversals during the training

are conducted using 16 processes and that training time will

vary depending on the hardware and/or other factors.

We perform self-play between our agents and the random

player. We evaluate our agents every 10 iterations. For each

evalulation, we conducted 1 000 battles, in which our agent

plays first for 500 battles and the random player plays first

for the remaining. For each setting, we train our agents

The 25th Game Programming Workshop 2020

© 2020 Information Processing Society of Japan - 115 -

0 25 50 75 100 125 150 175 200
Iterations

0

5000

10000

15000

20000

25000

30000

Ti
m

e/
s

Average Execution Time
Traversal 3840 no base
Traversal 3840
Traversal 7680
Traversal 10240

Fig. 3 Average Execution Time

from scratch for 4 independent executions and conduct the

evaluations. The result is shown in Figure 4. The win rates

are the average of 4 independent executions.

20 40 60 80 100 120 140 160 180 200
Iterations

0.55

0.60

0.65

0.70

0.75

0.80

0.85

W
in

 ra
te

Average win rate

Traversal 3840 no base
Traversal 3840
Traversal 7680
Traversal 10240

Fig. 4 Average Win Rate

We can observe from the figure that the agents with

traversal 7 680 hold the best average performance while the

agents without baseline network show a slightly poor per-

formance. Agents with traversal 3 840 and 10 240 perform

similarly, but better than that without baseline network. We

believe that the baseline network is able to enhance the per-

formance of the agents and accelerate the training process.

As for number of traversals, we infer that if the number of

traversals is too small, the agent does not have enough ex-

ploration, which results in insufficient training. On the other

hand, if the number of traversals is too large, the buffer is

soon filled up with samples, causing lack of the buffer size

in early process of training and adds unsteadibility. We also

find that after about iteration 60, all of our agents’ perfor-

mance seem to stop improving or even begin to drop. We

suppose that the reason may be lack of the buffer size, as

when the traversal is set to be 3 840, the buffer is full after

about only 30 iterations. The more the traversal is, the ear-

lier the buffer becomes full. We think that there is a balance

between traversal and buffer size, however, it is not fully in-

vestigated due to limitation of time. We plan to conduct

more experiments in the future work to investigate it.

We also make analysis on the performance of independent

executions. The result of independent executions are shown

in Figure 5, 6, 7 and 8.

20 40 60 80 100 120 140 160 180 200
Iterations

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

W
in

 ra
te

Traversal 3840 no base - win rate of 4 executions
Average

Fig. 5 Win Rate - Traversal 3840, No Baselne Network

20 40 60 80 100 120 140 160 180 200
Iterations

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

W
in

 ra
te

Traversal 3840 - win rate of 4 executions
Average

Fig. 6 Win Rate - Traversal 3840

20 40 60 80 100 120 140 160 180 200
Iterations

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

W
in

 ra
te

Traversal 7680 - win rate of 4 executions
Average

Fig. 7 Win Rate - Traversal 7680

We can observe from the figures that the variance between

independent executions under the same setting is still rela-

tively high. As Geister is a huge game, we only explored a

The 25th Game Programming Workshop 2020

© 2020 Information Processing Society of Japan - 116 -

20 40 60 80 100 120 140 160 180 200
Iterations

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

W
in

 ra
te

Traversal 10240 - win rate of 4 executions
Average

Fig. 8 Win Rate - Traversal 10240

quite small proportion of the game. As a result, due to the

randomness, every time the agent only learns a tiny part of

the full game and every time the agent may learn a different

partition of the full game. Therefore, it is quite possible for

the agent to learn a policy strongly dependent on the part

of the game explored, which is the similar phenomenon we

met in our previous research [7].

The agents with traversal 7 680 show the most stable per-

formance and the best average win rate. We suppose that an

appropriate value of traversals will not only derive a better

performance but also make the training process more stable.

The agents without baseline networks also seem to have the

highest variance, which is consistent to our analysis above.

However, all the agents achieved a best run of over 85% win

rate against the random player in spite of the difference in

setting, which is out of our imagination. We will investigate

the reason in our future work.

After all, as our agents have an average win rate of about

80%, we conclude that with natural enhancements, DREAM

is able to be applied to the board game Geister and achieve

an appropriate policy. The baseline network in DREAM

adds strength and stablity to the training process and an

appropriate number of traversals can also make the training

more stable and enhance the performance.

7. Conclusions and Future Work

In this paper, we implemented DREAM and added en-

hancements to apply it to the board game Geister. We set

different numbers of traversals per iteration, and also inves-

tigated the effectiveness of the baseline network. We trained

different agents under different settings, and evaluated them

by self-play against the random player. Our DREAM agents

all had an average win rate of about 80%, from which we pro-

pose that the DREAM algorithm is able to be applied to the

board game Geister with necessary enhancements and gen-

erate an appropriate policy for the game. From the anaylsis

of the results, we infer that the baseline network accelerates

and stabilizes the training progress. We also make an as-

sumption that there is a balance between the traversal and

buffer size.

For future work, we plan to investigate the balance be-

tween the traversal and buffer size. Also, we will investigate

the reason that the best run for each setting performs almost

the same. Finally, our network architectures and hyperpa-

rameters are not finely tuned due to the limitation of time.

We plan to find more efficient architectures and hyperpa-

rameters.

References

[1] Zinkevich, M., Johanson, M., Bowling, M. and Piccione, C.:
Regret Minimization in Games with Incomplete Informa-
tion, Advances in Neural Information Processing Systems,
pp. 1729–1736 (2008).

[2] Bowling, M., Burch, N., Johanson, M. and Tammelin, O.:
Heads-up limit hold’em poker is solved, Science, Vol. 347,
No. 6218, pp. 145–149 (2015).

[3] Brown, N., Lerer, A., Gross, S. and Sandholm, T.: Deep
counterfactual regret minimization, International Confer-
ence on Machine Learning, pp. 793–802 (2019).

[4] Steinberger, E.: Single deep counterfactual regret minimiza-
tion, arXiv preprint arXiv:1901.07621 (2019).

[5] Steinberger, E., Lerer, A. and Brown, N.: DREAM: Deep
Regret minimization with Advantage baselines and Model-
free learning (2020).

[6] Chen, C. and Tomoyuki, K.: Acquiring Strategies for the
Board Game Geister by Regret Minimization, 2019 Interna-
tional Conference on Technologies and Applications of Arti-
ficial Intelligence (TAAI), pp. 1–6 (2019).

[7] Chen, C. and Tomoyuki, K.: Utilizing History Information in
Acquiring Strategies for Board Game Geister by Deep Coun-
terfactual Regret Minimization, Game Programming Work-
shop 2018 Proceedings, Vol. 2019, pp. 20–27 (2019).

[8] BoardGameGeek: Phantoms vs phantoms,
https://www.boardgamegeek.com/boardgame/2290/
phantoms-vs-phantoms.

[9] Lanctot, M., Waugh, K., Zinkevich, M. and Bowling, M.:
Monte Carlo Sampling for Regret Minimization in Extensive
Games, Advances in Neural Information Processing Systems
22, pp. 1078–1086 (2009).

[10] Schmid, M., Burch, N., Lanctot, M., Moravcik, M., Kadlec,
R. and Bowling, M.: Variance reduction in monte carlo coun-
terfactual regret minimization (VR-MCCFR) for extensive
form games using baselines, Proceedings of the AAAI Confer-
ence on Artificial Intelligence, Vol. 33, pp. 2157–2164 (2019).

[11] Brown, N. and Sandholm, T.: Solving imperfect-information
games via discounted regret minimization, Proceedings of
the AAAI Conference on Artificial Intelligence, Vol. 33, pp.
1829–1836 (2019).

The 25th Game Programming Workshop 2020

© 2020 Information Processing Society of Japan - 117 -

