F—EN=R - L2574 57—9
(1987 1. 19)

SODB: An Object Oriented Database in Smalltalk-80

Mojtaba Mozaffari
Yuzuru Tanaka

Department of Electrical Engineering
Hokkaido University
Sapporo 060, Japan

Abstract: ‘Object Oriented Data Model’ (ODM) is a new data model based on object
oriented programming concepts. This model extends the data structures and
operations of Relational Data Model (RDM). SODB that is described here is an
implementation of ODM in Smalltalk-80 environment.

In SODB, a database is defined as a set whose elements are named uniform sets. The
uniform set concept is an extension of relation of RDM. All of the elements of a
uniform set are instances of the same class. However, in contrast to the relations in
RDM, the elements of a uniform set are not necessarily tuples. We have also extended
operations such as %join’ and ‘project’ of RDM.

SODB:Smalltalk-80IC DVl A 7Y =2 7 MEMTF — I R—R 3 R T A&

B4 SN EFT 7Y EPR
Ao B A2

[A7 V=7 FEMT—FETN] (ODMRA 7V =7 MEM7wr 33y Z7olMaIc
BEOWEH LT —FETFTANTHSE, COEFTNVIEEBRT—F EFLAERDMD 7 — & K
WEHBEEZIIEL Twa, KX TR TSODBIZODM#% Smalltalk-80i2 & - THEH L 7-
LDTH 5,

SODBid, 77— R—ABEMWELS LA TN A7 227 V2 EHEELTHHE
ALEHREND, EMNELSOMEIIRDMICB I 2RO IETH 2, EHNELNT N
TOREBRLI77ADL 22 THD, LHrL, RDMicB T 2B 3R~
N, EREFZOREREI I 7N TEHELTHE v, RDMicB33 [Yadr]| [7n
Pz 7 b L) HHEENOEREIZOWTLRT,

1. Introduction

Relational Data Model (RDM) was proposed
by E. F. Codd [CODD70] in 1970 based on sound
ideas and provides the basis for many Database
Management Systems (DBMS). However these
Relational Database Management Systems

(RDBMS) and RDM itself have various

limitations. We propose SODB (Object
oriented Database in Smalltalk-80) as a
prototype system that improves these
limitations.

During 1980s the abundance of RDBMS
that operate efficiently in data processing
environments has suggested their use for other
applications such as engineering design. This
has enlightened some limitations of these
RDBMS and also provided improvements that
make a particular RDBMS suitable for a
specific application area [GUTT82, KLAUS5,
LORI83, STONS83]. It has already been pointed
out that the requirements of different
applications could be different [CHOLS3,
FOIS82, HASK82]. Clearly creation of a new
DBMS for each application area is not a good
strategy. On the other hand such improvements
to tune up a RDBMS for a specific application
they
functionality for some environments while they

area have been ad hoc; improve
increase complexity and can be useless or even
harmful in other environments. Therefore we
need DBMS that are general purpose and more
flexible than current RDBMS.

The above limitations are not confined to
the implementations of RDM; they also exist in
the data model itself. For example the tuples
are not suitable for representation of
inhomogeneous data [KENT79]. Moreover the
operations of RDM such as ‘join’ are inherently
defined in terms of tuples; while tuples are not
suitable to represent all data that we may need.
Thus the operations may be useless. For
example what does the ‘project’ operation mean
in a database whose data is mainly pictures?

In RDM a domain is defined to be a set of
atomic values. In practice the data types
supported by the Data Definition Language
(DDL) restricts the domains that we can define
for the attributes of a relation. While the Data
Manipulation Language (DML) defines the
operations. The data structures and operations
defined in these languages are not sufficient
and the user appeals to a programming
language such as PL/1 to provide the required
functionality. There are also database
programming languages [JARK82, ROWE79,
SCHM77, SHOP79, WASS79] that include the
data structure and operations of RDM. These
database programming languages somewhat
improve the situation [REIN81]. For example
optimization of queries can be left to these
which the DBMS.
However these improvements not
sufficient; more flexible data type facility is
needed to cope with various applications. For
example PLAIN [WASS81] provides useful
constructors to define new data types in terms

languages simplifies

are

of existing data types. These constructors
enhance the data type facilities of PLAIN but
they are high level and more flexible low level
facilities are also needed. In other words
PLAIN allows us to define new molecular types
from existing types but does not allow us to
define new atomic types. The problem is that in
contrast to atoms in chemistry the required
atomic types in computer depend on the
application and are not known a priori. We
conclude that a DBMS that supports different
applications should provide facilities to define
new atomic and molecular types when they are

needed.

We propose SODB as a prototype DBMS
that has more powerful data structures and
operations than current RDBMS. It is an
attempt to provide the flexibility needed for
various applications in one system. SODB is
based on a new data model called ODM (Object
oriented Data Model). This data model is based
on the ideas of Object oriented Programming
and RDM. This model is alsa useful in

environments with object oriented features but
some modifications may be needed. Some
features of SODB are inherited from Smalltalk-
80 whence they are not necessarily a
characteristic of a database system based on
ODM in other environments. Our main purpose
in developing SODB was to provide a concrete
example based on ODM to experiment and
examine the advantages of the model itself.

2. Smalltalk-80 and RDM

Our goal in SODB is to bring together the
advantages of Smalltalk-80 and RDM in a
uniform system. We shall continue this section
with a brief description of pertinent Smalltalk-
80 features. Then we highlight some extensions
to Smalltalk-80 that we need. Our description
of Smalltalk-80 is not complete and the reader
may consult the references [BYTE81, GOLD83,
GOLDB84] for further information.

2.1 Smalltalk-80 features

To begin with Smalltalk-80 is not only a
programming language but a system that can
work independently without any requests to
operating system. It provides a friendly user-
interface and allows graphics and animation.
All these come in a uniform environment based
on the concept of object. Since Smalltalk-80 is a
system we do not need separate DDL, DML and
host languages. In SODB everything is done in
one environment namely Smalltalk-80 with
addition (or modification) of some classes and

messages. This uniform environment is an
advantages of SODB to current DBMS.
Smalltalk-80 has its origin in the

simulation language Simula-67 and artificial
intelligence. It is suitable for modelling
complex systems. The objects represent real
world entities with instance variables that
represent their state. The objects conmunicate
by sending and receiving messages. This is a

powerful paradigm and makes it easy to design

an interface between Smalltalk-80 and other
systems such as a banking system.

In Smalltalk-80 each object is an instance of
a class. The only way to modify an object is by
sending a message to it. While the response to a
message is defined via the class of the receiver.
Thus modularity is preserved. The classes form
a hierarchical structure which greatly
increases functionality and simplifies design of
complex systems. For example if we want a
message to be understood by all objects in the
system we just need to define that message in
‘Object’ that is the root of this hierarchy. The
class of an object corresponds to its data type in
conventional languages. This hierarchical type
structure provides reusability of code. It is a
powerful tool since it allows us to do a lot of

work with minor changes to existing code.

The standard Smalltalk-80 system supports
many classes and the user can easily define a
new class dynamically or modify an existing
class to match an application. When a class is
no longer needed the user can remove it from
the system. The data structure of an object and
the operations performed on it are defined via
the class of that object. Therefore the
separation of data structure and operations
that is a common drawback of some systems
disappears. The modification of a class can
modify both the data structure and operations
done on the instances. These modifications are
noticed by the instances and subclasses of the
class automatically. This powerful and flexible
type structure of Smalltalk-80 is inherited to
SODB.

There are also limitations in Smalltalk-80.
One drawback is that the information that can
be specified in a class is rather limited. As an
class definition provides no

mechanism (such as type declaration of

example a

conventional programming languages) to
define the class of the instance variables. The
class of an object is defined when it is created

but we also need some type mechanism for the

instance variable. Therefore in SODB we
defined conversion messages to support data
types for the instance variables of an object.
Generally speaking, conversion of an object x to
a class C will result in an instance of C that is
considered to be equal to x. However we still
feel that Smalltalk-80 classes need more
expressive power.

2.2 Comparison of RDM and Smalltalk-80

In this section we compare RDM with
Smalltalk-80 to see what extensions to the
latter are needed.

In RDM a database is a set of relations
where each relation is a set of tuples. Moreover
each tuple is a set of pairs (ai, vi) where ai is an
attribute name and vi is the corresponding
attribute value. We see that in RDM the
database, relation and tuple are in fact ‘set of
similar objects’. Therefore ‘set of similar objects’
is a fundamental concept in RDM. In contrast
the elements of a set in Smalltalk-80 need not
be similar. In SODB we introduce the concept of
‘uniform set’ (u-set) for a ‘set of similar
objects’. A tuple in RDM is a ‘set of similar
objects’ but it has a more specific structure. In
particular for each attribute name a domain is
specified and the corresponding attribute value
should belong to that domain. Smalltalk-80
does not support tuples or atiributes hence we

introduce them as new concepts in SODB.

We clarify the term ‘similar objects’ to mean
objects that are instances of the same class.
Then a u-set is a set all of whose elements are
instances of a fixed class namely the ‘element
class’ of the u-set. We show a u-set and its
elements in Fig. 2.1, In this paper arrows with
dashed lines connect instances to their classes.
In SODB tuple and attribute are defined as
extensions of similar terms in RDM. Domain
concept of RDM corresponds to class concept in
SODB.

Set-0f-C

7y

Fig. 2.1. A u-set whose element class is C.

Now we consider the operations. RDM
defines two kinds of operations on relations.
These are the usual set operations such as
‘union’ and relational operations such as join’,
The usual set operations are supported by all u-
sets but the relational operations are not. The
reason is that the relational operations are not
always necessary as explained in section 1.
However the concept of ‘relational u-set’ has
introduced to relational

been support

operations.

We conclude that we need the following new
concepts for SODB.

1) attribute

2) tuple

3) u-set

4) relational u-set

5) database
We shall continue with an overview of SODB in
section 8 while section 4 provides further
details of the above concepts.

3. Overview of SODB

In this section we provide an overview of
SODB. We shall define the database and its
elements but leave further details to section 4.
We have to omit many details to stress the
main points.

Set

/

Uset

T

RelationalUset

N\

Database

Fig.3.1 An overview of the structure of
SODB.

A sketch of SODB is given in Fig. 3.1, In this
paper arrows with solid lines connect classes to
their superclass. Here ‘Set’ is the Smalltalk-80
class named Set with some modifications.
While Uset, RelationalUset and Database are
new classes defined for SODB. A u-set is an
instance of a subclass of ‘Uset’. Similarly a
relational u-set is an instance of a subclass of
‘RelationalUset’. A database is an instance of
‘Database’. The user can define subclasses for
any of these classes to increase functionality.

More specifically sets in SODB provide for
operations such as union and intersection. Each
element of a u-set is an instance of the element
class of the u-set. The relational u-sets are u-

sets that support the relational operations of
SODB.

An example database named Music is shown
in Fig. 3.2. In SODB a database is a set which
has a unique name that globally identifies it.
Moreover each element of a database is a pair
(s, u) where u is a u-set and s is the unique
name of u within the database.

4. Extensions to Smalltalk-80

Set
/ ‘
Uset

+ A \

Database

RelationalUset

i
|
i
i
i
i
\
1
1

U2

Fig. 3.2 A database whose name is Music
and some of its elements.

In this section we explain the extensions of
Smalltalk-80 that were mentioned in section
2.2,

4.1 Attributes

We define an attribute of an object, say x as
a triple (n, v, V) where n is the attribute name,
v is the attribute value and V is the attribute
class. See Fig. 4.1 where an attribute of an
instance of class X is shown,

We assume that:

1) An attribute name of x is a ‘unary
selector’ (as explained in Smalltalk-80) for x
and its class X. Briefly a ‘unary selector’ is a
message selector without parameters.

2) The attribute value is the object that is
returned when the corresponding attribute
name is sent as a message to x.

3) The attribute class is the object returned
when the attribute name is sent as a message to
X.

4) The attribute value v is an instance of the
corresponding attribute class V.

- -
e <

Fig. 4.1 The triple (n, v, V) is an attribute
of x where x is an instance of X.

In SODB attributes are defined for all
objects so that any object can have zero or more
attributes. Moreover an attribute value can be
any object.

4.2 Tuples

A tuple is an object that is determined by its
attributes. More precisely a tuple is an instance
of a tuple class; a tuple class is a subclass of a
system defined class named Tuple. Moreover a
tuple class is created by a message such as:

typed: pairSet named: aSymbol

sent to Tuple. Here pairSet is a set of pairs (ni,
Vi) where ni is an attribute name and Vi is the
corresponding attribute class. Moreover a
Symbol will be the name of the newly created
tuple class. In general the attribute names of a
tuple are also its instance variable names;
these instance variables can be assigned a
value by a message such as:

ni: value
This message will convert value into Vi and
then assigns the result to the instance variable
ni.

Example 1
We define a tuple class named ‘E’ with
‘namePart’, ‘salary’ and ‘manager’ as the

attribute names that refer to the name, salary
and manager of the instances. Then we create
some instances of ‘E’ and finally make a query.

Tuple typed: #((manager E) (namePart
Symbol) (salary Money)) named: #E.

el « (E new) namePart: #Smith; salary:
1100.

e2 < (E new) namePart: #Brown; salary:
1000; manager: el.
Here ‘Money’ is a user defined subclass of
integer to improve semantics. Now the

message:

e2 manager salary
returns 1100 that is the salary of Brown’s
manager.

Now we explain a message that defines a
tuple from the attributes of an object. This is
called the ‘extract’ message and is defined in
‘Object’. The message is written as:

extract: nameSet

Here nameSet is a set whose elementis are some
of the attribute names of the receiver. The
message returns a tuple whose instance
variable names are all the elements of
nameSet. The value (or class) of each of the
instance variables will be the corresponding
attribute value (or class) of the receiver of the
‘extract’ message. The required tuple class will
be defined by the system automatically.

4.3 Uniform sets (U-sets)

A u-set is an instance of a ‘u-set class’ while
a u-set class is a subclass of Uset. Moreover a u-
set class is created by a message such as:

of: aClass named: aSymbol
that is sent to Uset. Here aClass is the element

~ class and aSymbol is the name of the newly

created class.

Uset redefines some of the messages of Set
and also defines new messages. In particulr the
message:

basedOn
is defined for all u-sets and returns the element
class of the receiver.

4.4 Relational u-sets

A relational u-set is defined similar to a u-
set. It is an instance of a ‘relational u-set class’
and the latter is a subclass of RelationalUset
created by a message such as:

of: aClass named: aSymbol
similar to that explained above.

RelationalUset is a subclass of Uset
therefore the relational u-sets support the
messages for u-sets. In addition RelationalUset
defines messages that correspond to the
relational operations of RDM. Among these
messages we briefly explain the ‘join’ and
‘project’ messages and note that ‘select’ message
is inherited from Smalltalk-80.

The ‘join’ message is written as:

join: aUset by: aBlock2

Here aUset is a uniform set and aBlock2 is a
block with two arguments. The message
returns a relational u-set whose elements are
all possible (%, y) pairs where x is an element of
the receiver and y is an element of aUset and
aBlock2 returns ‘true’ when evaluated with x,
y as its arguments respectively. The required
classes will be defined by the system
automatically. The above pairs support the
messages:

first
This message will return the x component of
the pair.

second o
This message will return the y component of
the pair.

Now we consider the project message that is
written as:

project: nameSet
Here nameSet is a set whose elements are
attribute names of the elements of the receiver.
The message will return a relational u-set
whose elements are all the objects created by
sending the message:

extract: nameSet
to each element of the receiver of the project
message. The required classes will be defined
by the system automatically.

4.5 Databases

A database is an instance of Database; while
Database is a subclass of Set. A database is
created by a message such as:

new: anInteger named: aSymbol
sent to Database. Here a Symbol is the name of
the newiy created class and anlnteger is the
initial number of elements allowed in the
database. A database will provide space for
more elements automatically.

Example 2 :

We define a new database and a relational
u-set class for a set of rectangles. Then we
create a set of rectangles and investigate which
rectangles intersect. Finally we put the pairs of
intersecting rectangles into the database.

Database new: 5 named: #Graph.

RelationalUset of: Rectangle named: #Rect.

s1 « Rect new: 20.

s1 add: (Rectangle origin: 100@100 corner:
200@200). 7

s1 add: (Rectangle origin: 150@100 corner:
200@200). v , '
other rectangles can be added to s1 similarly.

$2 < sljoin:slby: [x:y|x~~y & (x
intersects: y)1. :

Graph at: #Intersecting put: s2.
Note that even if Smalltalk-80 had . not
implemented the ‘intersects:’ message the user

could define it separate from the above
computation. Therefore SODB supports high
level operations.

5. Comparison of RDM and SODB

Now that we have explained the basic
features of SODB we can compare it with RDM
to highlight the differences. RDM defines
specific data structures and operations and
enforces the integrity and referential rules
[CODD79]. We shall compare each of these
aspects with SODB below.

The user can define subclasses of Database,
Uset, RelationalUset and tuple classes to
further tune up the system for a specific
application area. Moreover SODB concepts of
attribute, tuple and u-set are more general
than attribute, tuple and relation in RDM as
explained below.

1) In contrast to RDM the definition of
attributes does not rely on tuples. Attributes
are defined for all objects while in RDM only
tuples can have attributes.

2) In contrast to RDM an attribute value
need not be atomic. It can be any object
including sets or u-set. This provides for
repeating fields.

3) In contrast to RDM an attribute value
need not be some part of another object. The
attribute. value can be somehow computed by
the object whose attribute is sought. This
provides for derived attributes.

4) The attribute
automatically generalizes tuples in SODB.
Similarly a result of the generalization of
tuples is that u-sets or relational u-sets (which
may be set of tuples) are more general than
relations of RDM. Moreover the elements of a u-
set need not be tuples whence the u-sets are
further enhanced.

generalization of

The improvement of the data structure in
SODB results in an improvement of the
operations. The definition of these operations in

SODB provides further improvements. For
example the blocks used in join’ and ‘select’
messages can evaluate complex expressions to
decide inclusion of an element in the result.

The integrity and referential rules of RDM
are not directly supported by SODB. These
rules are based on the assumption that each
relation is a set of tuples and a fixed attribute of
a tuple is its primary key. These assumptions
do not hold in SODB whence we do not support
the rules. The primary keys provide a
mechanism to access a tuple within a relation.
However such a mechanism already exists in
Smalltalk-80; since each object has an object
pointer that uniquely identifies it in the
system. Therefore in SODB primary keys are
not so essential as in RDM. Of course the user is
free to enforce these rules for some applications
and SODB does not prevent it.

6. Conclusion

SODB is proposed as a prototype to open a
new direction for database systems. It runsin a
uniform environment and provides the
flexibility of Smalltalk-80. It encapsulates data
and operation and improves semantics. It
allows modularity and high level operations. In
a sense it is simpler than RDM since the user is
not obliged to use primary keys or tuples.
Moreover the user does not need to learn both
query and host languages. SODB is a single
user system but we think that its concepts
provides a basis for an object oriented system
with database facilities.

References
[BYTES81] Byte Vol. 6., No. 8, (Aug. 1981).

[CHOL83] Cholvy, L. and Foisseau, J.:
‘ROSALIE: A C.A.D. Object oriented and Rule-
based System’, Information Processing 83,
(Elsevier Science Publishers) pp. 501-505.

[CODD70] Codd, E.F.: ‘A Relational Model of
Data for Large Shared Data Banks,
Communications of the ACM Vol. 13, No. 8,
(June 1970), pp. 377-387.

[CODD79] Codd, E.F.: ‘Extending the Database
Relational Model to Capture More Meaning’,
ACM Transactions on Database Systems Vol.
4, No. 4, (Dec. 1979), pp. 397-434.

[FOIS82] Foisseau, J. and Valette, F.R.: ‘A
Computer Aided Design Data Model:
FLOREAL’, File Structures and Data Bases for
CAD, (North-Holand Publishing Co. 1982), pp.
315-334.

[GOLD83] Goldberg, A. and Robson, D.:
‘Smalltalk-80: The language
Implementation’, (Addison Wesley Publishing
Co. 1983).

and its

[GOLD84] Goldberg, A.: ‘Smalltalk-80: The
Interactive Programming Environment’,
(Addison Wesley Publishing Co. 1984).

[GUTTS82] Guttman, A. and Stonebraker, M.:
‘Using a Relational Database Management
System for Computer Aided Design Data’,
Database Engineering June ’82, pp. 155-162.

[HASK82] Haskin, R. and Lorie, R.: ‘On
Extending the Functions of a Relational
Database System’, Proc. 1982 ACM SIGMOD
Int. Conf. on Management of Data, (Orlando,
FL, June 82), pp. 207-212.

[JARKS82] Jarke, M. and Schmidt J.W.: ‘Query
Processing Strategies in the Pascal/R
Relational Database Management System’,
Proc. 1982 ACM SIGMOD Int. Conf. on
Management of Data, (Orlando, FL, June ’82),
pp. 256-264.

[KENT79] Kent, W.: ‘Limitations of Record-
Based Information Models’, ACM Transactions
on Database Systems Vol. 4, No. 1, (March
1979), pp. 107-131.

[KLAUS85] Klaus, R.D. and Lorie, A.R.: *Vision
Support for Engineering Database Systems’,
IBM Research Laboratory, San Jose, CA 95193.

[LORIES83] Lorie, R. and Plouffe, W.: ‘Complex
Objects and Their Use in Design Transactions’,
Proc. ACM SIGMOD 1983 Engineering Design
Applications, pp. 115-121.

[REIN81] Reind P., Wasserman A.L: * High
Level Programming Features for Improving the
Efficiency of a Relational Database System’
ACM Transactions on Database Systems Vol.
6, No. 3, (Sept. 1981), pp. 464-485.

[ROWET79] Rowe, L.A. and Shoens K.A.: ‘Data
Abstraction, Views and Ups in RIGEL’, Proc.
1979 ACM SIGMOD Int. Conf. on Management
of Data, (Boston, Mass. May '79), pp. 71-81.

[SCHM77] Schmidt, J.W.: * Some High Level
Constructs for Data of Type Relation’, ACM
Transactions on Database Systems Vol. 2, No.
3, (Sept. 1977), pp. 247-261.

[SHOP79] JE: ‘Theseus _ A
Programming Language for Relational
Databases, ACM Transactions on Database
Systems Vol. 4, No. 4, (Dec. 1979), pp. 493-517.

Shopiro,

[STON83] Stonebraker, M,, Rubenstein, B. and
Guttman, A.: ‘Application of Abstract Data
Types and Abstract Indices to CAD Data
Bases’, Proc. Engineering Design Applications
of ACM-IEEE Database Week, (San Jose, CA.
May ’83), pp. 107-113.

[WASS79] Wasserman, A.l: ‘The Data
Management Facilities of PLAIN’, Proc. 1979
ACM SIGMOD Int. Conf. on Management of
Data, (Boston, Mass. May ’79), pp. 60-70.

[WASS81] Wasserman, AL, et al.: ‘Revised
Report On Programming Language PLAIN’,
ACM SIGPLAN Notices Vol. 16, No. 5, (May
1981), pp. 59-80.

