F—hN—R - VA5 AL 58 —4
(1987 3. 16)

F—aN—ZQOUTREBHEICH T 20y 7OMER

ALK T
h RE EMHBS

EBTIR, F— I R—AOHTRBHEI BT Ay 730y 7 OBRE DAL - T 4
VAT LB ATY 7 OBEERENIIRE o TR I L BT A, TS N- AT S
“HOy 2 ARCEVOREZOY 23Ty 7OBKRTHERAEATREOTEZL, PIYFI Ve
COEFEFRETAOLEAVORTW S, o T, F= s HLBELTARMUEIITY 7302, £
REROF— F s L TRy 7 TR BEL R ERERET > LItk b, & BiTEoRHRIEN
TETH D, ZOFEITIZRD &) LFIEZFDH 2,

(1) ZFAHMLBERAAFBECLILTy FO v s ¢ B LATA TV AL EEL LD TE 2,

@ ABEORSLF 7T EAGT. BAMLEIAATES L UBERAFERATECLS T
Faw 72 3B LTAIT) AL EEDLIENTE S,

@) BEAAEAMLFENTY FOv 7 #ELAVEEIIT— F OTMAMERES €L I LA T
55,

PROBLEM OF LOCKING
IN DATABASE CONCURRENCY CONTROL MECHANISMS

Xingguo Zhong and Yahiko Kambayashi
Dept.of Computer Science and Comm. Eng., Kyushu University,

In this paper, we point out that the concept of locking in database concurrency control is
essentially different from locking in operating systems. The lock concept used in 2-
phase locking method for database is used for controlling the execution of transactions
to make the schedules of transactions serializable and recoverable. The time of lock is
usually much longer than the time required to operate on the data item. We propose

that instead of locking, it is more reasonable to record proper information (called a

schedule of requests) on each data item. By recognizing the difference between the

function of keeping serializability and the function of locking for using data item, we
can achieve several advantages. The major advantages we have obtained are as follows.

(1) We can produce a concurrency control mechanism to be deadlock free in case of
read-write confliction. .

(2) When we use a specialized structure for wait-for-graph called tree structure, we
can make a mechanism to be deadlock free in cases of both read-write and write-
write conflictions.

(3) We can improve the availability of data for write-read confliction when it does not
cause a deadlock.

1.OVERVIEW

The concept of locking has been introduced
from the field of operating systems (OS for short)
by J. B. Dennis in 1966 [DE66], where locking is
used to avoid incompatible use of resources. Under
OS environment, there are many kinds of
resources, memory, CPU, disk, program, data, and
so on; and several kinds of locks, shared lock,
exclusive lock and so on. When a task want to use
a resource, it first locks the resource to ensure that
the resource may not be, incompatibly, used by
other tasks, since a simultaneous use of the
exclusive resource may get the system into failure.
There are two simple examples in the following.

EX 1: A certain data object (which might be a
word, an array, a list structure and so on) may be
updated asynchronously by several tasks, which
belong to different computations. Since the
intermediate states of the data is
inconsistent, a simultaneous use would lead to

object

erroneous computation.

EX 2: When a task wants to use a disk driver
that is just being used by another task, since the
same driver cannot perform two works at the same
time, a system failure may occur if there is no
locking mechanism,

Lock and unlock operations are originally
defined as meta-instructions in the operating
systems [DE66]. Even a meta-instruction consists
of a sequence of instructions, the system must
ensure it to be an atomic one. J. B. Dennis had
described lock and unlock operations using an one-
bit lock indicator as shown in Fig. 1. Here w is an
one-bit lock indicator. The resource is locked when
w equals one, and the resource is free when w
equals zero. We give the features of locking as
follows.

(1) When a task wants to use a resource, it first
locks the resource. Hence no other tasks may
use this resource until it is unlocked by this
task.

(2) When the task ends the use of that resource, it
unlocks the resource.

(8) After this task unlocked the resource, other
tasks can lock this resource.

(4) The locking mechanism must ensure that there
is always at most one task keeping the lock.
With the wide use of lock concept, the deadlock

problem has been becoming to be an important

It

topic. Since a task may have to wait for a resource
while holding other resources, a wait for cycle of
tasks Ty, T, ... Tk, where T; waits for Tj+3 (i=1,
2, ... k—1) and Tk waits for Ty, may occur. To
make the deadlock condition clear, E. G. Coffman
has given four necessary conditions as follows
[CET1).

——f—ea— g

Lock) —{D
0
=1

e ——————

Unlock)
Fig. 1 Lock and unlock meta-instructions

1) Mutual exclusion condition (Tasks claim
exclusion of the resources they require)

Wait for condition (Tasks hold resources
already allocated to them while waiting for
additional resources)

No preemption condition (Resources cannot be
forcibly removed from tasks holding them until
the resources are used to completion)

Circular wait condition (A circular chain of
tasks exists, such that each task holds one or
more resources that are being requested by the
next task in the chain)

With the development of applications of
computer systems, database (DB for short) has
been gradually becoming a quite large field, where
there exists the same problem of deadlock among
transactions. The transactions in DB correspond
to tasks in OS and data items to resources.

In this paper, we will point out that the concept
of locking used in 2-phase locking method for
database concurrency control
different from locking in OS. A lock operation is
performed in OS by a task when the task want to
use a resource. Once the lock is granted, the task
will use the resource instantly. When the task
completes the use of this resource, it will unlock it.
That is, the period between a lock and unlock pair
of a task is exactly same as the period that the task

operates on that resource.

2)

3

~

4)

is essentially

2=

In contrast, a lock operation in DB is very
different from the lock operation in OS. The lock
period is much longer than the period of
performing the operation. By a 2-phase locking
protocol (see Section 2), a transaction does not
unlock any data item it locks until all of its locks
are granted. Moreover, there is a typical technique
in handling the execution of transactions, called
2-phase commitment protocol (see Section 2), by
which when the write lock for a data item is
granted, the transaction does not write the data
item until the transaction is committed. Thus, it
cannot unlock the item. In such a long period of
locking, the data items it locks can not be used by
any other transaction (see Fig. 2). Thus, we
conclude that the lock operations in 2-phase
locking method for database concurrency control
are performed not for the consistent use of the data
item itself, but for the consistency of the whole
database.

In Section 2, we give the basic concepts of
concurrency control for database systems. The
difference between locks in OS and locks in DB
then becomes clear. In Sections 3, we describe
what advantages can be obtained by changing
locking into recording proper information on data
items. In Section 4, a framework of controlling the
executions of transactions is described. Instead of
2-phase locking, we call our methods 2-phase
requesting. Section 4 gives a rough description of
these advantages.

2. BASIC CONCEPTS

The concept of locking is described in previous
In this section,
concepts in database concurrency control which

section. we discuss the basic

are used in this paper.

(1) Serializability

The concept of serializability is first introduced
by K. P. Eswaran in 1976, about ten years after
the introduction of lock concept [EG76]. As a
general way in discussing concurrency control
problem for database, the database is usually
viewed as a set of data items, on which read and
write operations are performed by transactions.
The transactions are defined as the logical units of
operations that preserve the consistency of the
database [EG76, GR81). A transaction is supposed

to transform the database from a consistent state
into a consistent state when it is executed alone.
The outcome of processing a set of transactions
concurrently is required to be same as one
produced by running these transactions serially in
some order. A schedule that has this property is
said to be serializable [EG76, BS79). The basic
work of concurrency control for database systems
is to ensure the serializability of the schedule of
transactions. In order to guarantee the
serializability, some started transactions have to
be aborted under some situations. When a
transaction is rolled back, all the changes that
caused by the execution of that transaction must
be recovered.

(2) 2-phase commitment protocol
The 2-phase commitment protocol was first

introduced by J. Gray for distributed database
systems [GR78]. In fact, the same problem also
exists in centralized systems, if we do not have the
assumptions that the system never get into
failures and do not allow any cascading of rollback
of transactions.

By the 2-phase commitment protocol, write
operations of a transaction cannot reflect the new
values that it writes to the database before it has
been ensured to complete. This is realized by
dividing the commitment of a transaction into two
phases. In the first phase, the transaction writes
the new values to logs without losing the old
values of the corresponding data in database.
After the transaction completes to record all its
write operations to logs, the completion of the
transaction is guaranteed. In the second phase it
reflects the logs to the database. The necessity of
having 2-phase commitment is that when a
transaction is determined to be rolled back or a
transaction fails on some stage of its execution, the
data items it has written, may be read by other
transactions thus losing the recoverability of the
system.

(3) 2-phase locking protocol

The 2-phase locking protocol is a well known
method in guaranteeing the serializability of a
schedule of transactions. The lock concept used in
2-phase locking protocol is almost same as
introduced in previous section, if all the period of

=3=

phase 1 phase 2
r ; P : Period of locking
i p ; p : Period of operation
Al rz;d ; ts : Start time
° u___P_,J te : End time
t tu t1 : Lock time
P ty : Unlock time
Awrite 1 1N h: 1: lock ph
look I ! ey phasel: phase
i i P o phase 2: unlock phase
] ! :
ts ! t, te time

Fig. 2 Lock period and operation period in 2-phase locking method

locking data D is thought to be that the transaction
is operating on D. There are read locks and write
locks for read and write operations of transactions,
respectively. More than one read lock can be
imposed on the same data at same time. However,
when a data is locked by a transaction in write
mode, no other transaction can lock it in any mode.
The execution of a transaction is always divided
into two phases. In the first phase, it does only
locks and in the second phase it does only unlocks
of data items. That is, for each transaction once it
has unlock a data item, it will not lock any data
item further. Under this protocol, the schedule of a
set of executed transactions (or including the
executing transactions up to their executed stages)
is always serializable [EG76].

By 2-phase locking methods, clearly, no data
item can be unlocked by the transaction until the
transaction arrives its second phase. Furthermore,
by 2-phase commitment protocol, all the write
operations cannot be reflected to database until the
transaction is committed. Therefore, a write lock
means that the transaction will write the data
item it locks in future and the data item cannot be
unlocked until the transaction complefes. This is
very different from locking in OS.

(4) Deadlock
Deadlock problem in database system is the

same as in OS, which is discussed in previous
section. When a deadlock occurs, all the
transactions in the wait for cycle are blocked and
cannot be executed further.

(6) Wait-for-Graph
In order to detect deadlocks, a directed graph
called a wait-for-graph(WFQ) is usually used by

II

the system [GR78]. Each node of the graph
corresponds to a transaction being executed by the
system. For simplicity, we use the same notation
of a transaction to its corresponding node in WFG.
‘When transaction Tj issues a lock on data D that is
locked by transaction Tj in conflict mode (at least
one of them lock D in write mode), an edge from
node T; to node Tj is appended to the WFG. There
is a deadlock in the system iff there exists a cycle
in the WFG [EG76].

There are mainly two strategies in detecting
deadlocks. One is called continuous detection and
another is called periodic detection. In continuous
detection, detection is performed whenever a new
edge is required to be added to the WFG. In
periodic detection, detection is performed once in
one period of time. The strategy considered in this
paper is continuous detection.

3. AN EXAMPLE OF AVOIDING DEADLOCK
FOR READ-WRITE CONFLICTION

We have introduced the basic concepts of 2-
phase locking protocol in the previous section, by
which the difference between locking in OS and
locking in DB is made clear. In this Section, we
give an example on how to achieve the benefits by
recognizing the difference of the two concepts.

A transaction issues read and write requests for
data items when it is executed. There are three
conflicting situations in requesting an operation,
read-write, write-write and wirte-read. A read-
write confliction means that a transaction requests
a read operation on a data item that is written or
held for writing by another transaction. Similarly,
a write-write (write-read) confliction occurs when

a transaction requests a write operation on a data
item that was written (read) or held for writing
by another transaction.

In 2-phase locking method, the confliction
caused by a read lock request (read-write
confliction) only arose on the situation when
transaction T requests to lock data D
mode that has been locked by another transaction
Ts in write mode. In this situation, if appending a
new edge from node T; to T2 will not cause a cycle
in the WFG, T; can wait until T2 unlock D.
However, if the appending of the edge from T to

in read

Ty will cause a cycle, by conventional methods,
transaction T; or T2, or may be other transactions
in the cycle have to be rolled back.

In fact, when such a situation occurs, we need
not to rollback any transactions. Since Tz must be
blocked for some lock request, it doesn’t not yet
reflect the new value of D being requested by T; to
the database (See 2-phase commitment protocol).
That is, transaction Tj can read the existing value
of D directly without destroying the serializability
of the schedule of transactions. Since Tg is blocked
for some lock requesf, Ty may not perform
operation on D at the same time with Tj.

Fig. 3(a) shows an example of the WFG in this

‘\ o V\
AT

(b) An example of avoiding
deadlock caused by
read-write confliction

(a) An example of read-
write confliction that
causes a deadlock

Fig.3 Wait-for graphs

situation where transaction Ty is requesting a read
lock that conflicts with a write lock of transaction
Ts on D and causes a cycle in the WFG. If we allow
Ty to read the existing value of D, the deadlock can
be avoided. The resulting WFG is shown in
Fig.3(b). The dotted edges in the figure express the
relationship of T; and T2 that is discussed. By this
example, we find that even if T2 locks D in write
mode, since it doesn’t perform the write operation,

i

and in this situation it may not be performing the
write operation, the benefit that allowing Tj to

‘read D can be obtained.

We further discuss the functional redundancy
between 2-phase locking protocol and the WFG in
In
continuous strategy of 2-phase locking, no cycle is
allowed to exist in the WFG. That means, the
schedules of transactions are always serializable
up to the executing stage of each transaction. For
this reason, it is not necessary to lock data item
that, in fact, hinders the data item to be used by
other transactions. Reading the existing value of
data D as described above shows that when
transaction T; requests to read data D, the request
might be allowed.

conventional 2-phase locking methods.

4. CONTROLLING THE EXECUTION OF
TRANSACTIONS

We give a framework of controlling the
execution of transactions. The main assertions are
that we should use a lock mechanism (in OS
meaning) to handle requests of transactions in a
lower level. The 2-phase locking protocol for
transactions is modified to be 2-phase requesting

protocol in a higher level.

We have find that there is no sufficient reason
to have locking in OS meaning on data for
It
reasonable to only record proper information on

database concurrency control. is more
each data item. When a transaction needs to read
or determines to write a data item in future, it
issues a request to modify the information on that
item. The information on each data item (called a
schedule of requests) is a sub-graph of the WFG
which is constructed by the nodes with the
corresponding transactions related to this data
item.

In the remaining part of this paper, instead of
locking we use the word “request” to express the
function of locking for database concurrency
control. We call the method 2-phase requesting
method. Instead of two lock modes (read and write
modes) in conventional way, two request modes on
data item are needed. We define them as follows.

(1) Read request : When transaction T needs
to read data D, it first issues the read request to D.

Once the request is granted, it reads D instantly.

5=

No write request to D can be handled before Ty
ends the read operation on D.

(2) Write request : When transaction Ty
determines to write data D, it first issues the write
request to D. If the write request is granted, the
write operation will be performed when T; is
committed.

There is the simultaneous operating problem
that more than one request of transaction may call
on the same schedule or even call on the WFG
simultaneously. We need an additional lock
mechanism to control the concurrency execution of
the requests. This lock mechanism (a concurrency
control mechanism for requests) is to ensure that
the execution of the requests issued by each of the
transactions are serializable. This is just such a
problem of looking each schedule and the WFG as
data items and each request as a transaction. An
execution of a request have two results, one is to be
granted and another is to be rejected. We show
that there is no deadlock problem in such a control
mechanism as follows,

The schedule on each data item and the WFG
may be updated only when a request (lock request
in conventional way) is issued. The behavior of
handling a request of a transaction is as follows.

(1) The transaction is supposed to issue a request
on data item D. When no confliction occurs, the
request can be granted. The -corresponding
schedule on data D should be modified. Since such
a work only locks one schedule for one data item
(data D here), no deadlock will occur (see the
necessary condition 2 in Section 1).

(2) When the request causes a conflict with request
of other transactions, the request first locks the
schedule on the data item and then locks the WFG.
Since each of such work does not lock any other
schedule, and each of them always lock the
schedule of the data item before locking the WFG.
Evidently, no deadlock may occur[SK82, FM85].

By the above descriptions, we give a summary
that the lock mechanism for requests supports an
interface of controlling execution of transactions as
follows.

(1) When a transaction Ty issues a write request to
data D that conflicts with a read request of
transaction Ty, the read operation of T2 on data D
is considered having been performed already. That
is, a read request does not unlock the schedule it

locks until the read operation is over.

(2) When a transaction T; issues a read/write
request to data D that conflicts with a write
request of Tg, the write operation of T2 on D is not
considered having been performed, if T3 is blocked
for some other request.

5. DISCUSSION ON ADVANTAGES FOR
DATABASE CONCURRENCY CONTROL
MECHANISMS

In this section, we propose three techniques as
follows.

(1) A concurrency control mechanism which
handles read-write conflictions to be deadlock free.
(2) A concurrency control mechanism which
handles both read-write and write-write
conflictions to be deadlock free, in which the tree
structure for WFG is used.

(3) An improvement of availability of data for
write-read confliction.

For space limitation, we only give the basic
ideas and the rough descriptions for each of these
techniques. For the description of our techniques,
we first give a general processing model for
processing transactions and operation requests.

5.1 A processing model for transaction and
data operations

A transaction performs read and write
operations on data item when it executes. When a
transaction starts its execution, it was given a
private work space by the system for buffering the
data it will read and write. All the read operations
are performed by copying data to its work space.
Therefore, a transaction will not read same data
item more than once. By 2-phase commitment
protocol, write operations of a transaction do not
reflect their values until it is committed.
Therefore, no data will be written to the database
more than once by one transaction under the

supposition above.

There are read request and write request that
must be performed by a transaction before it wants
to read and write the data respectively. Once a
transaction is blocked, it does not request other
data further. Even if a transaction could execute
its actions (data accesses, computations,
communications and so on) parallely, the requests

=f=

of one transaction for data items are performed
serially. In this way, a transaction can be blocked
by only one data item. When a transaction does
both read and write operations on same data, two
requests are issued distinctly. However, two
requests by the same transaction are not judged to
be a confliction. It is worthwhile to note that a
write request is different from its write operation.
The write operation can only be performed at the
time when the transaction is committed. However,
write request is hoped to be issued to the system as
early as possible, since requesting write operation
earlier will decrease the possibility of causing
deadlock.

5.2 A mechanism avoiding deadlock for read-

write confliction

The basic idea of the mechanism that avoids
deadlock for read-write confliction has been given
in Seetion 3. We have described it with some
discussion in [ZK87]. In the follows, we only give
the procedures for handling read and write
requests, in which transaction T; is supposed being

requesting data D.

(a) Readrequest:
a-1: If Data D is not requested by any other

transaction in write mode, the read request of Tj
can be granted.
a-2 : If Data D is still requested by transaction Tj
in write mode, the mechanism references the WFG
to see if it will cause a wait-for cycle when adding
an edge from node T; to Tj. If so, the read request is
granted with adding an edge from Tj to Tj to the
WFG deadlock
confliction).
a-3 : Otherwise, an edge from Tj to Tj is added and
Ti is blocked.

When the read request is granted, transaction
T; read D instantly.
(b) Write request :
b-1 : If data D is not requested by any other
transaction, the request of T} is granted.

b-2 : If data D is still requested by transactions
Tk (k=1,2, ..., n) in which some request is in
write mode (there exists a write-write confliction),
the request of T; is rejected and T; is blocked.
When T; continues its execution, it requests D
again,

(avoiding for read-write

I
I

b-3 : If data D is still requested by transactions
Tjx (k=1,2, ..., n) in only read mode and it will
not cause any cycle in the WFG when adding edges
from node Tj to each Tjk (k=1,2, ... n), then the
request of T; is intended to the schedule on D and
Ti is blocked. When T; continues its execution, it
requests D again.

b-4 If adding edges from node T to each Tjk
k=1,2, ...
WFG, a
transactions in the cycles have to be rolled back.

, n) will cause some cycles in the

real deadlock occurss and some
When the write request is granted, transaction

T; is determined to write D when Tj is committed.

5.3 A mechanism avoiding deadlock for both read-
write and write-write confliction

The basic idea of this mechanism is very
similar to the previous one. To avoid deadlock for
write-write confliction, the tree structure of the
WFG is used [AC83). The tree structure of the
WFG is first proposed by Agrawal et. al, which
gets the detection of deadlock being very cheap as
only to take a directed walk start from the node of
the requesting transaction to the root of the tree.
We show it as follows.

When transaction Tj issues a read request on
data D that was still requested in write mode by
transaction Tj, T; has to wait and an edge from T;
to Tj is generated. When transaction T; issues a
write request on D that was still requested by
transactions Tjx (k=1, n) in read mode,
instead of adding n edges { Ti—Tjk | k=1,2, ...
n} to the WFG, only one node T; among { Tjk |
k=1,2, ... n}is selected, to which an edge from
T; is added. When transaction Tj is committed or
aborted for some reason and Tj can continue its
execution, T; issues its write request again on D. If
D is still requested by some transactions, a new
edge will be added to WFG as above. If there is no
other transaction locking D, the request of Tj on D
can be granted. In this way, the WFG always
That is, each
transaction may only depend on only one other
transaction directly in the WFG. Only
transactions with its node in the WFG being a root
node of a tree are in active state.

By using the tree structure of the WFG, when a
new edge is appended to the WFG, it joins two trees
of the WFG into one. When a wait-for cycle occurs,

appears as a collection of trees.

it must occur within one tree with adding a new
edge from the root node to some other node. For
space limitation, we omit the detail of this
mechanism in this paper .

5.4 Improving the availability of data for write-
read confliction

In multi-version timestamp ordering
mechanism (another typical method for
concurrency control [RE78, BG80]), when a

transactions T; issues a read request on data D
that was still requested by another transaction T2
with smaller teimstamp than T;, T; have to wait
until T2 reflects the new value of data D to the
database. But when transaction T issues a write
request on D that has been read by T3, T; need not
to wait even if T3 is not committed yet.

In contrast, in conventional 2-phase locking
method, the write lock of Tj, which corresponds to
the write request of T in multi-version timestamp
ordering method of the above, has to wait until T
unlock D.

By changing lock
information on each data item, such a wait of
transaction T; for Tg may be avoided. That is, with
adding an edge from T} to Ty in the WFG, instead
of being blocked, T; can go on its work, thus the
availability of data D is improved. Of course, the
commitment condition of transaction T; must be
considered. We will not discuss it in this paper.

into recording proper

6. SUMMARY

In this paper, we have described the difference
between locking in OS and locking in 2-phase
locking method for database concurrency control.
Several advantages are proposed by changing
locking into recording proper information on each
data item.

This idea lays a foundation in realizing a
mechanism in which rollback of transactions may
occur only when a write request of a transaction
conflicts with a read request of another transaction
and causes a deadlock (write-read confliction). The
transactions issued to the system are independent
with each other, and the set of data items, a

"[RE78] D. Reed,

transaction will operate on, are not determined
before starting Under this
assumption, deadlock cannot be avoided. When
such a deadlock occurs, since the read operation

its execution.

has been done, a rollback of a transaction have to
be performed. We say this, “What has been done
has been done”. Since such deadlocks are non-
solvable and only such deadlocks are not solved
under our method, we may say, by making the lock
concept clear, we have minimized the possibility of
rollback in database concurrency control.

REFERENCES

[AC83] R. Agrawal, M. Caray andd D. Dewitt, Deadlock
Detection is Cheap, UC Berkley ERL Memorandum
MB83/5 (1983).

[BG80] Bernstein,P.A. and Goodman,N. Timestamp-Based
Algorithms for Concurrency Control in Distributed
Database Systems. Proc. Inter. Conferrence on
VLDB. (Oct. 1980). pp. 285-300.

[BS79] Bernstein,P.A. AND Shipman,D.W. Formal aspect
of Serializability in Database Concurrency
Control. IEEE Trans. on Software Eng. Vol.SE-5,
No.3 (May 1979). pp. 203-216.

[CE71]) E. G. Coffman, M. J. Elphick and A. Shoshani,
System Deadlocks, Computing Survey Vol. 3, No. 2,
(June 1971) pp. 67-78.

[DE66] J. B. Dennis nad E. C. Van Horn, Programming
Semantics of Multiprogrammed Computations,
Comm. ACM Vol. 9, No. 3, (Mar. 1966) pp.143-155.

[EG76] K. P. Eswaran,J. N. Gray, R. A. Lorie and I. L.
Traiger, The Notions of Consystency and Predicate
Lock in a Database System, Comm. ACM Vol. 10,
No. 19,pp. 624-633,Nov. 1976.

[GR78} J. N. Gray, Notes on Data Base Operating Systems,
IBM Report RJ2188, 1978.

[GR81] J. Gray, The Transaction Concepts : Virtues and
Limititions, Proceedings of VLDB, 1981, pp. 144-
154.

[MF85) C. Mohan, D Fussell, Z. Kedem and A. Silberschaz,
Lock Conversion in Non-Two Phase Locking
Protocols, IEEE Trans. on Software. Engi. SE-11,
No. 1, Jan. 1985, pp. 15-22

Naming and Synchrinization in a
Decentralized Computer System. Tech. Rep.
MIT/LCS/TR-205, Dept. Electrical Engineer and
Computer Science, Massachusetts Institute of
Technology, Sept. 1978.

[SK82] A. Silberschatz and Z. Kedem, A Family of Protocol
for Database Systems That Are Modeled by Directed
Graphs, IEEE Trans. on Softw.Eng. Vol. SE-8, NO.
6, Nov. 1982, pp. 558-562.

[ZK87] X. Zhong and Y. Kambayashi, Two-Phase Locking
Mechanisms Avoiding Deadlock for Read-Write
Confliction, LA Symp., Kyoto, Japan, Feb. 1987.

