
情報処理学会研究報告
IPSJ SIG Technical Report

Problem-specific Parameterized Quantum Circuits of
the VQE Algorithm for Optimization Problems

Atsushi Matsuo1,3 Yudai Suzuki2 Shigeru Yamashita3

概要：The Variational Quantum Eigensolver (VQE) algorithm is attracting much attention to utilize cur-
rent limited quantum devices. The VQE algorithm requires a quantum circuit with parameters, called
a parameterized quantum circuit (PQC), to prepare a quantum state, and the quantum state is used to
calculate the expectation value of a given Hamiltonian. Creating sophisticated PQCs is important from
the perspective of the convergence speed. Thus, we propose problem-specific PQCs of the VQE algorithm
for optimization problems. Our idea is to dynamically create a PQC that reflects the constraints of an
optimization problem. With a problem-specific PQC, it is possible to reduce a search space by restricting
unitary transformations in favor of the VQE algorithm. As a result, we can speed up the convergence
of the VQE algorithm. Experimental results show that the convergence speed of the proposed PQCs is
significantly faster than that of the state-of-the-art PQC.

1. Introduction

Many companies have been competing to develop quan-
tum computers recently. Quantum computing promises
advantages in solving certain tasks, e.g., integer factoriza-
tion [1] and database search [2]. However, the number of
errors in current quantum devices cannot be ignored, and
they do not yet have the capability of the error correction.
Thus, they have the limitation of the size of quantum cir-
cuits that can be executed [3]. Due to this limitation, we
cannot yet execute quantum circuits for such complicated
tasks.
The Variational Quantum Eigensolver (VQE) algorithm

was proposed to utilize such limited quantum devices and
it has been studied intensively [4–8]. The VQE algorithm
is an algorithm to find the minimal eigenvalue and its
eigenvector of a given Hamiltonian. It consists of two
parts. One is executed on quantum computers, and the
other on classical computers. The part executed on quan-
tum computers has a shallow quantum circuit with pa-
rameters called a parameterized quantum circuit (PQC).
A PQC prepare a quantum state from an initial state,
and it can also prepare various quantum states by chang-
ing the parameters. With the created quantum state, the
expectation value of a given Hamiltonian is calculated by
sampling outcomes. Since the VQE algorithm uses the
variational method based on the results of sampling, mak-
ing sophisticated PQCs is important from the perspective
of the convergence speed.
The VQE algorithm can also be used to solve optimiza-

tion problems by creating the corresponding Hamiltonian
for an optimization problem [9, 10]. Formulations of the
Hamiltonian for many NP-complete and NP-hard prob-
lems have been discussed in [11]. A converged expecta-
tion value corresponds to an answer to the optimization
problem. Also, a quantum state for the converged expec-

1 IBM Quantum, IBM Research - Tokyo
2 Department of Mechanical Engineering, Keio University
3 College of Information Science and Engineering, Rit-

sumeikan University

tation value corresponds to an assignment of variables for
the optimization problem.
Although the VQE algorithm is being studied inten-

sively and PQCs of the VQE algorithm is important, there
are a few researches considering PQCs of the VQE algo-
rithm for the optimization problems. Hence, we would
like to point out two problems in known PQCs. (1) Only
a few types of PQCs are known. Even the state-of-the-art
library for quantum computers [12] has only four types
of PQCs such as Ry, RyRz, SwapRz and UCCSD. They
are all general PQCs with static structures and can be
used for any problems. (2) Existing PQCs do not take
into account the feasibility of output answers, and they
often output infeasible answers. We need to ensure that
results are feasible answers to corresponding optimization
problems when using the VQE algorithm for optimization
problems.
In this paper, we propose novel PQCs for two types of

optimization problems. In the proposed PQCs, we pay
attention to the constraints of an optimization problem,
and we dynamically create a PQC that reflects those con-
straints of the optimization problem. We call such a PQC
for the specific problem as a problem-specific PQC. Since
problem-specific PQCs reflect the constraints of optimiza-
tion problems, they naturally take into account the feasi-
bility of output answers. With problem-specific PQCs, it
is possible to reduce search spaces significantly. Thus, we
can speed up the convergence of the VQE algorithms.
The rest of the paper is organized as follows. Section 2

covers the background on quantum circuits and the VQE
algorithm. In Section 3, we explain the proposed PQCs
for two types of optimization problems. Section 4 sum-
marizes the experimental results of the proposed PQCs.
Finally, Section 5 concludes the paper.

2. Background

In this section, we introduce quantum circuits and the
VQE algorithm.

1ⓒ 2020 Information Processing Society of Japan

Vol.2020-QS-1 No.17
2020/10/16

情報処理学会研究報告
IPSJ SIG Technical Report

2.1 Quantum Circuits
A quantum circuit is a model of quantum computa-

tion [13] and contains qubits and a sequence of quantum
gates.
In quantum computation, we use qubits instead of bits.

A bit in classical computers has to be either zero or
one. However, a qubit can be |0⟩, |1⟩, or the superpo-
sition state. The superposition state is a linear combina-
tion of |0⟩ and |1⟩ such as α |0⟩ + β |1⟩, where α, β ∈ C
and |α|2 + |β|2 = 1. These α and β are called ampli-
tudes of the corresponding bases. We also represent an
n-qubit state as |ψ⟩ =

∑
k∈{0,1}n αk |k⟩, where αk ∈ C

and
∑

k∈{0,1}n |αk|2 = 1. It is represented with a 2n-

dimensional state vector such as (α0, α1, ..., α2n−1)
T .

Each quantum gate has the functionality corresponding
to the particular unitary operation. With qubits, a quan-
tum gate represents what unitary operator is applied to
which qubits. We explain the details of quantum gates
used in the proposed PQCs in Sec. 3.

2.2 The VQE Algorithm
The VQE algorithm is an algorithm to find the minimal

eigenvalue and its eigenvector of a given Hamiltonian. To
do this, the VQE algorithm uses the variational principle
as shown in Eq. (1). H and |ψ⟩ represent a given Hamil-
tonian and a quantum state, respectively in Eq. (1). λmin

represents the minimal eigenvalue of H.

λmin ≤ ⟨ψ|H|ψ⟩ (1)

The variational principle holds for an arbitrary quantum
state. Thus, for an arbitrary quantum state |ψ⟩, the ex-
pectation value ⟨ψ|H|ψ⟩ is greater than or equal to the
minimal eigenvalue of H.
Based on the variational principle, the VQE algorithm

consists of two parts. One is executed on quantum com-
puters, and the other one is on classical computers. As we
mentioned, the part executed on quantum computers has
a shallow quantum circuit with parameters called a PQC.
A PQC prepare a quantum state from an initial state,
and it can also prepare various quantum state by chang-
ing the parameters. With the created quantum state,
the expectation values of each term in a given Hamilto-
nian are obtained by sampling outcomes. Then, classi-
cal computers calculate the total of the expectation val-
ues by summing those of each term. After that, classical
computers determine the next parameters for the PQC
by using classical optimization algorithms such as the
Nelder–Mead algorithm [14], the Powell algorithm [15],
and many more [16–18]. The PQC creates a new quan-
tum state with new parameters, and the expectation val-
ues of each term in the given Hamiltonian are obtained
by sampling outcomes again with the new quantum state.
This process is repeated until the expectation value of the
given Hamiltonian converges.

3. The Proposed problem-specific PQCs

3.1 Overview of the problem-specific PQC
In this subsection, first, we introduce the general idea

of the problem-specific PQC. After mapping binary vari-
ables xi to qubits qi, we pay attention to the constraints
of an optimization problem. As always, constraints re-
strict the set of feasible answers for the optimization prob-
lem. We utilize the constraints to dynamically construct
a problem-specific PQC that reflects those constraints of
the optimization problem. Therefore, we can restrict a
unitary transformation that is provided by the problem-

specific PQC while taking constraints into account. Then,
it is possible to reduce the set of the bases of a state vec-
tor that is the output of the problem-specific PQC. As a
result, we can make the search space smaller.
For example, suppose that a constraint of an optimiza-

tion problem is
∑

i xi = 1. The constraint represents
that exactly one of the variable has to be one, while the
other variables have to be zero. This type of constraint
often appears in optimization problems, e.g., the travel-
ing salesman problem and the job scheduling problem.
Constraint

∑
i xi = 1 restricts the set of the feasible an-

swers to the set of the bases of the corresponding W state.
A W state is a superposition of states that exactly one
of the qubits is |1⟩ while the other qubits are |0⟩ with
equal amplitudes. A W state of n qubits is represented
as |W ⟩ = 1√

2n
(|10...0⟩ + |01...0⟩ + |00...1⟩). Each base

of |W ⟩ exactly corresponds to an assignment of variables
that satisfies

∑
i xi = 1. We do not need to consider other

bases since all of them are obviously infeasible due to the
constraint

∑
i xi = 1.

The basic concept of the problem-specific PQC is as fol-
lows. Let Sall be the set of all the bases of n qubits, so
|Sall| is 2n. Then, let Sfeasible the a set of bases corre-
sponding the feasible answers of an optimization problem
after mapping variables to qubits. Sall includes Sfeasible
from the definition. For example, when one of the feasible
answers is x0 = 1, x1 = 0 and x2 = 0, the correspond-
ing base is |q0q1q2⟩ = |100⟩. Thus, |100⟩ is in Sfeasible.
With the problem-specific PQC, we consider set Sproposed
that includes Sfeasible, but the size of the set is smaller
than |Sall|. The relation between each set is described as
Sfeasible ⊆ Sproposed ⊆ Sall. By using such Sproposed, the
basic concept of the problem-specific PQC is written as
Eq. (2). Uproposed represents a unitary transformation that
is provided by a problem-specific PQC. |0⟩ represents a
base whose index is all zeros. We use |0⟩ as an initial state
for the problem-specific PQC. αi represents an amplitude
of |ψi⟩. These amplitudes are controlled by parameters of
the problem-specific PQC. With a proper problem-specific
PQC, we can change only αi while keeping the amplitudes
of the other states not included in Sproposed 0. We explain
how the problem-specific PQC works with examples later.

Uproposed |0⟩ =
∑
i

αi |ψi⟩ , |ψi⟩ ∈ Sproposed (2)

Usually, an optimization problem has more than one
constraint. For such cases, we create multiple problem-
specific parameterized quantum sub-circuits each of which
reflects the corresponding constraint. Then, by combining
those sub-circuit properly, even though the optimization
problem has more than one constraint, it is still possible
to create a problem-specific PQC and reduce the search
space.

3.2 Problem-specific PQCs for the TSP
In this subsection, we introduce problem-specific PQCs

for the traveling salesman problem (TSP). The TSP is a
well-known NP-hard problem in combinatorial optimiza-
tion problems. The traveling salesman goes from city to
city to sell products, and the objective is to find the short-
est path that the salesman can visit all the cities once and
return to his starting point. With an undirected graph
G = (V,E), we can formulate the TSP as follows. Each
edge (u, v) ∈ E in the graph has weight Wu,v, then find
the Hamiltonian cycle such that the sum of the weights
of each edge in the cycle is minimized. Let N = |V | and
let us label the vertices 1, ..., N . For a linear program, we

2ⓒ 2020 Information Processing Society of Japan

Vol.2020-QS-1 No.17
2020/10/16

情報処理学会研究報告
IPSJ SIG Technical Report

use N2 variables xv,p where v represents the vertex and
p represents its order in a prospective cycle. Then, the
linear program of the TSP is formulated as Eq. (3). Note
that N + 1 should be read as 1 in Eq. (3).

Minimize
∑

(u,v)∈E

Wu,v

N∑
p=1

xu,pxv,p+1

Subject to

N∑
v=1

xv,p = 1, p = 1...N

N∑
p=1

xv,p = 1, v = 1...N

xv,p ∈ {0, 1}

(3)

In this paper, we propose four PQCs for the TSP. Each
of them has different characteristics such as the types of
the constraints considered, the number of quantum gates,
and the number of parameters. Their details will be ex-
plained in Sec. 3.2.1, Sec. 3.2.2, Sec. 3.2.3, and Sec. 3.2.4,
respectively.
3.2.1 PQCs satisfying only the constraints on the

first line
For the first proposed PQC, we take into account only

the constraints on the first line. In each constraint of
Eq.(3), exactly one variable has to be one while the other
variables have to be zero. As we have already explained
in this paper, this type of constraint restricts the set
of the feasible answers to the set of the bases of the
corresponding W state. The total number of the con-
straints represented by the first line in the constraints,∑N

v=1 xv,p = 1, is N since we have a constraint for each
p = 1, ..., N . Thus, after mapping binary variables to
qubits, with the tensor product of the corresponding N W

states, we can restrict a search space to
⊗N

p=1 |Wp⟩. We

do not need to consider other bases, not in
⊗N

p=1 |Wp⟩,
since they do not satisfy

∑N
v=1 xv,p = 1, p = 1...N .

Note that we do not consider constraints represented by
the second line in the constraints. Thus, some bases in
Sproposed may not satisfy these constraints in the second
line of constraints. However, the relation between each
set, Sfeasible ⊆ Sproposed ⊆ Sall, still holds, and we can
reduce the search space.
Therefore, we need to create quantum circuits that cre-

ate W states. The deterministic methods for creating W
states of arbitrary sizes are discussed in previous stud-
ies [19, 20]. However, a conventional W state has equal
amplitudes for each base. For the VQE algorithm, we
need to control the amplitudes of each base with param-
eters as shown in Eq. (4), and optimize them with a clas-
sical optimizer to find the minimum eigenvalue.

|W (ϕ)⟩ =
∑
i

αi(ϕ) |ψi⟩ ,∑
i

|αi(ϕ)|2 = 1, |ψi⟩ ∈ {|10...0⟩ , |01...0⟩ , |00...1⟩}

(4)

In Eq. (4), |ψi⟩ represents one of the bases in the corre-
sponding W state where the i-th qubit is |1⟩ while other
qubits are |0⟩. An amplitude αi has the set of parameters,
ϕ, to change its value. Note that ϕ can have multiple pa-
rameters such as {θ1, θ2, ...} ∈ ϕ. We call this |W (ϕ)⟩ in
Eq. (4) as a parameterized W state.
Let us introduce quantum gates before explaining how

to create a quantum circuit for a parameterized W state.
An X gate and a Ry(θ) gate act on a single qubit while a
Controlled Z (CZ) gate and a Controlled NOT (CNOT)
gate act on two qubits. A two-qubit gate has the control
bit and the target bit. If the control bit of a two-qubit
gate is |1⟩, the two-qubit gate applies a particular opera-
tion to its target bit. If the control bit of a two-qubit gate
is |0⟩, the two-qubit gate does not apply any operations to
its target bit. For example, in the case of a CNOT gate,
if the control bit of the CNOT gate is |1⟩, it applies an
X gate to its target bit. If its control bit is |0⟩, it does
not apply any operations to its target bit. A Controlled
SWAP (CSWAP) gate is a three-qubit gate, which acts on
the control qubit and the two target qubits. If the control
qubit is |1⟩, then the two target qubits are swapped.
The unitary matrices of each gate are as follows.

X ≡
[
0 1
1 0

]
, (5)

Ry(θ) ≡
[
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

]
, (6)

CZ ≡

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 , (7)

CNOT ≡

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , (8)

CSWAP ≡

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

. (9)

Note that a Ry(θ) gate has a parameter θ and its matrix
elements can be changed dynamically by θ. On the other
hand, the matrix elements of an X gate, a CZ gate, and
a CNOT gate do not change. We sometimes use an index
for a gate to represent which qubit the gate was applied.
For example, an Xi gate means an X gate for qi. For
a Ry(θ) gate, we also use an index for its parameter. A
Ryi

(θp) gate means a Ry(θ) gate for qi where its parame-
ter is θp Since two-qubit gates have control bits and target
bits, we use two numbers for their index. The left num-
ber in an index represents the control bit of a two-qubit
gate, and the right number represents its target bit. For
example, a CNOTi,j gate means a CNOT gate whose con-
trol bit is qi and target bit is qj . Note that which qubit
is the control bit or the target bit of a CZ gate is not
important since CZi,j = CZj,i. CSWAPi,j,k represents a
CSWAP gate whose control bit is qi and target bits are
qj and qk. Note that the target qubits in a CSWAP gate
is permutation invariant, i.e. CSWAPi,j,k = CSWAPi,k,j

We use the above gates to create such parameterized W
states and use existing methods [20] as the base. However,
we do not determine the parameters of Ry(θ) gates yet for
parameterized W states. For ease of explanation, we con-
sider a case with three qubits, q1, q2, and q3. We explain
an algorithm for arbitrary sizes of qubits later. The initial
state is |q1q2q3⟩ = |000⟩. Firstly, we apply an X gate to
q1. Then, the state will change as X1 |000⟩ = |100⟩. Then
we apply two Ry(θ) gates and a CZ gate in the following

3ⓒ 2020 Information Processing Society of Japan

Vol.2020-QS-1 No.17
2020/10/16

情報処理学会研究報告
IPSJ SIG Technical Report

|q1〉 X •

|q2〉 Ry(θ1) Z Ry(−θ1) • •

|q3〉 Ry(θ2) Z Ry(−θ2) •

図 1 A quantum circuit for a parameterized W state of three
qubits

order.
(1) Apply a Ry2

(θ1) gate.
(2) Apply a CZ1,2 gate.
(3) Apply a Ry2

(−θ1) gate. Note that the same parame-
ter θ1 is used in 1) and 3), but with a different sign.

After that, we apply two Ry(θ) gates and a CZ gate in the
same order. However, at this time, we apply a Ry3(θ2)
gate, a CZ2,3 gate, and a Ry3

(−θ2) gate. The state will
be as Eq. (10).

α1(ϕ) |100⟩+ α2(ϕ) |110⟩+ α3(ϕ) |111⟩ ,
3∑

i=1

|αi(ϕ)|2 = 1,

α1(ϕ) = cos θ1, α2(ϕ) = − sin θ1 cos θ2, α3(ϕ) = sin θ1 sin θ2
(10)

Amplitude αi(ϕ) depends on the values of θ1 and θ2.
Then, we apply a CNOT2,1 gate and a CNOT3,2 gate.
After applying CNOT gates, the final state will be as
Eq. (11).

α1(ϕ) |100⟩+ α2(ϕ) |010⟩+ α3(ϕ) |001⟩ ,
3∑

i=1

|αi(ϕ)|2 = 1,

α1(ϕ) = cos θ1, α2(ϕ) = − sin θ1 cos θ2, α3(ϕ) = sin θ1 sin θ2
(11)

This state is the same as a parameterized W state of
three qubits. Figure 1 shows a quantum circuit for a pa-
rameterized W state of three qubits. The text in the boxes
of each quantum gate represents its unitary matrix. The
leftmost gate in Fig. 1 represents that an X gate is applied
to q1. The second gate from the left in Fig. 1 represents
that a Ry(θ) gate is applied to q2 with parameter θ1. The
third gate from the left in Fig. 1 represents that a CZ gate
is applied to q1 and q2, and its control bit is q1 and its
target bit is q2. The rightmost gate in Fig. 1 represents a
CNOT gate is applied to q2 and q3, and its control bit is
q3 and its target bit is q2.
By combining quantum circuits to create parameter-

ized W states, we can create a problem-specific PQC of
the VQE algorithm for the TSP. As mentioned above, a
linear program of the TSP is represented as Eq. (3). For
the VQE algorithm, we need to map these variables to
qubits. To do this, we prepare N2 qubits qv,p and map
each variable xv,p to the corresponding qubit qv,p. Note
that N is the number of vertices. We use N indepen-
dent quantum circuits to create parameterized W states
of N qubits. For qubits q1,1, q1,2, ..., q1,N , we insert the
first quantum circuit to create a parameterized W state
of N qubits. Then, for qubits q2,1, q2,2, ..., q2,N , We insert
the second one. In the same manner, we keep inserting
quantum circuits to create parameterized W states. The
last one will be for qN,1, qN,2, ..., qN,N . After that, we
obtain a quantum circuit as shown in Fig 2. Each box
represents a quantum circuit to create a parameterized W
state with the set of parameters ϕi for the corresponding
qubits. Each |Wi(ϕi)⟩ (i = 1, ..., N) on the right in Fig 2
represents the output of the corresponding circuit. Note

!!,!
!!,#

� "!($!) | ⟩"!($!)

"$($$) | ⟩"$($$)

"#($#) | ⟩"#($#)

!$,!
!$,#

�

!#,!
!#,#

�

図 2 A problem-specific PQC of the VQE algorithm for the
TSP

!!,! !#,! !$,!

!!,# !#,# !$,#

!!,$!#,$!$,$

(a) The first case (b) The second / third case (c) The fourth case

!!,! !#,! !$,!

!!,# !#,# !$,#

!!,$!#,$!$,$

!!,! !#,! !$,!

!!,# !#,# !$,#

!!,$!#,$!$,$

図 3 Schematic of the constraints considered for each case; (a)
only the first line, (b) a constraint in the second line as
well as the first line and (c) all constraints. The blue box
represents a constraint in the first line, while the red box
indicates a constraint in the second line of constraints of
Eq. 3.

that each |Wi(ϕi)⟩ (i = 1, ..., N) has the different set of pa-
rameters. With the circuit in Fig. 2, we can create a tensor

product of the parameterized W states
⊗N

p=1 |Wp(ϕp⟩
3.2.2 PQCs satisfying an L-shaped constraint

with CNOT operations
For the second PQC, we take into account not only

the first line but also taking into account constraint∑N
p=1 x1,p = 1 in the second line of the constraints of

Eq. 3 to further reduce the search space, as is shown
in Figure 3 (b). Unlike the first PQC, the situation re-
quires more “correlations” among qubits being mapped
from variables, since variables x1,p, p = 1 . . . N appear in
both the first and the second line; it is no longer possible
to realize the constraints by a tensor product of N quan-
tum states. Hence, we utilize CNOT gates together with
the parameterized W state gates to create such a quantum
circuit.
The protocol of creating the PQC follows two steps.

First, we construct a quantum circuit satisfying both two

constraints,
∑N

p=1 x1,p = 1 and
∑N

v=1 xv,1 = 1, which we
call ”an L-shaped constraint” because the involved vari-
ables form L-shape in Figure 3 (b). In the L-shaped con-
straint, one variable in each set of {x1,p′ |p′ = 2 . . . N} and
{xv′,1|v′ = 2 . . . N} has to be one if x1,1 is zero, while all
variables in {x1,p′ |p′ = 2 . . . N} and {xv′,1|v′ = 2 . . . N}
are zeros if x1,1 is one. According to this, one can
easily understand that the corresponding unitary oper-
ations on the initialized qubits qi,j being mapped from
variables xi,j is realized by applying parameterized W
state gates to each set of qubits {q1,p′ |p′ = 2 . . . N} and
{qv′,1|v′ = 2 . . . N} if |0⟩q1,1 , and applying identity gates if

|1⟩q1,1 . Thus, the PQC can be created with CNOT gates

and parameterized W state gates, as depicted in Figure
4 (a). In a quantum circuit of Figure 4 (a), the leftmost
Ry gate with the trainable parameter ϕ0 and the follow-
ing two CNOT gates, CNOTq1,1,q1,2 and CNOTq1,1,q2,1 ,
determine whether |0⟩q1,1 or |1⟩q1,1 , and whether W state

gates or identity gates are applied to each set of qubits
{q1,p′ |p′ = 2 . . . N} and {qv′,1|v′ = 2 . . . N} depending on
the condition of q1,1, respectively. Note that we here use
the fact that a parameterized W state gate is exactly an
identity gate if an X gate is applied to the first qubits
beforehand, which can be checked readily by looking into

4ⓒ 2020 Information Processing Society of Japan

Vol.2020-QS-1 No.17
2020/10/16

情報処理学会研究報告
IPSJ SIG Technical Report

!!,!
!!,#

!#,!

!"($!)

!!,$

!$,!

! "!!

!!,%"

!#,%"

!$,%"
! "!!

! ""!

(a) (b)

!!,!
!!,#

!#,!

!"($!)

!!,$

!$,!

! "!!

! ""!

(c)

!#,#

!#,$

!$,#

!$,$

! "#

! "$%#

図 4 A PQC for the second case; (a) a quantum circuit for an
L-shaped constraint, (b) a quantum circuit corresponding

to the constraint,
∑N

v=1 xv,p′ = 1 and (c) a whole picture
of the PQC for the second case.

Fig. 1. As a result, the quantum circuit can create the
desired quantum state expressed as

cos
ϕ0
2

|0⟩q1,1 |W (ϕp′)⟩{q1,p′ |p′=2...N} |W (ϕv′)⟩{qv′,1|v′=2...N}

+sin
ϕ0
2

|1⟩q1,1 |0⟩
⊗n−1
{q1,p′ |p′=2...N} |0⟩

⊗n−1
{qv′,1|v′=2...N} ,

(12)

where ϕs are all trainable parameters.
Second, we apply unitary operations for the remaining

constraints,
∑N

v=1 xv,p′ = 1, p′ = 2 . . . N , to a resul-
tant quantum state in Eq. 12. Here, since the qubits
corresponding to the variables {x1,p′ |p′ = 2 . . . N} in the
constraints have already been determined, the constraints
can be read in the similar way to the first step as follows;
if x1,p′ is one, all variables {xv′,p′ |v′ = 2 . . . N} are zeros,
while if x1,p′ is zero one variable in {xv′,p′ |v′ = 2 . . . N}
has to be one. As we have seen in the first step, the
corresponding unitary operation can be realized by a
CNOTq1,p′ ,q2,p′ gate followed by parameterized W state

gates on the set of qubits {qv′,p′ |v = 2 . . . N} as repre-
sented in Figure 4 (b). Thus, using N − 1 CNOT gates
and N − 1 circuits for parameterized W sates, we can
create the unitary operators that create a quantum state
satisfying the remaining constraints.
Following the above two steps, we can create the

problem-specific PQC in Figure 4 (c).
3.2.3 PQCs satisfying an L-shaped constraint

with parameter sharing
For the third PQC, we modify the second PQC to re-

duce the cost of the implementation for the current quan-
tum processors [21]. Since current noisy devices suffer
from an exponential decay of quantum coherence, deep
circuits would be problematic. In the second case, the
circuit becomes deep due to the dependence in its own
structure; firstly, a quantum circuit for an L-shaped con-
straint is constructed, and then other gates are applied
for the remaining constraints.
To remedy this issue, we introduce the technique, pa-

rameter sharing, which makes the circuit shallower with
fewer CNOT gates. The main point of this technique is
as follows; CNOT gates (and also X gates in parameter-
ized W state gates) used in Fig. 3 are replaced with Ry

gates with the shared parameters such that the probability

of obtaining |1⟩q1,p′ is equal to that of |0⟩⊗N−1
{qv′,p′ |v′=2...N}.

!!,#!

!$,#!

!%,#!
!′ #!!

!!,!
!$,!

!!,$

!"($!)

!&,!

!!,&
!$,$

!$,&
!&,$

!&,&

&
'!"($") !"(−$")

&
'!"($#) !"(−$#)

'!"($$) !"(−$$)

'!"($$) !"(−$$)

!"(2arccos(cos$!/2 cos$"))

!"(2arccos(−cos$!/2 sin$"))

!!,#!

!$,#!

!%,#!
! #!!

!"

" = 3

図 5 A PQC with N = 3 for the third case. To create the PQC,
the top-left circuit appearing in the quantum circuit of the
second case is replaced with the top-right circuit.

To demonstrate the parameter sharing in detail, we pro-
vide a simple example of the quantum circuit with N = 3
in Figure 5. In this scenario, parameters ϕ0 and ϕ2 are
used for not only q1,1 and q1,2, but also q2,2 and q3,2 in
unique ways such as 2 arccos (cosϕ0/2 cosϕ2). Indeed, the
trigonometric functions inside the inverse trigonometric
function, cosϕ0/2 cosϕ2 and − cosϕ0/2 sinϕ2 are the am-
plitudes of |1⟩q1,2 and |1⟩q1,3 , respectively. Therefore, the

amplitude of |00⟩{qv,2|v=2,3} is always the same as that of

|1⟩q1,2 by the parameter sharing (similarly, this is true to

q1,3, q2,3, and q3,3). Note that this technique can be easily
extended for PQCs with arbitrary N since the probabil-
ity of obtaining |1⟩q1,p′ for all p′ = 2 . . . N is analytically

calculated in the similar way as shown in Eq.(11).
By utilizing such “classical correlation”, we can create a

shallower PQC satisfying the constraints in Figure 3 (b),
which is expected to be more suitable for current noisy
devices. However, the technique has a limitation on the
ability to restrict the set of bases compared to the sec-
ond case. As we can see in Figure 5, the quantum state
created by the PQC is not fully entangled, i.e. it can be
written as the tensor product of small quantum states.
Consequently, the set of the bases of the quantum state
includes the bases that are not in the second case. How-
ever, the probability to obtain such extra bases is at most
a half. This characteristic contributes to interesting re-
sults which we will discuss in Sec. 4
3.2.4 PQCs satisfying all constraints
For the fourth PQC, we consider all constraints of Eq.

3 to completely exclude the infeasible answers as shown in
Fig. 3 (c). Thus, the set of the bases of the quantum states
includes only feasible answers , i.e. Scase 4 = Sfeasible.
Such a PQC for arbitrary N can be constructed in a

recursive manner. After a quantum circuit with N = 2
is exemplified, we will demonstrate that the PQC with
N = k can be constructed using the quantum circuit with
N = k − 1. The basic idea is that the assignments of fea-
sible answers on the 2D grid as shown in Fig. 3 (c) can be
interpreted as permutation matrices. It is due to the fact
that the constraints of Eq.(3) are exactly the same as the
definition of permutation matrices. Note that a permuta-
tion matrix is a square matrix, every row and column of
which has only one entry, 1 while the other entries are 0.
Hence, with the equivalence of permutation matrices and
the assignment of the feasible answers on the 2D grid, we
construct the quantum circuit.
Firstly, we show the PQC with N = 2. For the num-

5ⓒ 2020 Information Processing Society of Japan

Vol.2020-QS-1 No.17
2020/10/16

情報処理学会研究報告
IPSJ SIG Technical Report

!!,!
!#,!

!#,#
!!,#

!
"#$(&) #$(−&)

図 6 A PQC with N = 2 for the fourth case.

ber of city N = 2, two feasible answers exist, as there are

two 2× 2 permutation matrices,

[
1 0
0 1

]
and

[
0 1
1 0

]
.

Thus, a quantum state we want to create can be described
by the superposition of two bases, |0110⟩ and |1001⟩ with
the order of qubits |q1,1q2,1q1,2q2,2⟩. A quantum circuit
for N = 2 can be created as shown in Fig. 6, where the
quantum state is represented as cosϕ |1001⟩−sinϕ |0110⟩.
Secondly, we show that the PQCs with N = k can be

constructed by using the quantum circuit with N = k−1.
The conceptual overview to create PQCs for the forth case
is as shown in Fig. 7. Suppose that we have all the per-
mutation matrices of size k−1, so the total number of the
permutation matrices is (k − 1)!. Then one can obtain k!
permutation matrices of size k in the following way.
(1) Pad the additional zeros to all the (k − 1) × (k − 1)

permutation matrices to form k × k square matrices.
(2) Set the top right element in each of the matrices as 1

to make them permutation matrices.
(3) Permute the k-th and the j-th column of the matrices

for all j = 1 . . . k − 1.
Note that we here use the fact that exchanging the i-
th and the j-th column of a permutation matrix re-
sults in also a permutation matrix. Consequently, with
(k − 1)! permutation matrices in the second step and
k(k − 1)! permutation matrices in the third step, we can
obtain k! permutation matrices of size k by the above
steps. In analogous to the case of permutation matri-
ces, we construct a quantum circuit with N = k. Let
|Ψk−1⟩ be a quantum state whose bases are all feasi-
ble answers for N = k − 1 with the order of qubits
|q1,1...q1,k−1q2,1 . . . q2,k−1 . . . qk−1,1 . . . qk−1,k−1⟩. Then, in
a similar way, we can create the desired quantum states
as follows;
(1) Prepare the initialized 2k − 1 qubits, labeled as

qk,p′ , p′ = 2 . . . k and qv,k, v = 1 . . . k.
(2) Apply a parameterized W state gate to the set of

qubits, {qv,k|v = 1 . . . k}.
(3) Apply CSWAP gates to the corresponding

qubits in |Ψk−1⟩, |Wk(ψ)⟩{qv,k|v=1...k}, and

|0⟩⊗k−1
{qk,p′ |p′=1...k−1}; the set of CSWAP opera-

tions, {CSWAPqv′,k,qk,p′ ,qv′,p′ |p
′ = 1 . . . k − 1} are

applied for all v′ = 1 . . . k − 1.
In this procedure, the parameterized W state gate is used
to represent the additional k-th row of k × k matrix,
which can be regarded as the permutation inside the k-th
row. Then, CSWAP gates are used to serve as the per-
mutation of the remaining rows depending on the state
of k-th row; the states of {qk,p′ |p′ = 1 . . . k − 1} and
{qv,p′ |p′ = 1 . . . k − 1} are exchanged if |1⟩qv,k

, while the

states of {qk,p′ |p′ = 1 . . . k− 1} and {qv,p′ |p′ = 1 . . . k− 1}
remain unchanged if |0⟩qp,k . As a demonstration, we give

a simple example of the PQC with N = 3 for the forth
case as shown in Fig. 8. Then the corresponding quantum
state is represented as Eq.(13), with the order of qubits
|q1,1q2,1q3,1q1,2q2,2q3,2q1,3q2,3q3,3⟩, which is exactly the su-
perposition of bases of six feasible answers.

!!,! !#,! !$%!,!

!!,# !#,# !$%!,#

!!,$%! !#,$%! !$%!,$%!

0

0

A permutation matrix of size ! − 1

1

0

0

! permutation matrices of size !

0

0

1 0

0

0 0

0

0 0

0

0 1

permute !th and 1st column

permute !th and ! − 1th column

"$%!,$%! "$,$%!

"$%!,$ "$,$

"$%!,! "$,!

"!$%!# "$,#

"!,$%! "#,$%!

"!,$ "#,$

"!,! "#,!

"!,# "#,#

!!"#,!"# !!,!"#

!!"#,! !!,!

!!"#,# !!,#

!#!"#% !!,%

!#,!"# !%,!"#

!#,! !%,!

!#,# !%,#

!#,% !%,%
|0#$%⟩

W state

|Ψ!"#⟩

set of CSWAP gates

(a)

(b)

図 7 The conceptual overview to create PQCs for the forth
case. (a) illustrates the property of permutation matrices,
which is used for constructing PQCs. (b) is a schematic
view to create the desired quantum state for N = k by
using a quantum state for N = k − 1.

!!,!
!#,!

!!,#
!$,!

!#,#
!$,#

!#,$
!!,$

!$,$

" = 3
!

"#$(&!) #$(−&!)

!

"#$(&") #$(−&")
"#$(&#) #$(−&#)

図 8 A PQC with N = 3 for the fourth case.

|Ψk−1⟩ = − cosϕ0 sinϕ1 cosϕ2 |100001010⟩
+cosϕ0 sinϕ1 sinϕ2 |001100010⟩
+cosϕ0 sinϕ1 sinϕ2 |100010001⟩
− sinϕ0 sinϕ1 cosϕ2 |010100001⟩

+cosϕ0 cosϕ1 |001010100⟩
− sinϕ0 cosϕ1 |010001100⟩

(13)

Therefore, we can construct the PQC for arbitrary N
by recursively performing the procedure explained in the
above starting from the quantum circuit with N = 2.

3.3 A problem-specific PQC for the Minimum
Vertex Cover

In this subsection, we use the minimum vertex cover as
another example of applying the proposed method. The
minimum vertex cover is another well-known NP-hard
problem in combinatorial optimization problems. When
at least one of the endpoints of an edge ei connects to a
vertex vj , it is said that ei is covered by vj . With an undi-
rected graph G = (V,E), the minimum vertex cover is to
find the minimum number of vertices such that covers all
the edges in G. Let N = |V | and let us label the ver-
tices 1, ..., N . We can then formulate the minimum vertex
cover as Eq. (14) for linear programming. A constraint
in Eq. (14) becomes 1, if and only if both xu and xv are
zero, which means the edge (u, v) is not covered. The
total number of constraints in Eq. (14) is equal to |E|.

6ⓒ 2020 Information Processing Society of Japan

Vol.2020-QS-1 No.17
2020/10/16

情報処理学会研究報告
IPSJ SIG Technical Report

!! !!!"
0 0 1

1 1 0

!!!"!#
0 1 0
0 1 1
1 0 1
1 1 0
1 1 1

1 1

図 9 A process to enumerate possible assignments of variables
for the vertex cover.

|q1〉 Ry(θ1) •

|q2〉 Ry(θ2) Z Ry(−θ2) X

図 10 A quantum circuit to enumerate feasible bases of qubits
for a constraint of the vertex cover.

Minimize

N∑
i=1

xi

Subject to (1− xu)(1− xv) = 0, ∀(u, v) ∈ E

xi ∈ {0, 1}

(14)

A constraint in Eq. (14) can be read as if xu is zero,
xv has to be one. Additionally, if xv is one, xv can be
either one or zero. This process to enumerate feasible
assignments of variables for the vertex cover can be writ-
ten as in Fig. 9. In Fig. 9, we consider two constraints,
(1− x1)(1− x2) = 0 and (1− x2)(1− x3) = 0. As Fig. 9
shows, when x1 = 0, there is only one feasible assignment
for x1 and x2 which is (x1 = 0, x2 = 1). When x1 = 1,
there are two feasible assignments for x1 and x2 which
are (x1 = 1, x2 = 0) and (x1 = 1, x2 = 1). We then move
on to the second constraint (1 − x2)(1 − x3) = 0. In the
same manner, when x2 = 0, there is only one feasible as-
signment for x2 and x3 which is (x2 = 0, x3 = 1). When
x2 = 1, there are two feasible assignments for x2 and x3,
which are (x2 = 1, x3 = 0) and (x2 = 1, x3 = 1). By
combining the result of the fist constraint and that of the
second constraint, the feasible assignments of x1, x2 and
x3 can be written as the rightmost column in Fig. 9.
After mapping binary variables xi to qubits qi, we can

realize the above process with a quantum circuit shown
in Fig. 10. An initial state |q1q2⟩ = |00⟩ changes to the
state as shown in Eq. (15) after applying the quantum cir-
cuit shown in Fig. 10. Similar to the case of the TSP, we
can control the amplitudes of each base αi(ϕ) by changing
parameters, θ1 and θ2, in the quantum circuit.

α1(ϕ) |01⟩+ α2(ϕ) |10⟩+ α3(ϕ) |11⟩ ,∑
i

|αi(ϕ)|2 = 1,

α1(ϕ) = cos
θ1
2
, α2(ϕ) = − sin

θ1
2

sin θ2, α3(ϕ) = sin
θ1
2

cos θ2

(15)

The quantum circuit in Fig. 10 is for a single constraint
of the minimum vertex cover. However, the vertex cover
usually has more than one constraint. For multiple con-
straints, we use a sub-circuit in the dashed box of Fig. 10
for some of the constraints instead of every constraint.
This is because that there is a possibility to break the
relation Sfeasible ⊆ Sproposed if we use the sub-circuit in
Fig. 10 for every constraint when a graph has cycles. To
choose whether we use the sub-circuit in Fig. 10 for a
constraint or not, we consider spanning tree T of graph
G. Then, we consider the minimum vertex cover of T
instead of G, and use the sub-circuit in Fig. 10 for every
constraints of the minimum vertex cover of T sequentially.
Some of the output bases of a problem-specific PQC for
the minimum vertex cover may not satisfy the original

!!

!"

!#

!$

図 11 A Graph with four nodes that has a cycle.

!!

!"

!#

(a) A span-
ning tree of
the graph in
Fig. 11.

|q0〉 Ry(θ1)
V C0

1(θ2)
|q1〉

V C1
2(θ3)

|q2〉
V C2

3(θ4)
|q3〉

(b) A problem-specific PQC for the
minimum vertex cover based on a span-
ning tree in Fig. 12(a).

図 12 An example of a spanning tree of the graph in Fig 11 and
a problem-specific PQC for the minimum vertex cover
based on the spanning tree of the graph.

constraints as in the case of the TSP. However, by consid-
ering a spanning tree of a graph, we can keep the relation
Sfeasible ⊆ Sproposed and reduce an search space.
We now explain an algorithm to create a problem-

specific parameterized quantum for the minimum vertex
cover of a graph with an example. Suppose that a graph
in Fig 11 is given. A spanning tree of this graph is as
shown in Fig. 12(a). Note that there are no edges be-
tween vertex 1 and vertex 3 in Fig. 12(a). Figure 12(b)
shows an example of a problem-specific PQC for the mini-
mum vertex cover of the graph based on the spanning tree
in Fig. 12(a). A gate labeled with VC in Fig. 12(b) cor-
responds to the sub-circuit in the dashed box of Fig. 10.
Thus, a VC gate consists of two Ry(θ) gates, a CZ gate,
and a X gate. The top index of a VC gate represents an
index of a qubit that is the control bit of the CZ gate.
The bottom index represents an index of a qubit that is
the target bit of the CZ gate. Also, the other gates, two
Ry(θ) gates and the X gate, are applied to the qubit of
the bottom index. We call the qubit of the top index the
control bit of a VC gate. Similarly, we call the qubit of
the bottom index the target bit of a VC gate.
Based on Eq. (14), after mapping binary variables xi

to qubits qi, the number of bases is 2N . Similarly to the
case of the TSP, when we use existing PQCs, the number
of bases remains as 2N . However, if we use the problem-
specific PQC created explained in the above, the number
of bases will be < 2N . This is because this circuit for
the minimum vertex cover does not exactly double the
number of bases for each additional qubit. Thus, it can
reduce the number of bases of the search space compared
to existing circuits.

4. Experimental Results

We conducted simulation experiments to compare the
convergence speed of each proposed PQCs and the Ry
PQCs using Python. Qiskit Aqua 0.7.5 was used to con-
vert optimization problems to the corresponding Ising
Hamiltonians. Firstly, we explain the experimental re-
sults for the TSP. For the TSP, we run the VQE algo-
rithm in Qiskit with the QASM simulator. The number
of the shots of the QASM simulator used in each experi-
ments was 1024. We conduct 10 trials with different ini-

7ⓒ 2020 Information Processing Society of Japan

Vol.2020-QS-1 No.17
2020/10/16

情報処理学会研究報告
IPSJ SIG Technical Report

表 1 The comparison of necessary parameters and gates among the proposed problem-
specific PQCs and a Ry PCQ for the TSP with n qubits

Necessary resources Ry Proposed 1 Proposed 2 Proposed 3 Proposed 4

of Parameters (D+ 1)n n−
√
n n−

√
n− 1 n−

√
n− 1 1

2
n− 1

2

√
n

of one-qubit gates (D+ 1)n 2n−
√
n 2n−

√
n− 4 2n−

√
n− 4 n− 1

of two-qubit gates D(n− 1) 2n− 2
√
n 2n−

√
n− 3 2n− 2

√
n− 2 n−

√
n+ 2

of CSWAP gates — — — — 1
3
n
√
n− 1

2
n+ 1

6

√
n− 1

tial parameters for each PQC except the Ry PQCs. The
COBYLA algorithm was used as the classical optimizing
algorithm of the VQE algorithm for the TSP. For the ex-
periments of the TSP, we used a complete graph with four
nodes as the graph of the TSP. The experiments were con-
ducted on a MacBook Pro with 2.9 GHz Intel Core i5 and
DDR3 8 GB memory running macOS 10.14.6.
Figure 13 shows the comparison between each proposed

problem-specific PQC and Ry PQCs with depth one, two,
and three. Proposed 1, Proposed 2, Proposed 3, and Pro-
posed 4 correspond to the PQCs in Sec. 3.2.1, Sec. 3.2.2,
Sec. 3.2.3, and Sec. 3.2.4, respectively. As we can see, the
convergence of the proposed PQCs is significantly faster
than that of the Ry PQCs. The average execution time
of Proposed 1, Proposed 2, Proposed 3, and Proposed
4 was 98 sec, 78 sec, 101 sec, and 22 sec. The execu-
tion time of Ry PQCs with depth 1, 2, and 3 was 3606
sec, 4941 sec, and 8732 sec. The expectation values of
the proposed PQCs are rapidly decreased in the first 60
iterations compared to the Ry PQCs. Also, the initial
expectation values of the proposed PQCs are remarkably
lower than that of the Ry PQCs. A graph in Fig. 14 is
extracted from the graph in Fig. 13 to focus the experi-
mental results of the proposed PQCs more. The order of
the convergence speed was Proposed 4 < Proposed 2 <
Proposed 3 < Proposed 1 < Ry. This is closely related
to the set of the bases |S|, i.e. Sfeasible = SProposed 4 ⊆
SProposed 2 ⊆ SProposed 1 ⊆ SProposed 3 ⊆ Sall. Note that
the convergence speed of Proposed 3 was faster than Pro-
posed 1 despite the fact the Proposed 3 has more bases
than Proposed 1. It is because that the probability to ob-
tain extra infeasible answers (bases) is at most a half due
to the parameter sharing as we explained in Sec. 3.2.3.
By utilizing such “classical correlation”, the convergence
speed of Proposed 3 is faster than Proposed 1 even though
Proposed 3 has more bases than Proposed 1.
We also analyzed whether each PQC can reach to the

global minimum. The result is as follows; For proposed
4, every trial reached to the global minimum while oth-
ers did not. Proposed 1, 2, and 3 could find the feasible
answers and they could sometime reach to the global min-
imum. More specifically, More specifically, Proposed 1, 2,
and 3 reached to the global minimum forth, four times,
four times, and two times, respectively. Ry PQCs didn’t
converge well and they produced infeasible answers even
after 400 iterations. Of course, whether we can reach the
global minimum depends on not only the PQCs, but also
different factors such as problem configurations, the types
of classical optimizers, and initial parameters. We will
continue to study the convergence to the global minimum
as our future work.
Table 1 shows the number of necessary gates and pa-

rameters for each PQC. In Table 1, the # of Parameters
row, the # of one-qubit gates row, the # of two-qubit
gates columns, and the # of CSWAP gates row corre-
spond to the number of independent parameters used in
Ry(θ) gates, the total number of X gates and Ry(θ) gates,
the total number of CZ gates and CNOT gates, and the
total number of CSWAP gates, respectively. D in the Ry
column corresponds to the depth of Ry PQCs. From the

0 50 100 150 200 250 300 350 400
Number of iterations

1500000

1000000

500000

0

500000

Ex
pe

ct
at

io
n

va
lu

e

proposed 1
proposed 2
proposed 3
proposed 4
ry depth=1
ry depth=2
ry depth=3

図 13 The comparison between each proposed problem-specific
PQC and the Ry PQCs with depth one, two, and three
for the TSP with four cities.

0 20 40 60 80 100 120 140
Number of iterations

1600000

1500000

1400000

1300000

1200000

Ex
pe

ct
at

io
n

va
lu

e

proposed 1
proposed 2
proposed 3
proposed 4

図 14 A graph extracted from the graph in Fig. 13 for the com-
parison between each proposed problem-specific PQC.

experimental results, we observed that the Proposed 4 is
the best in terms of the convergence speed and the conver-
gence to the global minimum. However, it requires a lot of
CSWAP gates that realizing a CSWAP gate is expected to
be difficult on current noisy devices. More specifically, a
CSWAP gate requires 9 one-qubit gates and 8 two-qubit
gates to be realized. Thus, the total number of the re-
quired one-qubit gates and two-qubit gates will be larger
than other proposed PQCs. This will lead to challenges
in the implementation on current noisy devices. To tacke
this issue, we are considering to combine the parameter
sharing and excitation preserving gates to replace high-
cost CSWAP gates.
In contrast of the case of the TSP, for the minimum ver-

tex cover, we used Numpy 1.18.4 to calculate the expecta-
tion values of Ising Hamiltonians and used Scipy 1.4.1 to
optimize parameters for the VQE algorithm. The Nelder-
Mead algorithm was used as a classical optimizer for the
minimum vertex cover. For the experiments of the min-
imum vertex cover, we used a graph with six nodes that
has a cycle in it. The experiments were conducted on a
MacBook Air with 1.6 GHz Intel Core i5 and DDR3 8 GB
memory running macOS 10.14.6.
Figure 15 shows the comparison between the proposed

problem-specific PQC for the minimum vertex cover and
Ry PQCs with depth one, two, and three. Similarly to the
case of the TSP, the convergence of the proposed PQC is
significantly faster than that of the Ry PQCs. Also, ex-
pectation values of the proposed PQC rapidly decreased.
Specifically, an expectation value of our circuit after the

8ⓒ 2020 Information Processing Society of Japan

Vol.2020-QS-1 No.17
2020/10/16

情報処理学会研究報告
IPSJ SIG Technical Report

6 02 0 3 15 .43 6 28 15 .43 6 28 15 .43 474

0

50000

100000

150000

200000

250000

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

31
0

32
0

33
0

34
0

35
0

36
0

37
0

38
0

39
0

40
0

Ex
pe

ct
at

io
n

va
lu

e

Number of iterations

Proposed
Ry with depth 1

Ry with depth 2
Ry with depth 3

図 15 The comparison between the proposed problem-specific
PQC and Ry PQCs with depth 1, 2, and 3 for the mini-
mum vertex cover.

表 2 The comparison of necessary parameters and gates be-
tween the proposed problem-specific PQC and a Ry PQC
for the minimum vertex cover with n qubits

Necessary resources Ry Proposed
of Parameters (D+ 1)n n
of one-qubit gates (D+ 1)n 3n− 2
of two-qubit gates D(n− 1) n− 1

first iteration was 6342.657, and became 36.770226 after
the second iteration. The answer for the minimum ver-
tex cover was 3. The expectation value of the proposed
PQC reached 3.0138958 after 150 iterations. On the other
hand, the expectation value of the Ry PQC with depth
1 reached 1088.1005 after 150 iterations. Even after 400
iterations, it was still 4.729469.
Table 2 shows the comparison of necessary parameters

and gates between the propose problem-specific PQC and
the Ry PQCs for the minimum vertex cover. Similarly
to the case of the TSP, the number of parameters of the
proposed PQC is smaller than that of the Ry PQC. Also,
when the depth of the Ry PQC is large, the numbers of
one-qubit gates and two-qubit gates in the proposed PQC
becomes less than those of the Ry PQC.
Each amplitude is not completely independent in the

proposed problem-specific PQCs. They have slight cor-
relation between each other. However, it ensures that
amplitudes of the bases that correspond to the answer
of optimization problems can be 1. We need to carefully
examine the relationship between the proposed method
for the VQE algorithm and existing methods for classical
computers.

5. Conclusions

In this paper, we proposed the problem-specific PQCs
of the VQE algorithm for optimization problems. In the
proposed PQCs, we pay attention to the constraints of an
optimization problem, and we dynamically create a PQC
that reflects those constraints of the optimization prob-
lem. By doing this, it is possible to significantly reduce
search spaces. As a result, we can speed up the conver-
gence of the VQE algorithms. We conducted the simula-
tion experiments to compare the proposed PQCs and the
state-of-the-art PQC. In experiments, the proposed PQCs
could reduce the search spaces, and the convergence of the
proposed PQCs was significantly faster than that of the
state-of-the-art PQC.

参考文献

[1] Shor, P. W.: Polynomial-Time Algorithms for Prime
Factorization and Discrete Logarithms on a Quantum
Computer, SIAM Journal on Computing, Vol. 26, No. 5,
pp. 1484–1509 (1997).

[2] Grover, L. K.: A fast quantum mechanical algorithm for
database search, STOC ’96: Proceedings of the twenty-

eighth annual ACM symposium on Theory of Comput-
ingJuly, pp. 212–219 (1996).

[3] Preskill, J.: Quantum Computing in the NISQ era and
beyond (2018).

[4] Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H.,
Zhou, X.-Q., Love, P. J., Aspuru-Guzik, A. and O’Brien,
J. L.: .

[5] McClean, J. R., Romero, J., Babbush, R. and Aspuru-
Guzik, A.: The theory of variational hybrid quantum-
classical algorithms (2015).

[6] Wang, D., Higgott, O. and Brierley, S.: Accelerated Vari-
ational Quantum Eigensolver (2018).

[7] Parrish, R. M., Hohenstein, E. G., McMahon, P. L.
and Martinez, T. J.: Quantum Computation of Elec-
tronic Transitions using a Variational Quantum Eigen-
solver (2019).

[8] Kandala, A., Mezzacapo, A., Temme, K., Takita, M.,
Brink, M., Chow, J. M. and Gambetta, J. M.: Hardware-
efficient Variational Quantum Eigensolver for Small
Molecules and Quantum Magnets (2017).

[9] Nikolaj Moll, e. a.: Quantum optimization using varia-
tional algorithms on near-term quantum devices, Quan-
tum Science and Technology, Vol. 3, No. 3, p. 030503
(online), DOI: 10.1088/2058-9565/aab822 (2018).

[10] Barkoutsos, P. K., Nannicini, G., Robert, A., Tavernelli,
I. and Woerner, S.: Improving Variational Quantum Op-
timization using CVaR (2019).

[11] Lucas, A.: Ising formulations of many NP problems, pp.
1–27 (online), DOI: 10.3389/fphy.2014.00005 (2013).

[12] Qiskit: Qiskit: An Open-source Framework for Quantum
Computing, , available from ⟨https://www.qiskit.
org/⟩ (accessed 09/16/2020).

[13] Nielsen, M. A. and Chuang, I. L.: Quantum Computa-
tion and Quantum Information: 10th Anniversary Edi-
tion, Cambridge University Press (2010).

[14] Nelder, J. A. and Mead, R.: A Simplex Method for Func-
tion Minimization, The Computer Journal, Vol. 7, No. 4,
pp. 308–313 (1965).

[15] Powell, M. J. D.: An efficient method for finding the
minimum of a function of several variables without calcu-
lating derivatives, The Computer Journal, Vol. 7, No. 2,
pp. 155–162 (1964).

[16] Spall, J. C.: Multivariate stochastic approximation us-
ing a simultaneous perturbation gradient approxima-
tion, IEEE Transactions on Automatic Control, Vol. 37,
No. 3, pp. 332–341 (1992).

[17] Hestenes, M. R. and Stiefel, E.: Methods of conjugate
gradients for solving linear systems (1952).

[18] Nakanishi, K. M., Fujii, K. and Todo, S.: Sequential
minimal optimization for quantum-classical hybrid algo-
rithms (2019).

[19] Diker, F.: Deterministic construction of arbitrary W
states with quadratically increasing number of two-qubit
gates (2016).

[20] Qiskit-Community: W State 1 - Multi-Qubit Sys-
tems, , available from ⟨https://github.com/Qiskit/
qiskit-community-tutorials/blob/master/awards/

teach_me_qiskit_2018/w_state/W\%20State\%201\

%20-\%20Multi-Qubit\%20Systems.ipynb⟩ (accessed
04/30/2020).

[21] Preskill, J.: Quantum Computing in the NISQ era and
beyond, Quantum, Vol. 2, p. 79 (2018).

9ⓒ 2020 Information Processing Society of Japan

Vol.2020-QS-1 No.17
2020/10/16

