
Quantum Pricing with a Smile: Implementation of Local Volatility Model on Quantum Computer

Kazuya Kaneko,∗ Koichi Miyamoto,† Naoyuki Takeda,‡ and Kazuyoshi Yoshino§
Mizuho-DL Financial Technology Co., Ltd.

2-4-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan

Applications of the quantum algorithm for Monte Carlo simulation to pricing of financial derivatives have
been discussed in previous papers. However, up to now, the pricing model discussed in such papers is Black-
Scholes model, which is important but simple. Therefore, it is motivating to consider how to implement more
complex models used in practice in financial institutions. In this paper, we then consider the local volatility
(LV) model, in which the volatility of the underlying asset price depends on the price and time. We present two
types of implementation. One is the register-per-RN way, which is adopted in most of previous papers. In this
way, each of random numbers (RNs) required to generate a path of the asset price is generated on a separated
register, so the required qubit number increases in proportion to the number of RNs. The other is the PRN-
on-a-register way, which is proposed in the author’s previous work. In this way, a sequence of pseudo-random
numbers (PRNs) generated on a register is used to generate paths of the asset price, so the required qubit number
is reduced with a trade-off against circuit depth. We present circuit diagrams for these two implementations in
detail and estimate required resources: qubit number and T-count.

I. INTRODUCTION

With recent advances of quantum computing technologies,
researchers are beginning considering how to utilize them in
industries. One major target is finance (see [2] for a review).
Since financial institutions are performing enormous tasks of
numerical calculation in their daily works, speed-up of such
tasks by quantum computer can bring significant benefits to
them. One of such tasks is pricing of financial derivatives1.
Financial derivatives, or simply derivatives, are contracts in
which payoffs are determined in reference to the prices of un-
derlying assets at some fixed times. Large banks typically
have a huge number of derivatives written on various types of
assets such as stock price, foreign exchange rate, interest rate,
commodity and so on. Therefore, pricing of derivatives is an
important issue for them.

In derivative pricing, we represent random movements of
underlying asset prices using stochastic processes and calcu-
late a derivative price as a expected value of the sum of pay-
offs discounted by the risk-free interest rate under some spe-
cific probability measure. In order to calculate the expected
value, Monte Carlo (MC) simulation is often used. There
are quantum algorithms for MC simulation[5, 6], which bring
quadratic speed-up compared with that on classical computers
and there already exists some works which discuss application
of such quantum algorithms to derivative pricing[7–9]. How-
ever, in order to bring benefits to practice in finance, previ-
ous works have some room to be extended. That is, previous
works consider the Black-Scholes (BS) model[10, 11]. Al-
though the BS model is the pioneering model for derivative
pricing and still used in many situations in today’s financial
firms, it is insufficient to consider only the BS model as an ap-

∗ kazuya-kaneko@fintec.co.jp
† koichi-miyamoto@fintec.co.jp
‡ naoyuki-takeda@fintec.co.jp
§ kazuyoshi-yoshino@fintec.co.jp
1 As textbooks of financial derivatives and pricing of them, we refer to [3, 4]

plication target of MC for practical business for some reasons.
First, for various types of derivatives, market prices of deriva-
tives are inconsistent with the BS model. This phenomenon is
called volatility smile, which we will explain in Section II. In
order to precisely price derivatives taking into account volatil-
ity smiles, financial firms often use models which have more
degree of freedom than the BS models. Second, the BS model
is so simple that analytic formulae are available for the price
of some types of derivatives in the model. In such cases, MC
simulation is not necessary. Actually, banks use MC simula-
tion mainly for complex models which can take into account
volatility smiles. Although it is the natural first step to con-
sider MC in the BS model, the above points motivate us to
consider how to apply quantum algorithms for MC to the ad-
vanced models.

In this paper, we will focus on one of the advanced mod-
els, that is, the local volatility (LV) model[12]. The LV model,
which we will describe later, is the model in which a volatility
of an asset price depends on the price itself and time, so the BS
model is included in this category as a special case. With de-
grees of freedom to adjust the function form of volatility, the
LV model can make derivative prices consistent with volatil-
ity smiles. So this model is widely used to price derivatives,
especially exotic derivatives, which have complex transaction
terms such as early redemption, in many banks.

In order to price a derivative by MC simulation, we gen-
erate paths, that is, random trajectories of time evolution of
asset prices, then calculate the expectation value of the sum of
discounted payoffs which arise in each path. Since we cannot
generate continuous paths on computers, we usually consider
evolutions on a discretized time grid, using a random number
(RN) for each time step, which represents the stochastic evo-
lution in the step. In this paper, we focus on how to implement
such a time evolution in the LV model on quantum computers.

We can consider two ways to implement the time evolution.
In this paper, we call them the register-per-RN way and the
PRN-on-a-register way. The difference between them is how
to generate RNs required to generate a path. The register-per-
RN is adopted in previous papers[7–9]. In this way, following

1ⓒ 2020 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2020-QS-1 No.13
2020/10/16

the procedure described in, e.g., [13], one creates a superposi-
tion of bit strings which correspond to binary representations
of possible values of a RN, where the probability amplitude of
a each bit string is the square root of the possibility that the RN
take the corresponding value. The point is that one register is
used for one RN, so the required qubit number is proportional
to the number of RNs used to generate a path. This can be
problematic in terms of qubit number when many RNs are re-
quired. The number of RNs is equal to that of time steps times
that of underlying assets2. The number of time steps can be
large for derivatives with long maturity. Maturity can be as
long as 30 years, so if we take time grid points monthly, the
total number of time steps is 360. The number of underlying
assets can be large too, say O(10). Assuming that the number
of asset is O(10) and that of time steps is O(100), the total
number of RNs becomes O(103 − 104). If we use a register
with O(10) qubits for each RN, the total qubit number can
be O(105) easily. The current state-of-art quantum comput-
ers have only O(10) qubits[14]. Even if we obtain large-scale
fault-tolerant machines in the future, the large qubit overhead
might be required to make a logical bit (see [15] as a review
and references therein). Therefore, calculations which require
the large number of qubits as above might be prohibitive even
in the future. This situation is similar to credit portfolio risk
measurement, which is described in [16].

We are then motivated to consider the PRN-on-a-register
way, which is proposed in [16]. In this way, one does not
create RNs on different register, but generates a sequence of
pseudo-random number (PRN) on a register. At each time
step, the PRN sequence is progressed and its value is used to
evolve the asset price. Therefore, the required qubit number
does not depend on the number of RNs and is largely reduced.
The drawback is the circuit depth. Here, we define the circuit
depth as the number of layers consisting of gates on distinct
qubits that can be performed simultaneously, as T-depth used
in [17, 18]. Since calculations to update the PRN is sequen-
tially performed on a register, the circuit depth is now propor-
tional to the number of RNs. Since in the fault-tolerant com-
putation some kinds of gates, for example T-gates in the Clif-
ford+T gate set, can take long time to be run[19, 20], the se-
quential run of such gates might be also prohibitive in terms of
calculation time[21]. At any rate, in the current stage, where
it is difficult to foresee the spec of future quantum computers,
we believe that it is meaningful to consider the implementa-
tion which saves qubits but consumes depth as a limit.

When it comes to the LV model, the PRN-on-a-register way
becomes more motivating, since its disadvantage on the cir-
cuit depth compared with the register-per-RN way is allevi-
ated. In the LV model, the volatility varies over time steps
depending on the asset price, so the calculation for the time
evolution is necessarily stepwise3. Therefore, the PRN-on-a-
register way and the register-per-RN way are equivalent with

2 In this paper, we consider arbitrage-free and complete markets, standard
assumptions for derivative pricing, so the number of stochastic factors is
equal to that of assets. For details, see [4].

3 In the multi-asset case, parallel computing over assets is possible in the
register-per-RN way.

respect to this point, that is, the circuit depth is proportional to
the time step number in both ways. This is different from the
situation in credit portfolio risk management [21], where, in
the register-per-RN way, a register is assigned to each random
number which determine whether each obligor defaults or not
and parallel processing on different registers reduces circuit
depth.

In this paper, we design the quantum circuits in the above
two way in the level of elementary arithmetic4. In doing so,
we follow the policies of the two ways to the extent possible.
That is, not only with respect to RNs but also in other aspects,
we try to reduce qubits accepting some additional procedures
in the PRN-on-a-register way, and vice versa in the register-
per-RN way. For example, in the PRN-on-a-register way, we
have to intermediately output the information of the volatility
used to evolve the asset price at each time step and clear it
by the next step. Otherwise, we need a register to hold the
information per step and the required qubit number becomes
proportional to the number of time steps. It is nontrivial to
implement such a procedure and we will present how to do
this later. Note that such clearing procedure is unnecessary in
the register-per-RN way.

We then estimate the resources to implement the proposed
circuits. We focus on two metrics: qubit number and T-count.
As mentioned above, we see that the qubit number in the PRN-
on-a-register way is independent from the time step number
and much less than the register-per-RN way. The T-count is
proportional to the time step number in the both ways. We
see that in some specific setting the both ways yield the T-
counts of same order of magnitude, except that in the PRN-
on-a-register way is larger by some O(1) factor.

The rest of this paper is organized as follows. Section II and
III are preliminary sections, the former and the latter briefly
explain the LV model and the quantum algorithm for MC sim-
ulation, respectively. In section IV, we present the circuit dia-
gram in the two way. In section V, we estimate qubit number
and T-count of the proposed circuits. Section VI gives a sum-
mary.

II. LV MODEL

In this paper, we consider only the single-asset case, since
it is straightforward to extend the discussion in this paper to
the multi-asset case.

A. pricing of derivatives

Consider a party A involved in a derivative contract written
on some asset. We let S t denote a stochastic process which
represents the asset price at time t, which is set as t = 0 at
the present. We assume that the payoffs arise at the multiple

4 Actually, we here present only the overviews of the circuits and refer to [1]
for the full details.

2ⓒ 2020 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2020-QS-1 No.13
2020/10/16

times tpay
i , i = 1, 2, ... and the i-th payoff is given by f pay

i

(
S tpay

i

)
,

where f pay
i is some function which maps R to R. The positive

payoff means that A receives a money from the counterparty
and the negative one means vice versa. For example, the case
where A buys an European call option with the strike K cor-
responds to

f pay
1 (S tpay

1
) = max

{
S tpay

1
− K, 0

}
(1)

with a single payment date tpay
1 . Note that this type of deriva-

tive contract is too simple to cover all trades in financial mar-
kets. For example, callable contracts, in which either of the
parties has a right to terminate the contract at some times,
are widely dealt in markets. We leave studies for such ex-
otic derivatives for future works and, in this paper, concider
only those which can be expressed in the above form.

Following the theory of arbitrage-free pricing, the price V
of the contract for A is given as follows [4]:

V = E

∑
i

f pay
i

(
S tpay

i

) , (2)

where E[·] represents the expectation value under some prob-
ability measure, the so-called risk-neutral measure. Here and
hereafter, we assume that the risk-free interest rate is 0 for
simplicity.

B. LV model

In the LV model, the evolution of the asset price is modeled
by the following stochastic differential equation (SDE)

dS t = σ(t, S t)dWt (3)

in the risk-neutral measure5 Wt is the Wiener process which
drives S t. dXt is the increment of a stochastic process Xt over
an infinitesimal time interval dt. The deterministic function
σ : [0,∞) ⊗ R → [0,∞) is the local volatility. Note that the
BS model corresponds to the case where

σ(t, S) = σBSS , (4)

where σBS is a positive constant called BS volatility.
The LV model was proposed to explain volatility smile. In

order to describe this, let us define implied volatility first. In
the BS model, a price of a European call option with strike K
and maturity T at t = 0 is given by the following formula:

Vcall,BS(T,K, S 0, σBS) = ΦSN(d1)S 0 − ΦSN(d2)K

d1 =
1

σBS
√

T

[
ln
(S 0

K

)
+

1
2
σ2

BST
]

d2 = d1 − σBS
√

T , (5)

5 Note that the drift term does not exist since we are now assuming the risk-
free rate is 0.

where ΦSN is the cumulative distribution function of the stan-
dard normal distribution. We can price the option if we de-
termine the BS volatility. Conversely, given the market price
of the option Vcall,mkt(T,K), we can reversely calculate the BS
volatility. That is, we can define the following function:

σIV : (T,K) 7→
σIV(T,K) s.t. Vcall,BS(T,K, S 0, σIV(T,K)) = Vcall,mkt(T,K).

(6)

We call BS volatilities drawn back from the market option
prices by (6) as implied volatilities.

If the market is described well by the BS model, implied
volatilities σIV(T,K) take a same value for any K and T . Al-
though this is the case for some markets, σIV(T,K) varies de-
pending on K and T in many markets. Especially, if σIV(T,K)
depends on K, it is said that we observe the volatility smile for
the market.

Volatility smiles mean that possible scenarios of asset price
evolution in the BS model do not match those which mar-
ket participants consider. For example, if market participants
think that extreme scenarios, big crashes or sharp rises, are
more possible than the BS model predicts, the volatility smile
arises. In fact, it is often said that the Black Monday, the big
crash in the stock markets at 1987, was one of triggers of ap-
pearance of volatility smiles.

With the LV model, we can make European option prices
given by the model consistent with any market prices, as
long as there is no arbitrage in the market. This is intu-
itively apparent since we can expect that the degree of free-
dom of the local volatility σ(t, S) as a two-dimensional func-
tion is available to reproduce the two-dimensional function
Vcall,mkt(T,K). In fact, if we can get Vcall,mkt(T,K) as a func-
tion, that is, the market option prices for continuously infinite
strikes and maturities, we can determine σ(T,K) which repro-
duces Vcall,mkt(T,K) as follows[12]:

σ2(T,K) = 2
∂
∂T Vcall,mkt(T,K)
∂2

∂K2 Vcall,mkt(T,K)
. (7)

In reality, the market option prices are available only for
several strikes and maturities. Therefore, in the practical busi-
ness, we usually use a specific functional form of σ(t, S)
with degrees of freedom sufficient to reproduce several avail-
able market option prices. In this paper, we use the follow-
ing form. First, we set the nt grid points in the time axis,
t0 = 0 < t1 < t2 < ... < tnt . Second, we set the nS grid
points in the asset price axis for each time grid point, that is,
si,1, ..., si,nS for ti. Then, σ(t, S) is set as follows:

σ(t, S) = ai, jS +bi, j ; for si, j−1 ≤ S < si, j, j = 1, ..., nS +1 (8)

for ti−1 ≤ t < ti, where ai, j, bi, j are constants satisfying
σ(t, S) > 0 for any t and S and si,0 = −∞, si,nS+1 = +∞.
In other words, the two-dimensional space of (t, S) is divided
in the direction of t and in each region σ(t, S) is set to a func-
tion which is piecewise-linear with respect to S . In this paper,
we assume that ai, j, bi, j are calibrated so that the option prices
in the LV model match the market prices.

3ⓒ 2020 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2020-QS-1 No.13
2020/10/16

C. MC simulation in the LV model

We here describe how to calculate the derivative price (2)
in the LV model by MC simulation.

First, we have to discretize the time into sufficiently small
meshes, since we can deal with the continuous time on nei-
ther classical nor quantum computers. For simplicity, we set
the time grid points to the above ti’s, those for the LV func-
tion. Then, the time evolution given by (3) is approximated as
follows:

∆S ti := S ti+1 − S ti ≈ σ(ti, S ti)
√
∆tiwi,∆ti = ti+1 − ti, (9)

where w1, ...,wnt are independent standard normal random
numbers (SNRNs). Among various ways to discretize the
SDE, we here adopt the Euler-Maruyama method [22].

Even after time discretization, we cannot consider all of
continuously infinite patterns of SNRNs. One solution for this
is discretized approximation of SNRNs. We can choose the fi-
nite numbers of the grid points and assign probability to each
point so that standard normal distribution is approximately re-
produced. Now, the patterns of discretized SNRNs are finite,
so we can approximate (2) as

V ≈
∑

n

pn

∑
i

f pay
i

(
S (n)

tpay
i

)
, (10)

where pn is the probability that the n-th pattern of values of
SNRNs are realized and S (n)

t is the asset price at time t in the
n-th pattern.

There are some possible ways to take petterns considered
in (10). In the register-per-RN way, we take all patterns. If
we take N grids to discretize each of nt SNRNs, the number
of possible patterns of SNRNs is Nnt . Although this is ex-
ponentially large, quantum computers can take into account
all patterns with a polynomial number of qubits by quantum
superposition.

On the other hand, this cannot be adopted on classical com-
puters, since the number of the SNRN patterns are exponen-
tially large. Usually, MC pricing on classical computers is
done in the following way, which the PRN-on-a-register way
is also based on. We consider sampled patterns of SNRNs.
That is, we generate finite but sufficiently many sample sets
of (w1, ...,wnt) and use them to generate sample paths of the
asset price which evolves according to (9). We then approxi-
mate (2) by the average of sums of payoffs in sample paths,

V ≈ 1
Npath

Npath∑
n=1

∑
i

f pay
i

(
S (n)

tpay
i

)
, (11)

where S (n)
t is the value of the asset price at time t on the n-th

sample path and Npath is the number of sample paths.

III. QUANTUM ALGORITHM FOR MC SIMULATION

A. outline of the algorithm

We here review the quantum algorithm for MC
simulation[5, 6]. It can be divided into the following

steps. First, we create a superposition of possible values of
a random number used to calculate a sample value of the
integrand on a register. If multiple random numbers are
necessary to calculate the integrand, one register is assigned
per random number. As mentioned above, continuous random
numbers must be approximated in some discretized way.
Second, we calculate the integrand into another register,
using the random numbers. Note that the results for many
patterns of random numbers are simultaneously calculated
in quantum parallelism. Third, by controlled rotation, the
integrand value is reflected into the amplitude of the ancilla.
Finally, amplitude estimation [6, 23, 24] on the ancilla gives
the expectation value of the integrand.

The quantum state is transformed as follows:

|0〉 |0〉 |0〉 →
∑

i

√
pi |xi〉

 |0〉 |0〉
→
∑

i

√
pi |xi〉 | f (xi)〉

 |0〉
→
∑

i

√
pi |xi〉 | f (xi)〉

(√
1 − f (xi) |0〉 +

√
f (xi) |1〉

)
. (12)

Here, the first, second and third kets correspond to the ran-
dom number registers, the integrand register and the ancilla,
respectively. xi represents the binary representation of values
of random numbers in the i-th pattern and pi is the probabil-
ity that it realizes. f is the integrand and f (xi) is its value
for xi. Note that the probability to observe 1 on the ancilla
is
∑

i pi f (xi), the integral value which we want. Although we
do not explain how to estimate the probability amplitude in
this paper, it is studied in many papers. For example, see
[6, 23, 24]. Using such methods, we can estimate the integral
with the statistical error which decays as O(N−1), where N is
the number of oracle calls. This decay rate is quadratically
faster than that in the classical algorithm, O(N−1/2).

B. the scheme using the PRN generator

We here briefly review the quantum way for Monte Calro
simulation using the PRN generator. The calculation flow for
the current problem, the time evolution of asset price in the
LV model, based on this way is described in Section IV A.

It is proposed in [16] in order to reduce the required qubits
to generate RNs in the application of the quantum algorithm
for MC to extremely high-dimensional integrations. When it
is neccesary to generate many RNs to compute the integrand,
the naive way, in which we assign a register to each RN and
create a superposition of possible values, leads to the increase
of qubit numbers in proportion to the number of RNs. In or-
der to aviod this, we can adopt the following way. First, we
prepare two registers, Rsamp and RPRN. Then, we create a su-
perposition of integers, which specify the start point of the
PRN sequence, on Rsamp. With the start point, we sequentially
generate PRNs on RPRN. This is possible because a PRN se-
quence is a deterministic sequence whose recursion equation

4ⓒ 2020 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2020-QS-1 No.13
2020/10/16

is explicitely given, and in [16] we gave the implementation of
one of PRN generators on quantum circuits. Using the PRNs,
we compute the integrand step by step, which corresponds to
time evolution of the asset price and calculation of payoffs
in this paper. Finally, the expectation value of the integrand
is estimated by quantum amplitude estimation. In this way,
since we need only Rsamp and RPRN to generate PRNs, the re-
quired qubit number is now independent from the number of
RNs and much smaller than the naive way. The drawback is
the increase of the circuit depth.

IV. CIRCUIT DESIGN

Now, we present quantum circuits for time evolution of
an asset price in the LV model in the two ways: PRN-on-a-
register and register-per-RN.

A. the PRN-on-a-register way

1. calculation flow

We first present the calculation flow in the PRN-on-a-
register way. We consider the flow until calculation of the sum
of payoffs, which corresponds to from the first to the third line
in (12), since the controlled rotation in the fourth line does not
depend on the problem.

In the PRN-on-a-register way, PRNs are used for evolu-
tion of the asset price (9). More concretely, we preselect
some sequence of pseudo standard normal random numbers
(PSNRNs) and divide it into subsequences, then evolve the
asset price using them.

Before we present the calculation flow, we explain some
setups. We prepare the following register:

• Rsamp: This is a register where a superposition of in-
tegers which determine the start point of the PSNRN
sequence. We write its qubit number as nsamp. Nsamp =

2nsamp is the number of sample paths we generate.

• RW : This is a register where we sequentially generate
PSNRNs.

• RS : This is a register where the value of the asset price
is stored and which we update for each time step of the
evolution, using RW .

• Rpayoff : This is a register into which the payoffs deter-
mined by RS are added.

Note that we need some ancillary registers in addition to the
above registers. We assume that the required calculation pre-
cision is ndig-bit accuracy and RW ,RS ,Rpayoff and ancillary
registers necessary to update them have ndig qubits.

We assume that the following gates are available to generate
a sequence of PSNRNs.

• PW : This progresses a PSNRN sequence by one step. In
other words, it acts on RW and updates xi to xi+1, where
xi is the i-th element of the sequence: |xi〉 → |xi+1〉.

• JW : This lets the PSNRN sequence jump to the starting
point. That is, it is input an integer i on a register and
outputs xint+1 into another register which is initially set
to |0〉: |i〉 |0〉 → |i〉 |xint+1〉. Remember that nt, the num-
ber of time steps, is equal to the number of RNs used to
generate one sample path.

The concrete implementation of these gates are presented in
[1].

Then, the calculation flow is as follows:

1. Initialize all registers to |0〉 except RS , which is initial-
ized to |S t0〉.

2. Generate a equiprobable superposition of
|0〉 , |1〉 , ..., |Nsamp − 1〉, that is, 1√

Nsamp

∑Nsamp−1
i=0 |i〉nPRN

on

Rsamp. This is done by operating a Hadamard gate to
each of nsamp qubits.

3. Operate JW to set xint+1 to RW , where i is determined
by the state of Rsamp. These are the starting points of
subsequences.

4. Perform the time evolution (9) using the value on RW .
RS is updated from |S t0〉 to |S t1〉.

5. Calculate the payoff at time t1 and add into Rpayoff .

6. Operate PPRN to update RW from xint+1 to xint+2.

7. Iterate operations similar to 4-6 for each time steps until
the time reaches tnt .

8. Finally we obtain a superposition of states in which the
value on Rpayoff is the sum of payoffs in each sample
path. Estimate the expectation value of Rpayoff by meth-
ods like [6, 23]. This is an estimate for (11).

2. overview of the circuit

Schematically, the circuit which realizes the above flow is
as shown in Figure 1. In the figure, the gate U j corresponds to
the j-th step of asset price evolution, that is, the j-th iteration
of step 4-6 in the above calculation flow.

U j is implemented as shown in Figure 2. PW is already
explained and the gate Payoff j calculates f pay

j (S (i)
t j

) using RS

and adds it into Rpayoff . In addition to these, U j has gates
V (j)

1 , ...,V
(j)
nS , which update RS .

The detail of V (j)
k is shown in Figure 3. This gate (i) checks

whether the asset price is in the k-th interval [s j,k−1, s j,k), (ii)
if so, update RS using the LV in the interval, (iii) clears the
intermediate output. It requires ancillary registers Rcount,RS ′

and Rg. They have dlog2 nte, ndig and 1 qubits respectively. At
the start of V (j)

k , Rcount takes | j〉 or | j + 1〉 and the others take
|0〉. Then the detailed calculation flow is:

1. If Rcount is j and RS is in [s j,k−1, s j,k), flip Rg.

5ⓒ 2020 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2020-QS-1 No.13
2020/10/16

1

· · ·

· · ·

· · ·

· · ·

Rsamp H⊗nsamp

JW

RW

U1 Unt+1RS

Rpayoff

Figure 1: The overview of the circuit for asset price evolution
in the LV model in the PRN-on-a-register way. Here and
hereafter, ancillary qubits are sometimes omitted for simple
display.

.

1

· · ·

· · ·

· · ·

RW

V
(j)
1 V

(j)
nS+1

PW

RS

Payoffj

Rpayoff

Figure 2: The overview of the U j, which performs the j-th
step of asset price evolution, in the PRN-on-a-register way.

2. If Rg is 1, update RS as

S t j → S t j+1 = S t j + (a j,kS t j + b j,k)
√
∆t jxint+ j (13)

using the value xint+ j on RW and add 1 to Rcount.

3. Calculate

S t j+1 − b j,k
√
∆t jxint+ j

1 + a j,k
√
∆t jxint+ j

(14)

into RS ′ , using the value on RS as S t j+1 and that on RW
as xint+ j.

4. If Rcount is j + 1 and RS ′ is in [s j,k−1, s j,k), flip Rg. This
uncomputes Rg.

5. Do the inverse operation of 3.

Let us explain the meaning of this flow. First, Rcount is nec-
essary as an indicator of whether the j-th step of evolution has
been already done or not. Without this, it is possible that the
asset price is doubly updated in a time step. If and only if the
j-th step has not been done, that is, Rcount is j and the asset
price is in [s j,k−1, s j,k), the update of the asset price with the
LV function a j,kS + b j,k is done. To do this conditional up-
date, the check result is intermediately output to Rg and the
gate corresponding (13) is operated on RS under control by
Rg. Besides, the increment of Rcount controlled by Rg is also
done, so that Rcount indicates completion of the j-th step if so.
Steps 3-5 is necessary to clear Rg. If the asset price has been
updated in Step 2, Step 3 draws back it to the value before
the update. Conversely, we can determine whether the update
has been done in Step 2 from the result of Step 3. That is, for
the reason mentioned soon later, the condition that Rcount is
j + 1 and RS ′ is in [s j,k−1, s j,k) after Step 3 is equivalent to the
condition that Rcount is j and RS is in [s j,k−1, s j,k) before Step
2. Therefore, Step 4 flip Rg if and only if it is |1〉, so it goes
back to |0〉. In summary, through the sequential operation of
V (j)

1 , ...,V
(j)
nS+1, RS is updated only once at the appropriate V (j)

k ,
Rcount is updated from | j〉 to | j + 1〉 and all intermediate out-
puts on ancillary registers are cleared.

We here mention a restriction on the LV model so that it
can be implemented in the PRN-on-a-register way. Note that
through V (j)

1 , ...,V
(j)
nS+1, the state is transformed from | j〉 |S (i)

t j
〉

to | j + 1〉 |S (i)
t j+1
〉, where the first and second kets correspond

to Rcount and RS respectively and other registers are omitted
since they are unchanged. This means that the map from S (i)

t j

to S (i)
t j+1

must be one-to-one correspondence, since unitarity is
violated if not. Actually, this is not so strong restriction. As
shown in Appendix in [1], if we set ai, j, bi, j so that σ(t, S) is
continuous with respect to S and we set ∆t j small enough that
the increment ∆S t j is much smaller than S t j itself, the above
condition is satisfied.

This one-to-one correspondence lets Step 3 work. That is,
since the map between S (i)

t j
and S (i)

t j+1
is one-to-one correspon-

dence, the result of Step 3 is in [s j,k−1, s j,k) if and only if the
value on RS before Step 3 is in the image of [s j,k−1, s j,k) under
the map.

Although the circuit is decomposed into more smaller parts,
we do not describe the further details here. [1] presents the
more detailed implementation.

B. the register-per-RN way

1. calculation flow

Also for the register-per-RN way, we start from present-
ing the calculation flow, which is somewhat simpler than the
PRN-on-a-register way. Again, we consider the flow until cal-
culation of the payoff sum.

Before we present the calculation flow, we explain the re-
quired registers.

• RWi , i = 1, ..., nt: This is a register for the i-th SNRN.
We need such a register per random number, so the total
number is nt.

• RS i , i = 0, 1, ..., nt: This is a register where the value of
the asset price at time ti is held.

6ⓒ 2020 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2020-QS-1 No.13
2020/10/16

• Rpayoff,i, i = 1, ..., nt: This is a register where the value
of the sum of payoffs by ti is held.

We again omit ancillary registers here. For the full descrip-
tion, see [1]. Besides, we again assume that these and ancil-
lary registers necessary to update them have ndig qubits.

We here concretely define a superposition of SNRN values
as the following state. In advance, we set the equally spaced
NSN + 1 points for discretization of the distribution xSN,0 <
xSN,1 < ... < xSN,NSN , where xSN,0 and xSN,NSN are the upper
and lower bounds of the distribution and set to, say, -4 and +4,
respectively. We here assume NSN = 2ndig for simplicity. Then,
we define |SN〉 as |SN〉 = ∑NSN−1

i=0
√

pSN,i |i〉, where pSN,i =∫ xSN,i+1

xSN,i
ϕSN(x)dx and ϕSN(x) is the probability density function

of the standard normal distribution. The circuit to create such
a state is presented in [1]. Since xSN,i can be easily calculated
from the index i by a linear function, we identify i as xSN,i.

Then, the calculation flow is as follows:

1. Initialize all registers to |0〉 except RS 0 , which is initial-
ized to |S t0〉.

2. Generate superpositions of SNRNs on RW1 , ...,RWnt
.

That is, set each of them to |SN〉.

3. Perform the time evolution (9) using the value on RW1

as w1. The result is output to RS 1 as |S t1〉.

4. Calculate the payoff at time t1 using RS 1 and output the
sum of it and the previous payoffs to Rpayoff,i.

5. Iterate operations similar to 3-4 for each time step until
the time reaches tnt .

6. Finally we obtain a superposition of states in which the
value on Rpayoff,nt is the sum of payoffs for each pattern
of values of SNRNs. Estimate the expectation value of
Rpayoff,nt to get (10).

2. overview of the circuit

The outline of the circuit in the register-per-RN is as shown
in Figure 4. First, |SN〉 is created on each RW j by the gate
SN. After that, the gate U j performs j-th step of asset price
evolution and payoff calculation. For each evolution step,
ancillary registers Rflg, j and RLV, j, which have 1 and 2ndig
qubits respectively, are necessary. U j is then implemented
as Figure 5. In this gate, the sequence of comparators and
“Load” gates set a j,k, b j,k in (8) into RLV, j. Then, the operation
x ← x + (ax + b)y updates the asset price on RS j−1 according
to (9). Since the register-per-RN way does not aim to uncom-
pute ancillary qubits in order to reduce them, the updated asset
price is output to another register RS j . At the end of U j, the
payoff is calculated. For more details, see [1].

V. ESTIMATION OF REQUIRED RESOURCES

Then, let us estimate the machine resources required for the
implementation in the PRN-on-a-register way and the register-

per-RN way. We consider the two metrics, qubit number and
T-count, as many papers do. Following the many previous re-
searches on elementary arithmetic on quantum computer (see
references in [1]), we can estimate such metric. Referring to
[1] for the detailed discussion, we here only present the result.

Qubit numbers and T-counts for the two ways are shown in
Table I. Here, we have made following assumptions, some of
which have been already mentioned:

• As PSNRN, we use PCG[25] combined with the inver-
sion sampling. We use nPRN-bit PCG, where nPRN is
large enough that the PRN sequence has good statisti-
cal property, e.g. long period. Therefore, the register
which hold the PCG sequence and ancillary registers
necessary for calculation of PRN sequence have nPRN
qubits. However, we use only top ndig digits of PCG,
since lower bits have poorer statistical properties.

• Other registers which store numerical numbers, RW ,RS
etc., and ancillary registers concerning them have ndig
qubits.

• Rsamp has nsamp qubits.

• Other registers have only several qubits and we neglect
their contributions to the whole qubit number.

• For the inverse cumulative distribution function of stan-
dard normal distribution, we use the piecewise polyno-
mial approximation presented in [26] with nICDF inter-
vals.

From Table I, wee see that, naturally, qubit number is indepen-
dent from nt in the PRN-on-a-register way but proportional to
nt in the register-per-RN way and T-count is proportional to
nt in the both ways. If we take the setting nsamp = 16, ndig =

16, nPRN = 64, nICDF = 109, nt = 360, nS = 5, which is typ-
ically necessary for practical use in derivative pricing6, the
values in Table I becomes as follows:

• qubit numbers: 2.4×102 for the PRN-on-a-register way
and 9.2 × 105 for the register-per-RN way

• T-counts: 3.7 × 108 for the PRN-on-a-register way and
2.1 × 108 for the register-per-RN way

The total T-count is of same order of magnitude in the both
way but larger for the PRN-on-a-register way by a factor 2
roughly. We here comment on the parts which consume T-
count most heavily in each way. In the PRN-on-a-register
way, there are two parts which contribute to T-count equally
and dominantly. The first is the update of the asset price
in V (j)

k . Note that additional operations for reduction of
qubits, such as inverse division in self-update multiplication
and drawing back the asset price to clear Rg, increase T-count
compared with the register-per-RN way. The second is mod-
ular multiplications in update of the PCG sequence. Since we

6 nsamp = 16 corresponds to 65536 sample paths.

7ⓒ 2020 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2020-QS-1 No.13
2020/10/16

Table I: Qubit number and T-count required in the PRN-on-a-register and register-per-RN ways. Aiming to estimate the orders
of the metrics, we take only the leading term with respect to ndig, nPRN and so on.

PRN-on-a-register register-per-RN
qubit nsamp + 2ndig + nPRN +max{2nPRN, 7ndig} (3n2

dig + 111ndig)nt

T-count (245n2
dignS + 140n2

PRN + 210n2
dig + 56ndignICDF)nt (7n2

dig + 63ndig + 28nS + 3.4 × 104)ndignt

must take the bit number pf PCG large enough, the T-count
of operations for PCG becomes large. On the other hand, in
the register-per-RN way the dominant contribution to T-count
comes from arccos’s in SN gates (see [1]). Because not only
an arccos itself is T-count consuming but also it is used in each
iteration in the SN gate, the total T-count piles up.

VI. SUMMARY

In this paper, we considered how to implement time evolu-
tion of the asset price in the LV model on quantum comput-
ers. Similar to other problems in finance, derivative pricing by
MC simulation requires a large number of random numbers,
which is proportional to nt, the number of time steps for asset
price evolution, and this may cause difficulty in implementa-
tion. We then considered two ways of implementation: the
PRN-on-a-register way and the register-per-RN way. In the
former we sequentially generate pseudo random numbers on
a register and use them to evolve the asset price. In the lat-
ter, standard normal random numbers necessary to time evo-
lution are created as superpositions on separate registers. For
both ways, we present the concrete quantum circuits. For not
only random number generation but also other aspects, we try
to save qubit numbers permitting some additional procedures

in the PRN-on-a-register way and do opposite in the register-
per-RN way. We then give estimations of qubit number and
T-count required in each way. In the PRN-on-a-register way,
qubit number is kept constant against nt. On the other hand,
in the register-per-RN way qubit number is proportional to
nt. Each way has T-count consuming parts and the total T-
counts for both ways are of same order of magnitude, expect
the PRN-on-a-register way has the larger T-count by a factor
about 2, in some specific setting.

Note that analyses of resources required for implementa-
tion of the LV model in this paper strongly depend on de-
signs of elementary circuits for arithmetic. For example, in
the register-per-RN way the dominant contribution to T-count
comes from arccos’s in preparing SNRNs. If more efficient
circuits are proposed and we replace the current choice with
them, required resources may change.

Finally, we note that this study is not enough for application
of quantum algorithm for MC to pricing in the LV model. Al-
though we assumed that the LV function is given, in practice
we have to calibrate the LV as mentioned above. Besides, we
have not considered how to evaluate terms in exotic deriva-
tives, for example, early exercise. In future works, we will
consider such things and aim to present how to apply quantum
computers in the whole process of exotic derivative pricing.

[1] K. Kaneko et al., arXiv:2007.01467
[2] R. Orus et al., Reviews in Physics 4, 100028 (2019)
[3] J. C. Hull, ”Options, Futures, and Other Derivatives”, Prentice

Hall (2012)
[4] S. Shreve, ”Stochastic Calculus for Finance I & II”, Springer

(2004)
[5] A. Montanaro, Proc. Roy. Soc. Ser. A, 471, 2181 (2015)
[6] Y. Suzuki et. al., Quantum Information Processing, 19, 75

(2020)
[7] P. Rebentrost et. al., Phys. Rev. A 98, 022321 (2018)
[8] N. Stamatopoulos et al., arXiv:1905.02666
[9] S. Ramos-Calderer et al., arXiv:1912.01618

[10] F. Black and M. Scholes, Journal of Political Economy 81, 637
(1973).

[11] R. C. Merton, The Bell Journal of Economics and Management
Science 4, 141 (1973)

[12] B. Dupire, Risk, 7, 18-20 (1994)
[13] L. Grover et. al., arXiv:quant-ph/0208112
[14] F. Arute,et al., Nature, 574, 505 (2019)

[15] E. T. Campbell et al., Nature, 549, 172 (2017)
[16] K. Miyamoto and K. Shiohara, arXiv:1911.12469
[17] M. Amy et al., IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems 32(6): 818-830 (2013)
[18] P. Selinger, Phys. Rev. A 87, 042302 (2013)
[19] S. Bravyi and J. Haah, Phys. Rev. A 86, 052329 (2012)
[20] A. G. Fowler and C. Gidney, arXiv:1808.06709
[21] D. J. Egger at al., arXiv:1907.03044
[22] G. Maruyama, Rendiconti del Circolo Matematico di Palermo

4, 48 (1955)
[23] G. Bassard et. al., Contemporary Mathematics 305, 53 (2002)
[24] K. Nakaji, arXiv:2003.02417
[25] M. E. O ’Neill, Harvey Mudd College Computer Sci-

ence Department Tachnical Report (2014); http://www.pcg-
random.org/

[26] W. Hörmann and J. Leydold, ACM Transactions on Modeling
and Computer Simulation 13(4):347, (2003)

8ⓒ 2020 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2020-QS-1 No.13
2020/10/16

R
count

|j〉
or
|j

+
1〉

z
←

z
⊕

(x
=

j
and

y
∈

I)
I

=
[s

j
,k−

1 ,s
j
,k)

+
1

z
←

z
⊕

(x
=

j
+

1
and

y
∈

I)
I

=
[s

i,j ,s
i,j+

1)

|j〉
or
|j

+
1〉

R
W
|x

in
t +

j 〉

x
←

x
+

(a
x

+
b)y

a
=

a
j
,k √

∆
t
j

b
=

b
j
,k √

∆
t
j

z
←

(z
+

x
−

by)/(1
+

a
y)

a
=

a
j
,k √

∆
t
j

b
=

b
j
,k √

∆
t
j

z
←

(z
+

x
−

by)/(1
+

a
y)

a
=

a
j
,k √

∆
t
j

b
=

b
j
,k √

∆
t
j

−

1

|x
in

t +
j 〉

R
S
|S

(i)
t

j
〉

or
|S

(i)
t

j+
1 〉

|S
(i)
t

j
〉

or
|S

(i)
t

j+
1 〉

R
S

′
|0〉

|0〉

R
g
|0〉

|0〉

x
x

x
x

y
y

y
y

y
y

y
y

x
x

+
(a

x
+

b)y
x

x
x

x

z
z+

x−
b
y

1+
a

y
y

y
z+

x−
b
y

1+
a

y
z

z
z
⊕

(x
=

j
and

y
∈

I)
z

z
⊕

(x
=

j
+

1
and

y
∈

I)

Figure 3: V (j)
k , which updates RS if the asset price is in the k-th grid of the LV function. Here and hereafter, the wire going over

a gate means that the corresponding register is not used in the operation of the gate. A formula at the center of a gate represents
the operation the gate performs and ’-1’ means the inverse operation. A formula beside a wire and in a gate means the input or
the output of the gate.

9ⓒ 2020 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2020-QS-1 No.13
2020/10/16

1

···

···

···

···

···

···

···

···

···

···

···

...

···

···

···

···

···

···

···

R
S

0

U
1

R
W

1
S

N

R
fl

g
,1

R
LV

,1

R
payoff

,1

U
2

R
S

1

R
W

2
S

N

R
fl

g
,2

R
LV

,2

R
payoff

,2

R
S

2

R
payoff

,n
t −

1

U
n

t

R
S

n
t −

1

R
W

n
t

S
N

R
fl

g
,n

t

R
LV

,n
t

R
payoff

,n
t

R
S

n
t

Figure 4: The overview of the circuit for asset price evolution in the LV model in the register-per-RN way.

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Rpayoff,j−1

Payoffj

RSj−1

y ← y ⊕ (x < sj,0) y ← y ⊕ (x < sj,nS)

z ← z + (ax + b)y

RWj

Rflg,j |0〉

RLV,j |0〉 |0〉

Load aj,0 Load aj,nS Load aj,nS+1

Load bj,0 Load bj,nS Load bj,nS+1

Rpayoff,j

RSj

x x x x x x

y y

y y ⊕ (x < sj,0) y y ⊕ (x < sj,nS
)

a a

b b

z z + (ax + b)y

Figure 5: U j, which performs the j-th step of asset price evolution, in the register-per-RN way.

10ⓒ 2020 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2020-QS-1 No.13
2020/10/16

