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Distributed Quantum Proofs for Replicated Data
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概要：This paper tackles the issue of checking that all copies of a large data set replicated at several

nodes of a network are identical. The fact that the replicas may be located at distant nodes prevents the

system from verifying their equality locally, i.e., by having each node consult only nodes in its vicinity.

On the other hand, it remains possible to assign certificates to the nodes, so that verifying the consis-

tency of the replicas can be achieved locally. However, we show that, as the replicated data is large,

classical certification mechanisms, including distributed Merlin-Arthur protocols, cannot guarantee good

completeness and soundness simultaneously, unless they use very large certificates. The main result of

this paper is a distributed quantum Merlin-Arthur protocol enabling the nodes to collectively check the

consistency of the replicas, based on small certificates, and in a single round of message exchange between

neighbors, with short messages. In particular, the certificate-size is logarithmic in the size of the data

set, which gives an exponential advantage over classical certification mechanisms.

1. Introduction

In the context of distributed systems, the presence of

faults potentially corrupting the individual states of the

nodes creates a need to regularly check whether the sys-

tem is in a global state that is legal with respect to its

specification. A basic example is a system storing data,

and using replicas in order to support crash failures. In

this case, the application managing the data is in charge

of regularly checking that the several replicas of the same

data, stored at different nodes scattered in the network,

are all identical. Another example is an application main-

taining a tree spanning the nodes of a network, e.g., for

multicast communication. In this case, every node stores

a pointer to its parent in the tree, and the application

must regularly check that the collection of pointers forms

a spanning tree. This paper addresses the issue of check-

ing the correctness of a distributed system configuration

at low cost.

Several mechanisms have been designed for certifying

the correctness of the global state of a system in a dis-

tributed manner. One popular mechanism is called locally
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checkable proofs [25], and it extends the seminal concept of

proof-labeling schemes [36]. In these frameworks, the dis-

tributed application does not only construct or maintain

some distributed data structure (e.g., a spanning tree),

but also constructs a distributed proof that the data struc-

ture is correct. This proof has the form of a certificate

assigned to each node (the certificates assigned to differ-

ent nodes do not need to be the same). For collectively

checking the legality of the current global system state,

the nodes exchange their certificates with their neighbors

in the network. Then, based on its own individual state,

its certificate, and the certificates of its neighbors, every

node accepts or rejects, according to the following speci-

fication. If the global state is legal, and if the certificates

are assigned properly by the application, then all nodes

accept. Conversely, if the global state is illegal, then at

least one node rejects, no matter which certificates are as-

signed to the nodes. Such a rejecting node can raise an

alarm, or launch a recovery procedure. The main aim of

locally checkable proofs is to be compact, that is, to use

certificates as small as possible, for two reasons: first, to

limit the space complexity at each node, and, second, to

limit the message complexity of the verification procedure

involving communications between neighbors.

For instance, in the case of the Spanning Tree predi-

cate, the application does not only construct a spanning
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tree T of the network, but also a distributed proof that

T is indeed a spanning tree, i.e., that the collection T of

pointers forms a cycle-free connected spanning subgraph.

It has been known for long [2], [6], [27] that, by assigning

to every node a certificate of logarithmic size, the nodes

can collectively check whether T is indeed a spanning tree,

in a single round of communication between neighboring

nodes. The certificate assigned to a node is the identity

of the root of the tree, and its distance to this root (both

are of logarithmic size as long as the IDs are in a range

polynomial in the number of nodes). Every node just

checks that it is provided with the same root-ID as all its

neighbors in the network, and that the distance given to

its parent in its certificate is one less than its own given

distance — a node with distance 0 checks that its ID is

indeed the root-ID provided in its certificate. Obviously,

if the collection T of pointers forms a spanning tree, and

if the certificates are assigned properly by the application,

then all nodes pass these tests, and accept. On the other

hand, it is easy to check that if T is not a spanning tree (it

is not connected, or it contains a cycle), then at least one

node detects a discrepancy and rejects, no matter which

certificates are assigned to the nodes.

Unfortunately, not all boolean predicates on labeled

graphs can be distributedly certified using certificates as

small as for spanning tree. This is typically the case of

the aforementioned scenario of a distributed data storage

using replicas, for which one must certify equality. Let us

for instance consider the case of two nodes Alice and Bob

at the two extremities of a path, that is, the two play-

ers are separated by intermediate nodes. Alice and Bob

respectively store two n-bit strings x and y, and the objec-

tive is to certify that x = y. That is, one wants to certify

equality (EQ) between distant players. A direct reduction

from the non-deterministic communication complexity of

EQ shows that certifying EQ cannot be achieved with cer-

tificates smaller than Ω(n) bits.

Randomization may help circumventing the difficulty of

certifying some boolean predicates on labeled graphs using

small certificates. Hence, a weaker form of protocols has

been considered, namely distributed Merlin-Arthur proto-

cols (dMA), a.k.a. randomized proof-labeling schemes [23].

In this latter context, Merlin provides the nodes with a

proof, just like in locally checkable proofs, and Arthur per-

forms a randomized local verification at each node. Unfor-

tunately, some predicates remain hard in this framework

too. In particular, as we show in the paper, there are no

classical dMA protocols for (distant) EQ using compact

certificates. Recently, several extensions of dMA protocols

were proposed, e.g., by allowing more interaction between

the prover and the verifier [15], [22], [40]. In this work, we

add the quantum aspect, while considering only a single

interaction, and only in the prescribed order: Merlin sends

a proof to Arthur, and then there is no more interaction

between them.

1.1 Our Results

We carry on the recent trend of research consist-

ing of investigating the power of quantum resources in

the context of distributed network computing (cf., e.g.,

[17], [24], [28], [29], [38], [39]), by designing a distributed

Quantum Merlin-Arthur (dQMA) protocol for distant EQ,

using compact certificates and small messages. While we

use the dQMA terminology in order to be consistent with

prior work, we emphasize that the structure of the dis-

cussed protocols is rather simple: each node is given a

quantum state as a certificate, the nodes exchange these

states, perform a local computation, and finally accept or

reject.

Our main result is the following. A collection of n-bit

strings x1, . . . , xt are stored at t terminal nodes u1, . . . , ut

in a network G = (V,E), where node ui stores xi. We de-

note EQt
n the problem of checking the equality x1 = . . . =

xt between the t strings. Let us define the radius of a given

instance of EQt
n as r = mini maxj distG(ui, uj), where

distG denotes the distance in the (unweighted) graph G.

Our main result is the design of a dQMA protocol for

EQt
n, using small certificate. This can be summarized by

the following informal statement (the formal statement is

in Section 4):

Main Results. There is a distributed Quantum Merlin-

Arthur (dQMA) protocol for certifying equality between

t binary strings (EQt
n) of length n, and located at a radius-

r set of t terminals, in a single round of communica-

tion between neighboring nodes using certificates of size

O(tr2 log n) qubits, and messages of size O(tr2 log(n+ r))

qubits.

It is worth mentioning that, although the dependence

in r and t is polynomial, the dependence in the actual

size n of the instance remains logarithmic, which is our

main concern. Indeed, for applications such as the afore-

mentioned distributed data storage motivating the distant

EQt
n problem, it is expected that both the number t of

replicas, and the maximum distance between the nodes
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storing these replicas are of several orders of magnitude

smaller than the size n of the stored replicated data.

It is also important to note that our protocol satisfies

the basic requirement of reusability, as one aims for pro-

tocols enabling regular and frequent verifications that the

data are not corrupted. Specifically, the quantum oper-

ations performed on the certificates during the local ver-

ification phase operated between neighboring nodes pre-

serve the quantum nature of these certificates. That is,

if EQt
n is satisfied, i.e., if all the replicas xi’s are equal,

then, up to an elementary local relocation of the quan-

tum certificates, these certificates are available for a next

test. If EQt
n is not satisfied, i.e., if there exists a pair of

replicas xi ̸= xj , then the certificates do not need to be

preserved as this scenario corresponds to the case where

the correctness of the data structure is violated, requiring

the activation of recovery procedures for fixing the bug,

and reassigning certificates to the nodes.

Our quantum protocol is based on the SWAP test [12],

which is a basic tool in the theory of quantum computa-

tion and quantum information. This test allows to check

if a quantum state is symmetric, and has several applica-

tions, such as estimating the inner product of two states

(e.g., [9], [12], [48]), checking whether a given state (or a

reduced state of it) is pure or entangled with the envi-

ronment system (e.g., [1], [26], [33], [34]), and more. In

this paper, we use the SWAP test in yet another way: for

checking if two of the reduced states of a given state are

close.

Finally, observe that our logarithmic upper bound for

dQMA protocols is in contrast to the linear lower bound

that can be shown for classical dMA protocols even for

t = 2 on a path of 4 nodes and even for the case

where communication between the neighboring nodes is

extended to multiple rounds (see precise statement and

proof in Section 5). Our results thus show that quan-

tum certification mechanism can provide an exponential

advantage over classical certification mechanisms.

1.2 Related Work

The concept of distributed proofs is a part of the frame-

work of distributed network computing since the early

works on fault-tolerance (see, e.g., [2], [6], [27]). Proof-

labeling schemes were introduced in [36], and variants

have been studied in [21], [25]. Randomized proof-labeling

schemes have been studied in [23]. Extensions of dis-

tributed proofs to a hierarchy of decision mechanisms have

been studied in [18] and [7]. Frameworks like cloud com-

puting recently enabled envisioning systems in which the

nodes of the network could interact with a third party,

leading to the concept of distributed interactive proofs [35].

There, each node can interact with an oracle who has

a complete view of the system, is computationally un-

bounded, but is not trustable. For instance, in Arthur-

Merlin (dAM) protocols, the nodes start by querying the

oracle Merlin, which provides them with answers in their

certificates. There is a simple classical compact dAM pro-

tocol for distant EQ, where the two players stand at the

extremities of a path. We refer to [15], [22], [40] for recent

developments in the framework of distributed interactive

proofs. While distributed Arthur-Merlin protocols and

their extensions provide an appealing theoretical frame-

work for studying the power of interactive proofs in the

distributed setting, the practical implementation of such

protocols remains questionable, since they all require the

existence of a know-all oracle, Merlin, and it is unclear

if a Cloud could play this role. On the other hand, in

dMA and dQMA protocols, interaction with an external

party is not required, but only a one-time assignment of

certificates is needed, which are then reusable for regu-

lar verification. As in the classical proof-labeling schemes

setting, these certificates can actually be created by the

nodes themselves during a pre-processing phase, making

the reliance on a know-all oracle unnecessary.

After a few early works [8], [17], [24], [45] that shed light

on the potential and limitations of quantum distributed

computing (see also [5], [11], [16] for general discussions),

evidence of the advantage of quantum distributed com-

puting over classical distributed computing have been

obtained recently for three fundamental models of (syn-

chronous fault-free) distributed network computing: the

CONGEST model [29], [38], the CONGEST-CLIQUE model

[28] and the LOCAL model [39]. The present paper adds

to this list another important task for which quantum

distributed computing significantly outperforms classical

distributed computing, namely, distributed certification.

Note that while this paper is the first to study quan-

tum Merlin-Arthur protocols in a distributed computing

framework, there are a number of prior works studying

them in communication complexity [10], [31], [32], [44]. In

particular, quantum Merlin-Arthur protocols are shown

to improve some computational measure (say, the total

length of the messages from the prover to Alice, and of

the messages between Alice and Bob) exponentially com-

pared to Merlin-Arthur protocols where the messages from

the prover are classical [32], [44].
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The question of computing functions on inputs that are

given to graph nodes was also studied in the context of

communication complexity. The equality function was

studied for the case where all nodes have inputs [4]. Other

works considered a setting similar to ours, i.e., where only

some nodes have inputs [13], [14], but did not study the

equality problem.

2. Model and Definitions

Distributed verification on graphs.

Let t ≥ 2, and let f : ({0, 1}n)t → {0, 1} be a function.

The aim of the nodes is to collectively decide whether

f(x1, . . . , xt) = 1 or not, where x1, . . . , xt are assigned to

t nodes of a graph. Specifically, an instance of the prob-

lem f is a t-tuple (x1, . . . , xt) ∈ {0, 1}n × . . . × {0, 1}n,
a connected graph G = (V,E), and an ordered sequence

v1, . . . , vt of distinct nodes of G. The node vi is given xi as

input, for i = 1, . . . , t. All the other nodes receive no in-

puts. We consider distributed Merlin-Arthur (dMA) pro-

tocols for deciding whether f(x1, . . . , xt) = 1, in which a

non-trustable prover (Merlin) assigns (or “sends”) certifi-

cates to the nodes, and then the nodes (Arthur) perform

a 1-round randomized verification algorithm. The ver-

ification algorithm consists of each node simultaneously

sending messages to all its immediate neighbors, receiv-

ing messages from them, then performing a local com-

putation, and finally accepting or rejecting locally.*1 We

say that a dMA protocol has completeness a and sound-

ness b for a function f if the following holds for every

(x1, . . . , xt) ∈ {0, 1}n × . . . × {0, 1}n, every connected

graph G, and every ordered sequence v1, . . . , vt of distinct

nodes in G:

(completeness) if f(x1, . . . , xt) = 1, then the prover

can assign certificates to the nodes such that

Pr[all nodes accept] ≥ a;

(soundness) if f(x1, . . . , xt) = 0, then, for every certifi-

cate assignment by the prover, Pr[all nodes accept] ≤
b.

The completeness condition guarantees that, when the

system is in a “legal” state (specified by f(x1, . . . , xt) =

1), with probability at least a all nodes accept. The

soundness condition guarantees that, when the system

*1 We can naturally extend this definition to define dMA pro-
tocols with µ rounds of communication among neighbors,
for any integer µ ≥ 1. In this paper, however, we focus on
the case µ = 1 since all the protocols we design use only
1-round verification algorithms. The only exception is Sec-
tion 5, where we show classical lower bounds that hold even
for µ > 1.

is in an “illegal” state (specified by f(x1, . . . , xt) = 0),

with probability at least 1 − b at least one node rejects.

The value b represents the error probability of the pro-

tocol on an illegal instance, and thus we sometimes refer

to it as the soundness error. A node detecting illegal-

ity of the state can raise an alarm, or launch a recovery

procedure. Protocols with completeness 1 are called 1-

sided protocols, or protocols with perfect completeness.

Similarly to prior works on distributed verification, the

certificate size of the protocol is measured as the maxi-

mum size (over all the nodes of the network) of the cer-

tificate sent by the prover to one of the nodes, and the

message size of the protocol is measured as the maximum

size (over all pairs of adjacent nodes) of the message ex-

changed between two adjacent nodes. Specifically, we will

consider the multi-party version of the equality function,

EQt
n, which is the boolean-valued function from ({0, 1}n)t

such that EQt
n(x1, . . . , xt) = 1 ⇐⇒ x1 = · · · = xt.

In this work, we extend the framework of dMA proto-

cols, to consider also cases where the certificates given to

the nodes can contain qubits (although they may also con-

tain classical bits) and the nodes can exchange messages

consisting of qubits. These will be called distributed Quan-

tum Merlin-Arthur (dQMA) protocols. More precisely, in

a dQMA protocol for a function f , a non-trustable prover

first sends a certificate to each node, which consists of

a quantum state and classical bits; the quantum states

may be entangled, even though all our quantum protocols

do not require any prior entanglement, nor any shared

classical random bits. Then the nodes perform a 1-round

quantum verification algorithm, where each node simul-

taneously sends a quantum message to all its immediate

neighbors, receives quantum messages from them, then

performs a local computation, and finally accepts or re-

jects locally. Note that, as opposed to the classical setting,

we cannot assume that a node simply broadcasts its cer-

tificate to all its neighbors, as quantum states cannot be

duplicated. However, a node can still send copies of the

classical parts of the certificate. We define completeness

and soundness of dQMA protocols as for dMA protocols.

Remark.

A special case of interest is when the graph G is a

path v0, . . . , vr, r ≥ 1, where the left-end node v0 has

an n-bit string x as input, the right-end node vr has

an n-bit string y as input, and the intermediate nodes

v1, . . . , vr−1 have no inputs. That is, t = 2. Given a func-

tion f : {0, 1}n × {0, 1}n → {0, 1}, the aim of the nodes

is to collectively decide whether f(x, y) = 1 or not. This
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setting is very much related to communication complexity.

Classical two-party communication complexity.

We refer to [37] for the basic concepts of two-party com-

munication complexity. In this paper we will only consider

two-party one-way communication complexity. In this

model two parties, denoted Alice and Bob, each receives

an input x ∈ {0, 1}n and y ∈ {0, 1}n, respectively. The

goal is for Bob to output the value f(x, y) for some known

Boolean function f : {0, 1}n×{0, 1}n → {0, 1}. Only Alice

can send a message to Bob. The one-way two-sided-error

communication complexity of f is the minimum number

of bits that have to be sent on the worst input in a pro-

tocol that outputs the correct answer with probability at

least 2/3. The one-way one-sided-error communication

complexity of f is the minimum number of bits that have

to be sent on the worst input in a protocol that outputs

the correct answer with probability 1 on any 1-input, and

outputs the correct answer with probability at least 2/3

on any 0-input.

We shall especially consider the following two functions.

The equality function EQn is defined as EQn(x, y) = 1

when x = y and EQn(x, y) = 0 otherwise, for any

x, y ∈ {0, 1}n. Its one-way one-sided-error communica-

tion complexity is O(log n) — see, e.g., [37].

For any Boolean function f : {0, 1}n×{0, 1}n → {0, 1},
a set S ⊆ {0, 1}n × {0, 1}n is a 1-fooling set for f if, on

the one hand, for every (x, y) ∈ S, f(x, y) = 1, and, on

the other hand, for every two pairs (x1, y1) ̸= (x2, y2) in

S × S, f(x1, y2) = 0 or f(x2, y1) = 0.

Quantum two-party communication complexity.

We assume the reader is familiar with the basics of

quantum computation, in particular the notion of qubits,

Dirac notation such as |ψ⟩ and ⟨ψ| := (|ψ⟩)†, and the

quantum circuit model (see Sections 2 and 4 in Ref. [41],

for instance).

Quantum two-party communication complexity, first in-

troduced by Yao [47], is defined similarly to the classical

version. The only difference is that the players are al-

lowed to exchange qubits instead of bits (the cost of a

quantum protocol is the number of qubits sent by the

protocol). Note that since quantum protocols can trivially

simulate classical protocols, the quantum communication

complexity of a function is never larger than its classical

communication complexity. More precisely, an m-qubit

one-way quantum protocol π for the function f can be

described in its most general form as follows. Alice pre-

pares an m-qubit (pure) quantum state |hx⟩ and sends it

to Bob.*2 Bob then makes a measurement on the state

|hx⟩, which gives an outcome b ∈ {0, 1}. Finally, Bob out-

puts b. Since Bob’s measurement in the above description

depends only on his input y, it can be mathematically de-

scribed, for each y ∈ {0, 1}n, by two positive semi-definite

matrices My,0 and My,1 such that My,0 +My,1 = I. This

pair {My,0,My,1} is called a POVMmeasurement (POVM

measurements are the most general form of measurements

allowed by quantum mechanics). If |hx⟩ is measured by

the POVM {My,0,My,1}, the probability that b = 0 is

tr(My,0(|hx⟩⟨hx|)), while the probability that b = 1 is

tr(My,1(|hx⟩⟨hx|)).

3. Quantum Distributed Proofs on Paths

We show the following general theorem that converts

a one-way quantum communication complexity protocol

into a quantum Merlin-Arthur protocol for the corre-

sponding long-distance problem on the path. This theo-

rem applies not only to one-sided-error protocols, but also

to the two-sided-error case (with a logarithmic additional

factor in the complexity).

Theorem 1. Let f : {0, 1}n × {0, 1}n → {0, 1} be a

Boolean function.

• If f has a quantum one-way one-sided-error commu-

nication protocol transmitting at most q qubits, then

there exists a 1-sided distributed quantum Merlin-

Arthur protocol for f on the path of length r, with

soundness 1/3, using certificates of size O(r2q) qubits,

and exchanging messages of length O(r2(q + log r))

qubits.

• If f has a quantum one-way two-sided-error commu-

nication protocol transmitting at most q qubits, then,

for any constant c, there exists a distributed quantum

Merlin-Arthur protocol for f on the path of length r

with completeness 1−1/nc, soundness 1/3, using cer-

tificates of size O(r2q log(n+r)) qubits, and exchang-

ing messages of length O(r2q log(n+ r)) qubits.

Using the known result (cf. Section 2) about one-way

communication complexity of EQn, the following result is

a direct application of Theorem 1.

Corollary 1. There exists a one-sided quantum Merlin-

*2 Without loss of generality, we assume that Alice does not
use any mixed state (i.e., a probability distribution on pure
states) in her message, as she can simulate it using a pure
state called the purification [41] whose length is at most
twice the one of the mixed state.
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Arthur protocol for EQn in the path of length r with

soundness 1/3, using certificates of size O(r2 log n) qubits,

and exchanging messages of length O(r2 log(n + r))

qubits.*3

4. Certifying Equality in General

Graphs

We now extend our protocol for checking equality be-

tween n-bit strings x1, . . . , xt stored at t ≥ 2 distinct

nodes u1, . . . , ut of a connected simple graph G. We first

show how to reduce the problem to trees of a specific struc-

ture, and then present a protocol for trees.

4.1 Reduction to Trees

Let G = (V,E) be a connected simple graph, and let

u1, . . . , ut be t ≥ 2 distinct nodes of G. Assume, without

loss of generality, that u1 is the most central node

among them, i.e., it satisfies maxi=1,...,t distG(u1, ui) =

minj=1,...,t maxi=1,...,t distG(uj , ui). Let r =

maxi=1,...,t distG(u1, ui) be the radius of the t termi-

nals u1, . . . , ut. We construct a tree T rooted at u1, that

has all terminals as leaves, maximum degree t and depth

at most r+1. To this end, start with a BFS tree T ′ in G,

rooted at u1. Truncate the tree at each terminal ui that

does not have any terminal as successors, thus limiting

the depth to r and the degree to t. For every terminal ui

that is not a leaf, including u1, replace ui with a node u′i,

and connect ui to u′i as a leaf, where the input xi stays

at ui — this guarantees that all inputs are now on leaves,

the same degree bound holds, and the depth is increased

by at most 1.

While T is not a sub-tree of G, we can easily emulate

an algorithm or a labeling scheme designed for T , in G

(specifically, in T ′). To this end, every internal terminal

ui in T ′ simulates the behavior of ui itself, and also of

u′i. The following lemma is using classical assumptions

of network computing (see, e.g., [43]) and can be proved

using standard techniques (see, e.g., [36]). We refer to the

tree T in the construction described above.

Lemma 1. For any graph G = (V,E) with nodes IDs

taken in a range polynomial in |V |, there is a determinis-

tic distributed Merlin-Arthur protocol for the tree T using

certificates on O(log |V |) bits.

The term deterministic in the above lemma means that

*3 Here we are using the fact that logn + log r is of the same
order as log(n+ r) for conciseness.

the verification process is deterministic, which implies per-

fect completeness and perfect soundness (i.e., soundness

error 0). Roughly speaking, in this protocol each non-tree

node will have a (non-quantum) label indicating its dis-

tance from the tree, and each tree node will have as label

its depth in the tree, the ID of its parent, and the ID of

the root.

4.2 Certifying Equality in Trees

Based on our tree construction from a graph and

Lemma 1, we can restrict our attention to the case in

which the t terminals u1, . . . , ut, who hold the n-bit strings

x1, . . . , xt, belong to a tree T rooted at u1, of depth equal

to r+1, where r is the radius of the terminals, with max-

imum degree t, and with leaves u2, . . . , ut. Moreover, we

assume that the root u1 itself is of degree 1 due to our tree

construction. We present a distributed quantum Merlin-

Arthur protocol for the equality function EQt
n in this set-

ting, and hence prove our main result.

Theorem 2. There is a distributed quantum Merlin-

Arthur protocol on T for EQt
n between t terminals of

radius r, with perfect completeness, soundness 1/3, cer-

tificate size O(t r2 log n) qubits, and message length

O(t r2 log(n+ r)) qubits.

5. Classical Lower Bounds

In this section, we show that non-quantum distributed

Merlin-Arthur (dMA) protocols for distant EQ require cer-

tificates of linear size. In fact, we establish a more general

lower bound which applies to all functions f with large

fooling set, even using shared randomness. In addition,

the bound holds for settings which allow the graph nodes

to have multiple communication rounds among them, af-

ter receiving the certificates and before deciding if they

finally accept (see, e.g., [19], [42]).

For the lower bound, it is sufficient to consider the path

v0, . . . , vr in which v0 and vr are provided with inputs x

and y, respectively.

Theorem 3. Let r ≥ 2µ + 1, and let f(x, y) be any

Boolean function with a 1-fooling set of size at least k.

Let P be a classical Merlin-Arthur protocol for f in

a path of r edges, with µ rounds of communication

among the nodes, shared randomness, certificates of size

⌊ 1
2µ log(k− 1)⌋ bits, and completeness 1− p. Then P has

soundness error at least 1− 2p.
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