Fem B NR—=Z - VA5 AL 63— 3
(1988 1. 18)

F=BN—=—XFRL—F 4 TR F LTI 2L —-2DIERK

fh EE B OEN LM HE
A AR TS

HEROEESBRBILZTF—FIRN—AOHREPEL 22BN, F—FX—ZIZHL
F2ARV—=F 4 VT VRTAPERELZ>TETWDE, RROFRV—F 4 VTV A7
AT = I R-AVATF AN E>TCABREIBDFEL BB, TITRBHEE KON
BEMNOEMCHEITREELRFLOD, X ILETTAHMEZBICANTY 2
WIZEPIDORMBRTH S, BITLEGHEONIES L OCBITRBEREICEL 24~
V=T A4 VTV ATLADHRD DI, BAZFF—FXN—A-FRV—F 4 YT RTF
LY Ialb—FRREBARLZ, ABTR, 20EBEBIVCFACODVWTHRE,

A Database Operating System Simulator
Xingguo ZHONG, Daozhuo CHEN and Yahiko KAMBAYASHI

Dept. of Computer Science and Communication Engineering,
Kyushu University, Fukuoka, 812 Japan

Due to the increasing importance of databases in computer application areas, it becomes
very important to develop operating systems suitable for databases. There are some
conventional techniques for operating systems unsuitable for database systems. One of
the serious problems of conventional operating systems is that its support for concurrency
control (which tries to improve efficiency while keeping the correctness called
serializability) is not enough for databases. In order to evaluate techniques for
concurrency control and techniques in the operating system level that are considered to be
suitable for concurrency control, we have developed a database operating system
simulator. In this paper, we describes the implementation of the simulator and its

applications.

1)

1 Introduction

From our research on database concurrency
control, there is a requirement to develop a
simulator to give some quantitative evaluations of
the techniques we have developed.' The techniques
we need to evaluate consist of two classes:
techniques of constructing efficient concurrency
control mechanisms and techniques of providing
suitable environment under the operating system
level for concurrency control. For this purpose, we
have developed a database operating system
simulator.

In this paper, we will discuss the simulator
which can simulate the combined effects of
concurrency control supported by operating
system and databases. Because of the difficulty of
comparing various concurrency control
mechanisms analytically, there are papers on
concurrency control simulators [1, 3, 6, 8]. It is
known that some conventional techniques used in
operating systems are not suitable for database
[9]. Thus we need to develop operating system
which can support for database functions
efficiently by proper concurrency control
mechanisms. Features of our simulator are as
follows.

(1) We designed the simulator from operating
system level. Thus simulation on techniques in
the operating system level is possible.

(2) Besides READ and WRITE operations in
transactions, actions of transactions can be
arbitrarily defined.

(3) We define transaction as a partial order of
actions [2, 4, 5], which can model parallel
transactions [7] and is especially desired in
distributed database systems.

(4) Due to the modular organization, the
simulator is assumed to be extendable.
Simulation on buffer management suitable for
database systems, for example, is also planned.

From the viewpoint of the internal
organization, the simulator has been designed as a
virtual database operating system. It provides
process management, buffer management,
concurrency control, /O management and
interrupt control.

The implementation of the simulator is
realized on a Ustation E20 using the C language
(about 3,000 lines of source code). In Section 2 the
transaction and data access models of this
In Section 3, the
organization of the simulator is described. In

simulator will be shown.

Section 4, the interface to define a concurrency
control mechanism is presented. Section 5 shows
one of the experiments performed using this
simulator.

2 Transaction and Data Access Models

The parallel transaction model was introduced
in [5]. In [4] realization of efficient partial rollback
under such model was discussed. Formal
definition is also given in [2]. Fig. 1 is an example
of a transaction defined as a partial order of
actions. Each node of the partial order shows an
action and each edge expresses a dependent
relationship between two actions. A transaction

. Action

Fig. 1 Transaction Model

starts with a BEGIN (B) action and terminates with
an END (E) action. The contents of other actions
are not decided. They can be defined by users of
the simulator. According to the definition of the
actions, an interpreter is needed for the simulator
to simulate the execution of these actions. All
actions have predecessors (successors) except the
BEGIN (END) action. In simulating the execution
of transactions, an action of a transaction is
executable, if all of its predecessors have been
executed. The contents of actions used for
simulations on concurrency control are as follows.
ACTION:: = BEGIN| REQUEST | ACCESS |
COMP | COMMIT | END
In the simulator, a database is assumed to be a

€2)

set of data items. A data item may be simply
considered as a logical block of /O system, which
is also handled as a unit of concurrency control. A
transaction is defined to be a partial order of the
above actions with REQUEST actions on data items
being serial. REQUEST is a read or write request to
a certain data item. A read request is always
followed by an ACCESS action, which copies the
data item from the common main memory space of
the system to the private space of the transaction.
When the data item is not in the main memory at
the time of access, the ACCESS action issues an I/O
access to fetch the data item from the database to
the common space. COMP is interpreted as a
computation using certain CPU time.

Private space
T Common space Database
Ty AN

/]

Tn

Fig. 2 Data Access Model

COMMIT appears one time in each transaction.
By this action, the transaction finishes its work
and is committed. All write operations of a
transaction are performed in the COMMIT action.
Two-phase commit protocol is assumed to be used
in terminating a transaction. Thus, writing each
data item need two I/O accesses between main
memory and secondary storage.

Fig. 2 shows the data access model of the
simulator. When a transaction is issued to the
system, a private space is prepared by the system
for buffering all the data items it will read and
write. All the read operations are performed by
copying the data items to the private space.
Therefore, a transaction will read one data item at
most once. Write operations of a transaction does

not reflect their value of data items to the database
until the transaction is committed. Thus no data
item will be written to the database more than
once by one transaction. A transaction generating
program is implemented satisfying these
constraints. Setting up the common space for
buffering data items. avoids redundant data
accesses.

3 Organization of the Simulator

The simulator is constructed as a virtual
database operating system. It provides an
environment to simulate the behavior of the
concurrent execution of transactions under certain
system assumption.
described in the previous section are only symbols,

Since the transactions
not real programs, the simulator is required to

interpret each action of a transaction and reflect
the corresponding effects to a virtual system.

Before executing action 3 :

PCB

After executing action 3 :

P ——
PCB PCB {1 PCB 1|
| S
Y ooy
Case when ACTION Case when ACTION
5 is not executable 5 is executable

Fig. 3 Control Execution of Actions

(1) Controlling execution of a transaction

The execution of transactions is controlled at
two levels, transaction level and process level. For
each transaction, when it is issued to the system, a
Transaction Control Block (TCB) is created to
control it. The T'CB records the current state and

¢3)

other information on this transaction. When the
transaction starts its execution from the BEGIN

" action, a Process Control Block (PCB) is created to
control the execution of the action. When the
execution of one action finishes, the control of the
PCB is moved to an executable successive action.
If there is no executable successive action, the PCB
will be destroyed. If, however, there is more than
one executable successor, new PCBs are created
for other executable successors.

Fig. 3 shows an example of such control. When
the execution of ACTION 3 finishes, the control of
the PCB is moved to ACTION 4. If ACTION 5 is
executable at the time, a new PCB is created for
ACTION 5.

Fig. 4 shows execution control of a transaction.
Note that when a transaction is created, a unique
PCB is created for controlling the BEGIN action.
When the transaction terminates, only one PCB
exists to control the END action.

TCB

PCB

!ACTION l

Fig. 4 Execution Control of a Transaction

| pcB | IPCBl

IACTION l I;CTION I

(2) State transition

Fig. 5 shows the state transition of
transactions, which demonstrates the lifecycle of
an execution of a transaction. When a transaction
is issued to the system, it is put into active state.
The state of the transaction moves to blocked state
when it waits for a data item held by another
transaction. When the data item is released by the
other transaction, the transaction returns to active
state. A transaction in blocked or active state may
be aborted by the system. When a transaction is
aborted, it moves to abort state and then is forced
to sleep for a while. The state of a transaction will
be converted from active state to commit and then

terminated, when the last REQUEST action of the
transaction is granted and all the COMP actions
finish.

The TCB of a transaction does not control the
execution of its actions directly. It controls PCBs
belonging to it. The state of transaction depends
on states of its PCBs. A TCB is blocked if one of its
PCBs controls a REQUEST action which conflicts
with other transactions.

Blocked I

Transaction —"l Ac1ive ‘_—_»‘ Abfrt]

‘ Commit l Sleep l

End

Fig. 5 State Transition of Transactions

The state transitions of processes are shown in
Fig. 6 which demonstrates the possible lifecycle of
a process. When a process is created, it controls
the execution of a certain action. The ready,
suspending and running states of processes are the
same as in general operating systems. The
blocked state of processes is separated from the
suspended state to express that the process is
controlling a REQUEST action that conflicts with
other transactions. When a process enter the
blocked state, the transaction it belongs to will
also enter the blocked state. A process will be
destroyed when it finishes in controlling an action
and no successive action is executable. A
suspended state of a process shows that the process
controls an ACCESS action that causes an I/O
access. The process will enter the ready state
when the /O access is completed.

(38) Program construction

The simulator consists of program modules,
each of which provides a certain function. Unlike
real operating systems, these modules are not
controlled by system processes. The program is

4)

[Running ‘L

—

Ready l Blocked I
| l Suspended

Process l Destroy j

Fig. 6 State Transition of Processes

designed to support the connections of the
following modules.

* Interrupt Controller
Execution Interpreter
Console Controller
Issuing Transaction Manager
Terminating Transaction Manager
Concurrency Control Mechanism
Buffer Manager
Aborting Transaction Manager
/O and CPU Manager
System Clock Manager
* Common Functions

L I S TR T S IR R

The interrupt controller is realized by a
conditional branch program. When a module
needs to start another module, it only needs to set
the corresponding flag for that module to let it

When the
execution of this module finishes, the control of the

satisfy the execution condition.

system will go to that module, if that module has
the highest priority at the time.

Fig. 7 shows the connection of the system
modules. An action of a transaction controlled by
a PCB is executed by the running interpreter. If
the action is a REQUEST for a certain data item, the
concurrency control mechanism will be called to
handle the request. If the request is accepted, the
PCB will enter the ready state. If the request is
forced to wait, the PCB and the TCB it belongs to
will enter the blocked state. When the
concurrency control mechanism decided to abort a
transaction, the aborting manager will be called.
More than one transaction may be aborted
depending on concurrency control mechanisms.

When the action is an ACCESS, the buffer
manager will be called. According to the state of
the system buffer, the buffer manager will
determine whether or not an IO access is required.
It issues an I/O access to the I/0 and CPU
manager when necessary.

When the action is a COMP, the /O and CPU
manager will be called. Transaction commitment
is managed by the termination manager. In order
to maintain the system load under a limit, the
multiple transaction level (number of transactions
being executed concurrently) is determined as a

system parameter. When a transaction

Process
;' """ A
: Y
i Execution Console
:L .| 1nterpreter Controller
MP
coivmm | I A | co 1
Termination CcC Buffer CPU and /O
Manager Mechanism Manager Manager
i :
I - - '
Y E Yy _ ¥
Issuing . Abort System Clock
Manager Manager Manager

Fig. 7 Modular Construction of Simulator

{5)

terminates, a new transaction is required to be
generated and issued to the system.

(4) Building virtual CPU and I/O devices.

Processes in the ready state are collected in a
ready process queue. The interrupt controller
takes the processes one after another to execute
them according to a certain strategy. Running a
process one time executes one or several actions of
a transaction. As all the actions of each
transaction are only symbolic, the time concept is
virtual. A COMP action consumes CPU time. An
ACCESS action consumes I/O time when it needs an
I/0 access between main memory and the
database. In order to describe the time consuming,
a virtual COST block is used to express the cost
(CPU time or I/O time)that will consume.

Fig. 8 shows the concurrent execution of COSTs
with the system having one CPU and two I/O
devices. For the CPU and each I/O device, a COST
queue is set up. Each COST belongs to a process of
a transaction. The vertical axis expresses the
virtual time supposed. The sequence in which the
processes will enter the ready state should be the

In the Fig. 8, the CPU and I/O COSTs, Cj, Co,
Cs, I3y, I19, Io1, Ig, Iog will be terminated in the
sequence of events shown at the left. Three CPU
COSTs are shown in the figure. In fact, when
executing a process causes the CPU COST queue
to be not empty, the CPU and I/O manager will be
soon called to handle COSTs until the CPU COST
queue becomes empty.

An advantage of setting the above virtual time
is that system overhead for concurrency control
and others can be set up arbitrarily by giving
certain COSTs for system management.

(5) System parameters.

In order to perform the simulation under
desired system assumption, the system is defined
by system parameters. All the parameters are
defined as external variables in the simulator. An
initializing function is used to assign certain
values to these parameters. Therefore changing
the system assumption does not.need to perform
re-compilling and linking of any source program.
As an example, some system parameters are
shown below.

same as the sequence of termination time of their DBSIZE : Database size
corresponding COSTs. A process will be executed MTL : Multiple Transaction Level
in the next time earlier if it enters the ready NUM-IO . Number of I/O devices
process queue earlier under FIFS (Frist-In-First- NUM-CPU : Number of CPU units
Service) strategy for process management. TIMEPIECE : Largest time for a process to
occupy a CPU unit
time CPU /o1 /02 Sequence
of events
Clock 1 -8~ Iot |oooooooeeen 101
Clock 2 ~=-{ @, |~ £ IS A S 21
Clock 8 ---- - O ICz
Clock 4 ---- €3 |~eed—TFoocl 7 Jommcmmeeees él
Clock 5 ===~ S 3
Tg I92
Iz
Io3
Tp3

Fig.8 Concurrent Execution of Vertual COSTs

(6)

COM-SPACE : Size of the common space
I0-COST : Time consumed by one data access
between main memory and

secondary storage

4 Interface to Concurrency Control
Mechanisms

The simulator provides a standard interface
for constructing a concurrency control mechanism
by six functions. When users perform experiment
on concurrency control, different concurrency
control mechanisms are usually constructed under
the same environment. Since the contents of each
of these functions depend on the concurrency
control mechanism to be constructed, only a rough
explanation is given as follows.

(1) Initializing a simulation

When starting a simulation, preprocessing
works required by the users are performed by this
function.

(2) Terminating a simulation

‘When the simulation finishes, the results of the
simulation need to be extracted. Such work can be
done by this function.

(3) Preprocessing for issuing a transaction ’

When a new transaction is issued to the system
or an aborted transaction is awaken to restart, the
required preprocessing is performed in this
function. For example, in timestamp ordering, a
timestamp is required to be assigned to the
transaction. In two-phase locking, a node
corresponding to the transaction may be added to
the wait-for graph.

(4) Preprocessing for committing a transaction

Preprocessing desired for committing a
transaction is performed in this function. The
major work of this function is to perform the
reflection of data items written by the transaction
to database. Performing unlocks for data items it
locks and awaking the blocked transactions
waiting for its termination, are also needed in
certain concurrency control mechanisms.

(5) Preprocessing for aborting a transaction

Preprocessing desired for aborting a
transaction is performed in this function. This
function is very similar to the above function (4).

(6) Handling an operation request

This function is the main procedure of
concurrency control mechanisms. If receives a
request of a transaction and checks if this request
can be granted or not. If not, it checks if it is
necessary to abort any transactions.

The details of each function depend on the
concurrency control mechanisms to be constructed.
Data under certain data structures corresponding
to meta-information in a real concurrency control
mechanism are also needed to be defined for
constructing the concurrency control mechanisms.

5. Applications of the simulator

Using the database operating system
simulator, some experiments on evaluating
techniques we have developed have been
performed. In this section, we describe one of these
experiments performed for simulating a technique
under the operating system level called execution
selection strategy.

The execution selection strategy under the
operating system level has been proposed to be
suitable for concurrency control [10]. The basic
idea of this technique is to give the ongoing
transactions increasing priorities determined by
the length of their execution. This can also be
considered to be the method providing as much
serial executions of transactions as possible under
the concurrent execution environment. By the
execution selection strategy, the possibility of
causing transaction abort may be reduced.

The execution selection strategy is realized by
process management and I/O management. In the
process management, instead of the FIFS strategy,
the process in ready state with the largest
executed part at the time of interest is always
selected to be executed. The same strategy is also
used in YO management. Instead of performing
/O access (between main memory and secbndary
storage) in the sequence of IFIS, the /O COST
belonging to the process with the largest executed
part is selected to be performed. There are several
definitions in measuring the executed part. The
experiment performed defines the executed part by
the number of data items held by each transaction.

€7

That is, the process with holding thelargest
number of data items will always be selected to be
executed.

The experiments were performed for both two-
phase locking and multi-version timestamp
ordering. The major purpose of these experiments
is to know to what degree will the execution
selection strategy effect the transaction abort rate
The results of the
experiments have dramatically proved the

in database systems.

effectiveness of this technique.

Fig. 9 shows the elapsed times and transaction
abort rates for different multiple transaction
levels by executing 5,000 transactions for each of
the multiple transaction levels. For space
limitation, we omit the results of multi-version
timestamp ordering and further discussion on the

results of the figure.

(a) Elapsed time of 2PL

. (b) Elapsed time of 2PL with
Transaction

Elapsed execution selection
time abort rate (31 Aport rate of 2PL
20 — (b)) Abort rate of 2PL with

execution selection

20 ~
(a)

2h
®
40 — 0.
20706 (@)
1h — 0.4
®)

—10.2

IR I I I I I
12 4 8 12 16 20 24

Multiple Transaction levels (MTL)

Fig.9 Comparison of Two-phase Locking with its
Version Utilizing Execution Selction Strategy
(DBSIZE =3000)

6. Summary

In this paper, implementation of a database
operating system simulator has been described.
The motivation of developing this simulator is to
evaluate techniques of concurrency control and
techniques in the operating system level that are
considered to be suitable for concurrency control.

Besides techniques under operating system level,
experiments for techniques in realizing efficient
concurrency control mechanisms have also been
performed.

References

[1] R.Agrawal and M.Carey, Models for Studying
Concurrency Control Performance Alternatives
and Implications, SIGMOD 1985, pp. 108-121.

[2] J.Brzozowski and S.Muro, On Serializability,
International Journal of Computer and
Information Science, Vol.14, No.6, 1985.

[3] M.Carey and M.Stonebraker, The Performance
of Concurrency Control Algorithms for
Database Management Systems, VLDB 1984,
pp.107-118.

[4]1 S.Kondoh, Y.Kambayashi and S.Yajima,
Concurrency Control Procedures Utilizing
Dependencies of Basic Operations, RIMS
Record 494, Kyoto University, Research
Institute of Mathematical Sciences, pp.90-101,
June 1983 (In Japanese).

{5] R.Krishnamurthy and U.Dayal, Theory of
Serializability for a Parallel Model of
Transaction, ACM Proc. of Principle of
Database Systems, pp.293-305, 1982.

[6] W. Lin and J. Nolte, Basic Timestamp, Multi-
Version Timestamp and Two-Phase Locking,
VLDB 19883, pp. 109-115.

[71 K.Saisho and Y.Kambayashi, Multi-Wait Two-
Phase Locking Mechanism and its Hardware
Implementation, Proc. on 5th Inter. Workshop
on Database Machine, Japan, 1987. pp 198-211.

[8] S.Nishio et al., Performance Evaluation on
Several Cautious Schedulers for Database
Concurrency Control, Proc. on 5th Inter.
Workshop on Database Machine, Japan, 1987.
pp 212-225..

[9] M.Stonebraker, Operating System Support for
Database Management, Comm. of ACM, Vol.
24, No. 7, 1981. pp. 412-418.

[10]1X.Zhong and Y.Kambayashi, Execution
Selection Strategies Suitable for Database
Concurrency Control, Proceedings of 36th
Annual Convention, IPS Japan, Mar. 1988. (in
Japanese)

{8y

