
Electronic Preprint for Journal of Information Processing Vol.28

Invited Paper

Parallel Discovery of Trajectory Companion
Pattern and System Evaluation

Yongyi Xian1,a) Yan Liu1,b) Chuanfei Xu1,c) Sameh Elnikety2,d) Elie Neghawi1,e)

Received: January 16, 2020, Accepted: June 29, 2020

Abstract: Trajectories consist of spatial information of moving objects. Over contious time spans, trajectory data
form data streams constantly generated from diverse and geographically distributed sources. Discovery of traveling
patterns on trajectory streams such as gathering and companies enables value domain applications. Such a discovery
needs to process arrival records in various sources and correlate across records near real-time. Thus techniques for
handling trajectory streams should scale on distributed cluster computing. The challenge is at three aspects, namely a
data model to represent the continuous trajectory data, the parallelism of the discovery algorithm, and an end-to-end
parallel framework. In this paper, we propose a parallel discovery method that consists of 1) a model of partitioning
trajectory samples on various time intervals; 2) definition on distance measurements of trajectories; and 3) a paral-
lel discovery algorithm. We build a stream processing workflow and investigate experiments on a public dataset to
evaluate the system’s performance, scalability, stability, and data intensity. Our method discovers trajectory gathering
patterns with low latency and scales as the size of trajectory data grows.

Keywords: data stream processing, parallel computing, distributed computing, big data

1. Introduction

A trajectory is the sequence of spatial locations or points that
a moving object follows over a function of time. Trajectory data
are generated by means of location-acquisition technologies such
as GPS positioning, sensors probing, mobile phones monitoring
and many smart devices. These spatial-temporal location data are
usually recorded in the format of trajectory streams [18], [25].
Each record in a trajectory stream consists of a trajectory ID,
location (including latitude, and longitude), and timestamp. In
this work, we term trajectory data streams collected from hetero-
geneous sources as heterogeneous streaming data. For example,
the Microsoft Geolife project [29] collected the trajectories of ob-
jects’ outdoor movements that are recorded by different GPS log-
gers and GPS-phones. Due to heterogeneous GPS positioning
sources, the objects’ locations can be recorded by different time
intervals. Some objects could be recorded every 3 seconds and
other objects could be recorded every 5 seconds, which results in
heterogeneity of trajectories.

Research effort has been dedicated to discovering groups of ob-
jects that travel together over a certain duration of time [8], [11],
[19], [20], [27], [28]. In these works, snapshots contains samples
of trajectories at every time interval.

A simple case is illustrated in the following example of Fig. 1.

1 Gina Cody School of Engineering and Computer Science， Concordia
University, Canada

2 Microsoft Research, USA
a) yongyi.xian@mail.concordia.ca
b) yan.liu@concordia.ca
c) chuanfei@encs.concordia.ca
d) samehe@microsoft.com
e) elie.neghawi@concordia.ca

Fig. 1 Illustrating example of trajectory snapshot model.

Connected Vehicles (CVs) are projected to make the roadways
safer through real time exchanging messages containing location
and other safety-related information with other vehicles. This re-
quires to discover which vehicles travel together in a duration
of time. Weijia Xu et al’s work [24] explores the use of real
world connected vehicle data set called Safety Pilot Model De-
lolyment (SPMD) data. The study was conducted in Ann Arbor,
Michigan, involved over 2,700 vehicles. Due to the monitoring
range limitation of equipments, vehicles’ locations are collected
from different sources. As shown in Fig. 1 (a), two vehicles’ (A
and B) locations are collected at t1, ..., t3 and t′1, ..., t

′
4 respectively

(ti � t′i). Given a distance threshold ε, if the distance between any
two collected locations of these two objects is not more than ε,
we think these vehicles travel together at this time. In Fig. 1 (a),
we observe the distances from any collected location of A to the

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

trajectory of B are always less than ε. Therefore, they can be re-
garded as companions. We should discover them from trajectory
data. However, based on the snapshot model (see Fig. 1 (b)), we
cannot collect both a location of A and a location of B in a same
snapshot. Therefore, trajectory companions is non-deterministic
in this case.

Current techniques have two limitations. First, the snapshot
modeling methods [8], [11], [19], [20] only consider locations of
those objects of the same timestamp, while records of objects at
different timestamps are missed and thus the relations are not dis-
covered. The second limitation is that most of those techniques
are demonstrated on a centralized computing environment. It
is not trivial to cope these techniques with large-scale trajectory
streams.

The main research we focus on is how to define a parallel tra-

jectory model that contains continous trajectory objects within a

time period? We further study three detailed research questions in
parallelism: RQ1) What is the discovery method of handling het-

erogeneous streaming data precisely? RQ2) How to parallelize

the discovery algorithm on a cloud platform to scale? RQ3) How

to reduce end-to-end delay by improving data locality?. Our pre-
vious work in Ref. [1] targets at the first two research questions
and discovers relations of trajectory objects at continous times-
tamps. We develop a trajectory slot model for compute trajectory
companion with objects’ locations at each timestamp and objects’
movements in a time period. We then define distance metrics to
measure densities of trajectories for their companion discovery
over time. We develop a discovery algorithm and build a parallel
framework to cope with data locality and load balancing.

This paper is an extension to Ref. [1] specifically to investi-
gate the third research question. Our trajectory slot model re-
quires intersection of trajectory objects from partitions of trajec-
tory streams. We analyze the inverted merging method, the self-
cartesian set method, the broadcast method, and the inner join
hash partition method. The analysis leads to adopt the inner join
hash partition method to optimze our trajectory slot model to gen-
erate trajectory companies. We further evaluate stability and data
intensity in terms of the data shuffling rate with regards to the
size of data per time slot. We decompose the execution time to
identify the time consuming operations.

Overall, our research work has the contributions in three-fold
as follows:
• Devise traveling groups termed Trajectory Companions

(TCompanion) on heterogeneous streaming data. Compared
to other existing traveling groups, TCompanion represents
the heterogeneity of data with accuracy (Section 3, RQ1).

• Design a parallel framework with a suite of techniques and
an effective load-balancing strategy (Section 4, RQ2).

• We propose optimization algorithms in our parallel frame-
work to improve end-to-end performance. Compared to one
state-of-the-art method, our algorithm can discover more
accurate traveling companions with comparable throughput
and latency (Section 6.2, RQ3).

The rest of the paper is organized as follows. Section 2 sum-
marizes the related work. Section 3 formally defines the problem
and the model in this paper. Section 4 and Section 4.3 present our

solutions. Section 6 illustrates the experimental results. Section 8
concludes the paper.

2. Related Work

2.1 Discovery of Traveling Groups
A number of concepts have been defined to discover a group

of objects that move together for a certain period of time, includ-
ing flock [5], convoy [8], swarm [11], companion [19], [20], and
Gathering [27], [28]. These concepts can be distinguished by
characteristics such as how a group is defined and whether the
definition requires the time period to be consecutive. These char-
acterizes are further explained as follows:

- flexible group pattern denotes a method captures the pattern
of any shape. For example, a method that adopts the density-
based clustering belongs to this category as objects can form any
shape in a density-based clustering group;

- consecutive time denotes a cluster of objects lasting for con-
secutive timestamps. For instance, companion groups objects in
a density-based clustering and it requires a group of objects to be
density-connected to each other during a consecutive time period;

- stream processing denotes that this method can cope with up-
dates of trajectory data online;

- flexible lifetime denotes that members can join and leave a
cluster arbitrarily;

- parallelism denotes a method can parallel process trajectory
data;

- heterogeneous pattern means that the method can handle mul-
tiple trajectory sources with different timestamps.

These characteristics affects the accuracy and effectiveness of
a discovery traveling groups or companions from heterogeneous
trajectories. For example, an algorithms without flexible group

pattern may miss objects belongs to traveling groups whose loca-
tion distributions are not regular. As illustrated Example 1, at
timestamp t′1, o2 leaves o1 (i.e., the distance is more than the
threshold), and then o2 is back after the following time period.
If the method without flexible lifetime, we will miss the compan-
ions o1 and o2.

Existing methods have limitations by satisfying all these char-
acteristics. We summarize the characteristics of these methods in
Table 1.

In this paper, we propose to discover generic traveling groups
and ensure the parallel processing of heterogeneous trajectory
streams. To our best knowledge, Gathering approach is the cur-
rent state-of-the-art method. In our experiment described in Sec-
tion 6.2, we will adjust Gathering to parallel processing, and
compare our proposed method with it.

2.2 Trajectory Segmentation
In many scenarios, such as trajectories clustering, we need

to divide a trajectory into segments often referred to minimum
bounding rectangles (MBRs) for a further process. We study dif-
ferent segmentation techniques as follow.

- Equal-Split. This technique produces MBRs of fixed time in-
terval of length n. That is, the number of sequence objects. It is
a simple approach with the linear cost with regard to the length
of a trajectory. The length of MBRs is affected by the number of

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Table 1 Group characteristics and discovery methods.

flock convoy swarm companion gathering the proposed
flexible group pattern ×

√ √ √ √ √

flexible consecutive time × ×
√

×
√ √

stream processing × × ×
√ √ √

flexible lifetime × × × ×
√ √

parallelism × × × ×
√ √

heterogeneous pattern × × × × ×
√

splits, k. The increase of k can lead to larger storage space.
- k-Optimal. We can discover m MBRs of a trajectory that take

up the least volume with a dynamic programming algorithm that
requires O(n2m) computing time [7].

- Greedy-Split. An MBR is assigned to each of the n sequence
objects. At each object, the consecutive MBRs are merged that
will consume the least volume. This has a computing time of
O(nlogn). Totally N objects are assigned to k splits. This ap-
proach is suitable when one is dealing with object sequences of
different lengths with the total complexity of O(k + NlogN).

Although k-Optimal and Greedy-Split introduce least volume
consumption, the complexity is higher than Equal-Split. More-
over, space utilization of MBRs is not our major concern. Our
main purpose of utilizing MBRs is to prune segment pair by cal-
culating the Euclidean distance between MBRs, which will be
described in Section 3.2. For simplicity, we apply Equal-Split in
our case.

2.3 Parallel Platforms for Trajectory Data
A number of high-performance parallel platforms exist that can

handle data streams [13], [14], [15], [26]. In particular, we study
different parallel platforms that are suitable for stream trajectory
data.

MapReduce Online [17] pipelines the intermediate data be-
tween Map and Reduce operators. MapReduce Online differs
from the traditional MapReduce where mappers transmit data to
reducers in a push fashion. Therefore, the reducers do not have to
wait until the last map task has finished. However, MapReduce
Online lacks of the ability to cache intermediate level data, which
is crucial for trajectory analysis that consists of massive iterative
operations.

Apache Storm [10] is a low latency, in-memory data stream
processing system. It implements the data flow model in which
data flows continuously through a network of transformation en-
tities. In many enterprise applications, Storm is used as their real-
time architecture for integrating and processing streaming data.

Apache Spark [9] is a fast, in-memory data processing frame-
work originally developed by UC berkeley AMPLab. The aim
of Spark is to make data analytic program run faster by offer-
ing a general execution model that optimizes arbitrary operator
graphs, and supports in-memory computing. It uses a main mem-
ory abstraction called resilient distributed dataset (RDD) with
which spark performs in-memory computations on large clusters
in a fault-tolerant manner [26]. Spark Streaming is extended from
Spark by adding the ability to perform online processing through
similar functional interfaces to Spark, such as map, filter, reduce,
and so on. Spark Streaming runs streaming computations as a
series of short batch jobs on RDDs, and it can automatically par-

allelize the jobs across the nodes in a cluster. Also, it supports
fault recovery for a wide array of operators.

We finally select Spark as the computing platform for our work.
Particularly, we use Spark Streaming to realize the trajectory data
stream processing workflow.

2.4 Batch-based Spatial Data Processing
We analyze papers on spatial data processing since trajectories

consist of spatial points or locations. Generally, the parallel archi-
tecture of batch-based trajectory data processing includes 3 key
steps: First, a partition method is chosen to divide all trajectory
data into batches. Second, a spatial index for these batches of
data is built to improve data search efficiency. Finally, partitioned
batch data are run in parallel on a number of nodes. The whole set
of trajectory data are stored in HDFS or distributed file systems.

For spatial indices, there exist a large body of research work
such as R-tree [6], multi-version B-tree [2], quad-tree [16] and
so on. R-tree is one of most popular spatial indexes for multi-
dimensional data. The R-tree index height-balances index struc-
ture. Objects are represented by MBRs. Each leaf node of the R-
tree points to the MBRs of objects and each internal node points
to other internal nodes or leaf nodes [6]. For trajectory data,
Saltenis et al. [21] propose an extension version of R-tree termed
Time-Parameterized R-tree (TPR-tree) that augments the R-tree
with velocities to index moving objects. Another often used index
structure is the quadtree. Samet [16] has done a thorough survey
of the quadtree and the related hierarchical data structures.

In parallel processing, Ahmed Eldawy et al. propose a MapRe-
duce framework for spatial data called SpatialHadoop [3] that
adds a simple and expressive high level language for spatial data
types and operations. In the storage layer of SpatialHadoop, it
adapts traditional spatial index structures to support spatial data
processing and analysis.

Above techniques are suitable to batch-based processing that
requires all historical trajectory data be archived to construct spa-
tial indexes. In trajectory streaming, only limited trajectory data
can be buffered given a time window. Even though the mem-
ory resources allow to store massive amount of historical data,
updating spatial index at each time window to include newly ar-
rival data streams incurs high cost. Improving the segmentation
and indexing techniques in batch processing is not the focus of
our solution to trajectory data streaming. Instead, we propose a
method with data partition and traveling group discovery in the
streaming mode.

3. The Trajectory Slot Model

We define Trajectory Slots to denote subsets of trajectories in
equal time intervals. Each trajectory slot consists of moving ob-

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 2 Trajectory slot model.

jects from all trajectories within the time period of T . These ob-
jects are of different timestamps. For the visualization simplicity,
Fig. 2 plots four moving objects namely o1, o2, o3, o4 crossing 2
time slots of T . Along the trajectory of each object, a point ox

j , de-
noted as x-th point of object o j, contains the location information
as well as timestamp when object o j is sampled.

For data streams, new trajectory slot (TS) is generated by ar-
riving trajectory data within every T time. For analysis, a certain
number of trajectory slots can be buffered for analysis.

In the time order, points of an object are connected spatially
that forms virtual polylines of an object. The assumption is if the
distance of two polylines within a time slot is measured, and dis-
tance is within a threshold value for a sequence of time slots, the
two objects are likely forming a traveling company within these
time slots.

This model partitions the streaming data arriving in time order
into slots. The responsiveness requirement of a discovery method
becomes handling objects of all trajectories within T time. Ta-
ble 2 summarizes the symbols to be used in this model.

3.1 Concept Definition
Based on trajectory slot model, we formulate our problem of

trajectory company discovery with definitions on concepts and a
processing framework.
Definition 1. (Slot Trajectory Coverage): Let OTS be the ob-
ject set in a trajectory slot TS , ε be the distance threshold, and
oi, o j ∈ OTS . o j is a slot trajectory coverage for oi denoted by
o j � oi if Dist(oi, o j) < ε, where Dist denotes Euclidean distance
between oi and o j. Distance measurement will be discussed in
Section 3.2.

We further aim to find all the slot trajectory coverage for each
object, and combine them into a coverage density set for each
object. The definition is given below.
Definition 2. (Coverage Density Reachable): oi ∈ OTS , the
coverage set of oi contains each object that is a slot trajectory
coverage for oi, denoted as Cs(oi) = {o j ∈ OTS |o j � oi}. Let ε be
the distance threshold and μ be the density threshold, object oi is
coverage density reachable from o j, if |Cs(oi)| ≥ μ.

In Fig. 2, assume ε-neighbourhood of o2 covers o3 within TS 1.
According to Definition 1, we compute o2 � o3. Therefore,
o3 ∈ Cs(o2). Likewise, assume the ε-neighborhood of o2 cov-
ers o1. So o1 ∈ Cs(o2). In conclusion, Cs(o2) = {o1, o3} and

Table 2 Commonly used symbols.

Symbol Description
TS trajectory Slot
O set of moving objects
oi i-th object in O
ox

j x-th point or location of object o j

Cs(oi) coverage set of oi

n number of partitions
t timestamp (in seconds)
T set of objects’ trajectories
uv lines in the trajectory
T duration of trajectory slot (in seconds)
ε distance threshold
μ density threshold
� companion size threshold
k companion time duration threshold

|Cs(o2)| = 2. If μ is set to be 2, |Cs(o2)| >= μ and thus o2 is
coverage density reachable from o1, o3.
Definition 3. (Coverage Density Connection): For oi ∈
OTS , the coverage density connection of oi is defined as a set
cd(oi)=oi ∪ Cs(oi), where |Cs(oi)| > μ. Following the above ex-
ample, the coverage density connection at TS 1 is { o1, o2, o3}.
Definition 4. (Trajectory Companion): Let k be the duration
threshold, and � be the size threshold, trajectory companion is
defined as a set of objects, if i) the objects are of coverage density
connection for a continuous k trajectory slots and ii) |TC| > �.

Assume that k = 2, � = 3, {o1, o2, o3} is coverage density con-
nection in TS 1 and {o1, o2, o3} is a coverage density connection
in TS 2. Therefore, the set {o1, o2, o3} satisfies the requirements
of k = 2, � = 3. Therefore, the set {o1, o2, o3} is derived as a
trajectory companion given the time periods of TS 1 and TS 2.

The above definition of trajectory companion means objects
of trajectories being spatially close enough (within a distance
threshold) over a fixed time period. It is not necessary for one
object to be close enough to its companion objects at every times-
tamp. Thus this trajectory slot model has the characteristics of
flexible group pattern, flexible consecutive time, flexible lifetime

and heterogeneous pattern in Table 1.

3.2 Distance Metrics
The concept of coverage density reachable depends on the dis-

tance between two moving objects. We propose the Euclidean
distance measured by two approaches , namely Point-to-Polyline
(P2PL) and Polyline-to-Polyline (PL2PL).
3.2.1 Point-to-Polyline Approach

The Point-to-Polyline (P2PL) measures the minimum per-
pendicular distance of each point to a line segment pair. Let
Li and Lj be the polylines of the objects oi and o j. As-
sume object oi moves along the polyline Li and passes the
points <(x1, y1), (x2, y2), (xm−1, ym−1), (xm, ym)..., (xn, yn)> in or-
der, where (xi, yi) (1 < m ≤ n) denotes the spatial coordinate.
Given a point of o j as p j = (xp, yp), and s(m)

i represents the m-th
line segment of the polyline Li of oi. A vector v perpendicular to
the line segment s(m)

i is given by

v =

⎡⎢⎢⎢⎢⎣ ym − ym−1

−(xm − xm−1)

⎤⎥⎥⎥⎥⎦ , (1)

Let r be a vector from the point p j to the point (xm−1, ym−1) in

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

s(m)
i ,

r =

⎡⎢⎢⎢⎢⎣ xm−1 − xp

ym−1 − yp

⎤⎥⎥⎥⎥⎦ , (2)

then the distance from p j to the s(m)
i is given by projecting r onto

v, giving,

dm(si, p j) = |v̂ ·r|

=

∣∣∣(xm− xm−1)(ym−1−yp)− (xm−1− xp)(ym−ym−1)
∣∣∣√

(xm− xm−1)2+ (ym−ym−1)2

(3)

Therefore, the distance between any two objects oi and o j is de-
fined as the minimum distance among all (si, p j) pairs such that,

D(oi, o j) = min
m∈I
{dm(si, p j)}. (4)

3.2.2 Polyline-to-Polyline Approach
Similar to the point to polyline approach, the polyline to poly-

line (PL2PL) approach also partitions the trajectories into time
slots. We analyze polyline distance relations in each slot. In
the d-dimensional space, the polyline of object oi passes the
points <(x(1)

1 , ..., x
(p)
1 , ..., x

(d)
1), t1>, <(x(1)

2 , ..., x
(p)
2 , ..., x

(d)
2), t2>,...,

<(x(1)
n , ..., x

(p)
n , ..., x

(d)
n), tn> by order, where x(p)

i (1 ≤ i ≤ n) de-
notes p-th dimension coordinate, and ti denotes timestamp to pass
x(p)

i . Assume that oi moves along with this polyline, and keeps
uniform speed between two points. The p-th dimension coordi-
nate of oi can be estimated as

x(p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(p)
1 +

x(p)
2 −x(p)

1
t2−t1

· (t− t1) (t1 ≤ t < t2)

x(p)
2 +

x(p)
3 −x(p)

2
t3−t2

· (t− t2) (t2 ≤ t < t3)

...

x(p)
n−1+

x(p)
n −x(p)

n−1
tn−tn−1

· (t− tn−1) (tn−1 ≤ t < tn)

(1 ≤ p ≤ d)

(5)

Assume that a location of oi collected at t1 timestamp is de-
noted by ot1

i and a location of o j collected at t2 timestamp
is denoted by ot2

j . Following spatio-temporal data processing
work [12], this distance should include two parts: spatial distance
and temporal distance. In our study, we employ the distance func-
tion that considers both space and time factors below.

Fα(o
ta
i , o

tb
j)

=

√
SpatialDist2(ota

i , o
tb
j) + α · TemporalDist2(ta, tb),

(6)

where SpatialDist(., .) denotes Euclidean distance,

SpatialDist(ota
i , o

tb
j) =

√√√ d∑
p=1

(x(p) − x′(p))2 (7)

where x(p) and x′(p) are the p-th dimension coordinates of
oi and o j respectively, which can be obtained by Eq. (5).
TemporalDist(., .) is a normalized time-distance function, applied
only within a time slot T , where temporal distance indicates how
close between ta and tb. The value of this distance is evaluated as

TemporalDist(ta, tb) =

⎧⎪⎪⎨⎪⎪⎩
|ta−tb |

T |ta − tb| ≤ T

N/A |ta − tb| > T
(8)

The distance between any two objects oi and o j is define as

D(oi, o j) = min
ta ,tb∈I

{Fα(ota
i , o

tb
j)} (9)

4. Parallel Processing Framework

We define a two-phase trajectory processing framework to ad-
dress the remaining characteristics of stream processing and par-
allelism in Table 1.
• The coverage density connection discovery phase. In this

phase, we first utilize the trajectory slot model to set up the
unit time T of a slot. We then partition the number of trajec-
tories within each slot into n sub-sets (sub-partitions), where
n is a key parameter to adjust the level of parallelism. Next
we find all the coverage density connections in each sub-
partition.

• The trajectory companion generation phase. In this
phase, we merge coverage density connections in sub-
partitions, and the generate trajectory companions based on
results for k continuous trajectory slots.

The processing elements and data flows are illustrated in Fig. 3.
In our framework, the procedure includes 4 steps:
• Step I: Trajectory partition–data within each trajectory slot

are partitioned into n sub-partitions;
• Step II: Find coverage density reachable–find coverage den-

sity reachable for each object in every sub-partition;
• Step III: Find coverage density connection–find all coverage

density connections in each sub-partition;
• Step IV: Merge–find coverage density connections in differ-

ent sub-partition that have same objects and merge them.
In the following sections, we present the parallel algorithms

and techniques on developing the two-phase framework.

4.1 Load-balanced Trajectory Partition
When partition the trajectories, we aim to balance the load on

each partition in term of the number of objects in each partition.
We apply the K-D tree [4] indexing technique. In the K-D tree,
there exist nearly equal amount of data in the tree nodes. The
steps is illustrated as Algorithm 1.

First, the algorithm computes the variance of all points in x-
dimension and y-dimension respectively. Data in a dimension
with a larger variance would have more dispersive distribution,
hence the dimension of a larger variance is selected to further split
the space. The method computes the variance in each dimension
and splits points into smaller regions until the number of regions
equals to the fixed number n. The value n is related to the level
of parallelism. The way to determine how many partitions to set
will be concluded in Section 6.4.

4.2 Parallel Discovery of Coverage Density Connection
Algorithm 2 first discovers the coverage density reachable ob-

jects and then combined them into coverage density connection
by processing the objects in each partition returned from Algo-
rithm 1.

Algorithm 3 illustrates the polyline-to-polyline (PL2PL) dis-
tance calculation used in computing the coverage density reach-
able of each object. Due to the space limitation, we omit the

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 3 The structure of two-phase framework.

Algorithm 1: K-D Tree Based Partition
Input : trajectory data T in a slot, object set O, number of partitions

n

Output: {P1, ..., Pn} and {PL1, ..., PLn}
1 m←− 1

2 while m < n do
3 for each region do
4 Compute the the variance in each dimension

5 Pick up the middle value in the dimension with lager

variance

6 Split the region into two smaller regions with the middle

value
7 m←− m + 1

8 Extend the borderlines of each regions

9 Give each region an ID

10 for each point v of any object in O do
11 if v is located in i-th region then
12 Put v into Pi

13 for each line vu in T do
14 if vu and i-th region have common points then
15 Put vu into PLi

16 Return Pi and PLi

Algorithm 2: Coverage Density Connection Discovery
Input : trajectory data T in a slot, number of partitions n

Output: coverage density connections in each sub-partition

1 Call Algorithm I

2 for each object oi in a sub-partition do
3 Find coverage density reachable from oi

4 Return coverage density connections

point-to-polyline distance calculation. Let Li and Lj be the poly-
lines of the objects oi and o j, and s be the segment of a poly-
line. Each segment pair is in a key-value pair: <<i, j>, <s f

i , s
g
j>>,

where i, j denotes unique identications of polylines (Li and Lj),
and <s f

i , s
g
j> denotes the segment pair in Li and Lj respectively

(s f
i is the f -th segment in Li and sgj is the g-th segment in Lj).
We assure the segment pairs within same polyline pair can only

be assigned to the same sub-partition. This is done by means
of hash partition that partitions segment pairs based on the hash
codes of the keys (Line 10 of Algorithm 3). Therefore, in the re-
duce phase, we can use reduceByKey() function to put segment
pairs with the same key together, and then find the minimum dis-
tance of segment pairs in the same polyline pair as the polyline
distance (Line 20).

To reduce the data intensity of Algorithm 3, we introduce two
pruning rules.

Algorithm 3: Online Discovery Algorithm
Input : {T1, T2,..., Ti,... } and k

Output: trajectory companions

1 for each Ti (not empty) do
2 if i mod k � 0 then
3 Call Algorithm III to discover ∀cd within Ti

4 Put ∀cd into a setDC
5 else
6 Find pc inDC
7 Keep pc into memory

8 Call Algorithm III to discover ∀cd in Ti

9 Put ∀cd into a setDC
10 Delete ∀cd within Ti−k fromDC
11 Merge pc and ∀cd in Ti into trajectory companions

12 Return trajectory companions

Pruning Rule I: If the shortest distance between the polyline
of oi and the polyline of oi is larger than ε, then o j is not slot
trajectory coverage for oi, so it can be pruned safely.

Since the shortest distance between the polyline of oi and the
polyline of o j is not more than minta ,tb∈I{Fα(o

ta
i , o

tb
j)}, it is larger

than ε so that D(oi, o j) ≥ ε.
Pruning Rule II:

If minta ,tb∈I{
√
α · TemporalDist2(ta, tb)} > ε, then o j is not slot

trajectory coverage for oi, so it can be pruned safely.
Due to minta ,tb∈I{

√
α · TemporalDist2(ta, tb)} ≤ D(oi, o j),

minta ,tb∈I{
√
α · TemporalDist2(ta, tb)} > ε =⇒ D(oi, o j) ≥ ε.

4.3 Trajectory Companions Generation on Streaming Data
We propose an online incremental algorithm to compute the

Phase II procedure that is the trajectory companions generation
on streaming data. In a streaming data application, trajectory data
are often received incrementally. As such, the latest batch of tra-
jectory data should be appended to the streams periodically. Our
algorithm checks the discoveries from the most recent trajectory
slots and decides if they can be extended into companions with
the new arriving trajectory data.

First, we introduce a new concept of promising companion

candidate.
Definition 5. (Promising Companion Candidate): Let k be the
duration threshold, and l be the size threshold. A group of ob-
jects are promising companion candidates (denoted by pc), if the
group members coverage density connected by themselves for at
least continuous k − 1 slots and is not less than �.

According to this definition, we first divide the trajectory
streaming data into trajectory slots {T1,T2, ...,Ti, ...}, where Ti

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

denotes trajectory data within i-th slot. Then we can only check
the arriving data in the next trajectory slot to decide whether there
exists new arriving coverage density connections (cd) and save
into the density connection set DC. We find pc that lasts at least
k − 1 slots within DC. If cd and pc generate trajectory compan-
ions in the k-th slots, these trajectory companions can be found
immediately. We conclude the Online Discovery Algorithm in
Algorithm 3.

5. Merging Methods and Analysis

To discover promising companion candidates and trajectory
companions, we need to find the same objects from all the con-
nections and intersect them. Assume an average M coverage den-
sity connections in each slot and we need k − 1 iterations to gen-
erate pc, then intersecting and merging coverage density connec-
tions in each iteration has O(M2) complexity.

In this section, we propose intersecting and merging methods
and formally analyze their effectiveness to improve the runtime
performance on the Spark Streaming platform. In particular, we
aim to achieve effective data locality and reduce data shuffling.
Data shuffling incurs significant cost since it requires frequent
data serialization/deserialization, disk I/Os, and even data trans-
mission across physical worker nodes. Poor data locality causes
extra data shuffling to occur. We introduce an example below to
best analyze the method as follows in Sections 5.1 to 5.4.

Example: Let DC be the coverage density connection set,
|DC| be the number of coverage density connections. Also,
each coverage density connection cd is in the format of Spark
RDDs such as <<TS id, Pid>, {ob jectid...}>, where TS id denotes
the identification (ID) of a trajectory slot, Pid denotes the ID of a
sub-partition in each slot, and ob jectid denotes the ID of an object
contained by the same coverage density connection.

Given DC = {cd1 = <<4, 1>, {1, 2, 3}>, cd2 = <<4, 2>,
{2, 3, 4}>, cd3 = <<5, 1>, {5, 6, 7}>, cd4 = <<5, 2>, {1, 3, 4}>},
find the same objects from all connections in each time slot and
intersect them.

5.1 Inverted Merging Method
The inverted merging method first inverts the keys and val-

ues of the RDD of coverage density connections. The inverted
pair becomes <<{ob jectid...}>, TS id, Pid>. Then each pair is
further mapped to a new set of key-value pairs as <ob jectid,
<TS id, Pid>>. The next step is to reduce values with the same
key as <ob jectid, <TS id, Pid>...>. Eventually based on the val-
ues that are the original slot ID and sub partition ID, the original
values of objects are merged. This method avoids intersecting
every pair of coverage density connects by means of Spark key
operations only. Assume that |C| is the average number of cover-
age density connections that contain the same object in one slot.
The number of pairs equals to n · |C| · |O|, where |O| is the number
of objects in one slot and n is the number of trajectories. This
method is still intensive on both computing time and in-memory
storage space.

5.2 Self-cartesian Set Method
Cartesian operation returns the cross product of two RDDs or

RDD to its identical self. Given the above example, we com-
pute the self-cartesian such that DC × DC = {(cdi, cd j)|i � j and
cdi, cd j ∈ DC

}
in the following matrix,

DC ×DC =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
− (cd1, cd2) (cd1, cd3) (cd1, cd4)

(cd2, cd1) − (cd2, cd3) (cd2, cd4)
(cd3, cd1) (cd3, cd2) − (cd3, cd4)
(cd4, cd1) (cd4, cd2) (cd4, cd3) −

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
In the worst case scenario, assuming cd1, cd2, cd3, and cd4 are all
located in different worker nodes, cd2, cd3, and cd4 need to shuf-
fle to where cd1 is located to form the first row of the matrix.
This costs |DC| − 1 times data shuffling since we ignore the self-
contained pair. Similarly, the same procedure repeats for the rest
of rows. Therefore, the total cost of data shuffling, Γ1, is calcu-
lated as

Γ1 = (|DC| − 1) · |DC| � |DC|2. (10)

Next, we intersects each pair (cdi, cd j). We observe that 66% of
pairs (e.g. (cd1, cd3)) are within different time slots meaning they
should not be merged. This indicates the cartesian method pro-
duces unnecessary pairs that would not be merged eventually.

5.3 Broadcast Method
Broadcast variable allows a read-only dataset to be shared

throughout the cluster. Assuming cd1, cd2, cd3, and cd4 are in
separate worker nodes each. A broadcast method first collects
DC on the driver node and stores it as a broadcast variable. Next,
the broadcast variable is redistributed back to each worker node
such that they all own a copy of DC. On each worker node, we
then compute cdi · DC =

{
(cdi, cd j)|i � j and cd j ∈ DC

}
. In our

example, we obtain the result as the following,

cdi ×DC =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
cd1 ×DC → (cd1, cd2), (cd1, cd3), (cd1, cd4)
cd2 ×DC → (cd2, cd1), (cd2, cd3), (cd2, cd4)
cd3 ×DC → (cd3, cd1), (cd3, cd2), (cd3, cd4)
cd4 ×DC → (cd4, cd1), (cd4, cd2), (cd4, cd3)

where the equation in each roll represents the computation on
each worker node. Finally on each worker node, the method it-
erates through pairs of coverage density connections locally to
merge them. During this process, the total communication cost,
Γ2, is calculated as two rounds transmission of DC among w
worker nodes such that,

Γ2 = 2 · w · |DC|. (11)

When Γ2 < Γ1, the performance of the broadcast method is
better than the self-cartesian set method. The assumption of the
broadcast method is that the collected data size should fit in mem-
ory of the driver node, otherwise out-of-memory exception could
lead to runtime failure to the driver node. Therefore, the method
is limited to the size ofDC.

5.4 Inner Join Hash Partition Method
In Spark, partitions are each stored in a worker node’s mem-

ory. One worker node may contain one or more partitions but
a partition never spread on different worker nodes. By this

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

means, an aggregation can be processed locally without shuf-
fling if data of the same key or hashing result of the key are in
the same partition. We propose a new method called Inner Join
Hash Partition (IJHP) that simply hash the key to a partition as
key.hashCode()%numPartitions. In IJHP, the slot id slotid is con-
sidered as the key that means density connections of the same
time slot are guaranteed to be in the same partition. The data
shuffling occurs when a density connection is not within the node
it is hashed to. Therefore the data shuffling cost is at most the
size of the density connections. As the estimation below, a fac-
tor β (0 < β ≤ 1) denotes the portion of the coverage density
connections that need to be shuffled,

Γ3 = β · |DC|. (12)

Since Γ3 < Γ2, IJHP has the minimal data shuffling cost. Hence
we decide to use the IJHP method to generate trajectory compan-
ions.

6. Evaluation

We conduct a thorough evaluate of our proposed methods
on a real dataset with three algorithms: (1) snapshot based
model called gathering method [27], [22]; (2) our trajectory slot
model with the point-to-polyline distance measures (referred as
TCompanion-P2PL) [23] *1; and (3) the trajectory slot model
with the polyline-to-polyline distance measures (referred as
TCompanion-PL2PL). We evaluate the following the quality at-
tributes, namely Precision and Recall, Performance and Scalabil-
ity, Data Shuffling and Intensity and Stability.

All experiments are conducted on Amazon Web Services
(AWS). We use one driver node and up to sixteen worker nodes in
AWS. The deployment settings in our experiments are as follows:
each node is of AWS EC2 t2.large with 2 cores each and 8 GB
memory. Amazon S3 was used for storing the original dataset.
We run Apache Spark 1.5.1. We utilize Kafka to inject the data
streams to the two-phase framework running on Spark Stream-
ing *2.

6.1 Data Samples
We use a real GPS trajectories dataset collected by the Geolife

project in Microsoft Research Asia *3. The dataset contains 78
real users in a period over four years (from April 2007 to October
2011) and records a broad range of users’ outdoor movements,
including daily routines of commute as well as entertainment and
sport activities, such as shopping, sightseeing, dining, hiking, and
cycling. There are 17,621 trajectories and over 20 million loca-
tion records with a total distance of about 1.2 million kilometers.
These users’ trajectories were recorded by different GPS loggers
and GPS-phones with a variety of sampling rates. To generate
intensive workload for the experimental purpose, we ignore the
date attribute of each GPS trajectory, so that they are regarded
as the trajectories within one day. Each location record contains

*1 we developed P2PL parallel implementation on Spark in batch process-
ing corresponds to Section 2.4

*2 http://spark.apache.org/docs/latest/streaming-kafka-integration.html
*3 http://research.microsoft.com/en-us/downloads/b16d359d-d164-469e-

9fd4-daa38f2b2e13/default.aspx

Table 3 Parameter settings.

Factor Range Default
ε {0.00005, 0.0001, 0.0005, 0.001, 0.005} 0.0001
α [0, 1] 1
n [2, 16] 2
T [40, 80] 60

Fig. 4 Trajectory visualization.

the information of latitude, longitude and timestamp of an object.
Table 3 shows our parameter settings. α default value is 1 means
that both time and space factors in the distance function have the
same weight. In experiments, over 10 thousands new locations of
trajectory objects are injected per second.

To evaluate the precision and recall of each algorithm, we need
ground truth by sampling the trajectories of objects within a small
region (e.g., 1 km×1 km). We choose a fixed number of objects in
this region. We then extract locations of these objects with a time
period. Finally, we select objects that have at least one location
within the distance threshold to trajectories of the original chosen
objects.

We plot the trajectory samples in Fig. 4. The static view shows
the visual hints which trajectories are spatially close to each other.
Some objects’ trajectories are always close but do not imply they
are in companion without considering the time constraint. Con-
sider the two trajectories within the zoomed area, each trajectory
has two timestamps (shown in diamond and circle accordingly),
indicating the object traveled to the north from 6:15am to 6:25am.
The second object traversed the same path about 2 hours later
(8:30am - 8:40am). Technically, these trajectories are not com-
panions.

To further refine a true trajectory companions, we measure
each pair of objects (ot1

i , o
t2
j) by applying equation 8. If any two

trajectories have k or more pairs meeting the requirement, we
conclude that they are the true trajectory companions. Following
this procedure, we discover 4 object’s trajectories are companions
(northwest circle in red in Fig. 4). Thus, we consider these results
as ground truth.

6.2 Precision and Recall Evaluation
We used 12 selected sample trajectories and the predefined

ground truth results to evaluate the precision and recall for each

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 5 Precision, Recall and F1-score.

algorithm. Suppose we use the algorithm x to find a set of trajec-
tory companion pairs (denoted by ˜TC(x)), and the set of ground
truth trajectory companion pairs is denoted by TC(x). The preci-
sion is computed as

Precision(x) =
| ˜TC(x) ∩ TC(x)|
| ˜TC(x)|

× 100% (13)

Also, the recall is computed as

Recall(x) =
| ˜TC(x) ∩ TC(x)|
|TC(x)| × 100% (14)

Lastly, the F1-score is computed as

F1(x) =
Precision(x) × Recall(x)
Precision(x) + Recall(x)

× 100% (15)

Figure 5 shows the precision, recall and F1-score of our pro-
posed algorithm (TCompanion) and the competitor algorithm
(Gathering) [22], [27]. We vary the size of trajectory slot T from
40 to 80 seconds. For the Gathering algorithm, T represents the
bound of any two snapshot groups within a gathering. We can
see our algorithm has higher precision recall and F1-score. For
our algorithm TCompanion, the precision increases and the recall
decreases with increasing value of T . As T increases, discovered
trajectory companions need to maintain the status of being close
enough for kT period of time. Lager T leads to lower precision
and higher F1-score. When T = 60, the F1-score is highest. We
set 60 seconds as default value in the following experiments.

6.3 Performance Comparisons
We compare the throughput and latency of algorithms of Gath-

ering and TCompanion. The throughput in term of location points
processed per second is

throughput =
totalnumberoflocations

procesingtime

and the average latency of processing each location record is

latency =
procesingtime + waitingtime

totalnumberoflocations

The Gathering algorithm processes data in one snapshot each
time. Since the data size within each snapshot is not big, the
efficiency is not improved by scaling out the computing nodes.
Hence, we set n = 2 for the performance evaluation experiments.

Figure 6 illustrates results by varying the distance threshold ε.
Both throughput and average latency of the two algorithms are

Fig. 6 Throughput and latency comparison.

Fig. 7 Scalability comparison.

comparable. TCompanion has more distance computation since
it considers all the timestamps within one time slot.

Combined the evaluation results on precision and recall, and
performance, TCompanion discovers traveling companions with
better accuracy and comparable runtime performance to that of
Gathering. Given this observation, we focus on experiments in
the following sections to further identify key factors contributing
to system level quality attributes.

6.4 Scalability Evaluation
We scale out the number of worker nodes to observe the hori-

zontal scalability between the algorithm of TCompanion with two
distance metrics P2PL and PL2PL. In AWS, we deploy 8 to 16
nodes. Figure 7 plots the throughput under different size of the
cluster.

Each executor is running on one node in the cluster. By in-
creasing the number of partitions and adding more cluster nodes,
the system produces optimal throughput as the numbers of par-
titions and executors reach sixteen. When the number of parti-
tions are larger than the number of executors, excessive partitions
need to wait for available executors till any parallel partition com-
pletes, representing the saturation regimen. When the number of

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 8 Stability comparison - input rate, processing time and scheduling delay.

partitions is low, only partial executor nodes run on partitioned
data with high workload while other executors are idle, which
also degrades performance. The experiments shows the algo-
rithms with both distance metrics scale as the number of executor
nodes and the number of partitions grow together.

6.5 Stability Evaluation
We set up the stability evaluation in alignment with the Spark

Streaming window operation. In Spark Streaming, data streams
are received as a batch of RDDs. The number of records in a
batch is determined by the batch interval. The window operation
keeps multiplies of batch intervals to make the number of batches
fit with the duration of a window. The experiment is deployed on
16 nodes of executors.

We inject the entire dataset to 30 windows into the workflow
shown in Fig. 8 (a). We consider the whole workflow system sta-
ble if the processing time of each batch of data streams is less
than the batch interval. In this experiment, we set the batch inter-
val as 10 seconds. In Fig. 8 (b) and (c), we set a horizontal line at
10 second indicating the stability threshold.

Over the span of 300 seconds (5 minutes), we observe the pro-
cessing time and scheduling delay from the Spark UI in response
to the input rates. If the processing time is over the threshold, it
implies the system has tasks waiting in the queue and thus results
in scheduling delay. From Fig. 8 (a), we can see that the input rate
peaks at windows 10 to 14.

This leads to the fact that the processing time also increases
in the corresponding windows (see Fig. 8 (b) and (c)). The al-
gorithm with the P2PL distance metrics remains the processing
time under 10 seconds per window across the entire experiment.
With the PL2PL distance metrics, the algorithm goes over stable
line at 7th window causing extra up to approximately 4-second
scheduling delay. The scheduling delay declines after 13th win-
dow since the input rate begins to decrease. This indicates to
further improve the stability of PL2PL to handle the peak load,
the underlay cluster needs to provision extra executor nodes. The
auto-scaling mechanism of Amazon Web Services can be applied
to provision and deprovision worker nodes on demands that re-
mains our future work.

6.6 Data Intensity Evaluation
In this experiment, we observe the data shuffling rate with re-

gards to the size of data per time slot. The data shuffling rate is

Table 4 Parameter settings of data intensity evaluation.

Parameter Set ε k l n T μ

S 1 0.001 3 3 8 60 3
S 2 0.005 3 3 8 60 3
S 3 0.005 3 3 8 100 3
S 4 0.005 3 2 8 100 2

Fig. 9 Data shuffling comparison.

represented by two metrics: shuffle read, and shuffle write, mea-
sured as the ratio (%) of the input data. Shuffle read (or Shuffle

write) refers to the sum of serialized read (write) data of all ex-
ecutors. Both of these metrics are obtained from the Spark UI
utility. We tune four set of parameters, shown in Table 4 to ob-
tain different size of data to process per time slot. For example,
when we increase the distance threshold (ε) and time slot (T),
more point-to-polyline or polyline-to-polyline pairs meet the den-
sity reachable requirements. Thus, the algorithm generates larger
number of density connections. We also decrease density thresh-
old (μ) and size threshold (l). This increases the data density in
the companion discovery phase of the algorithm.

As Fig. 9 illustrates, both read and write shuffling ratios of
PL2PL is higher than P2PL. This indicates the PL2PL distance
metrics has more frequent data read from and write to remote
executors. The cost of data shuffling is the major contributor ap-
proximately 20% to 30% performance difference between these
two metrics (see Fig. 6 in Section 6.3).

6.7 Execution Time Decomposition
We further decompose the execution time of the TCompanion

algorithm with PL2PL distance metrics to understand which steps
in the workflow contribute most to the time cost. Figure 10 (a)
illustrates the ratio of scheduler delay, executor computing time,
getting result time, task deserialization time, shuffle read/write
time, and result serialization time. First, majority of task exe-
cution time comprises of raw computation time that dominates

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 10 Execution time decomposition.

about 75% of total time. Second, data shuffle read/write time
takes 11%. This indicates that although data shuffling has effects
on the total time cost but it is not the main performance bottleneck
tuned by our optimization techniques.

Figure 10 (b) illustrates the time distribution over all steps in
the workflow. The companion discovery phase takes 44% of over-
all task execution time. This phase contains one transformation
to generate all subsets from density connections in order to find
trajectory companion (Algorithm 3 line 3). Its complexity yields
O(2n).

6.8 Effect of Parameters on TCompanion
We analyze the performance of TCompanion (PL2PL) un-

der parameter settings since the distance metrics of polyline-to-
polyline produces higher precision. We run the algorithm in 10
windows with each duration of 60 s that is in total 10 minutes. We
tune the distance threshold ε and observe its effects on through-
put and latency. We vary the distance threshold ε from 0.00005
to 0.005, with the geospatial meaning of 10 to 100 meters. Other
parameters use default settings. Figure 12 shows the throughput
is higher and the latency is lower by decreasing ε. One reason
is lager ε covers more objects, thus more coverage density con-
nections is generated. Intuitively, discovering companions from
these coverage density connections takes longer time. The figure
also shows during the time window 7, 8, 9, the workflow pro-
duces higher throughput and lower latency than other time win-
dows. This indicates fewer objects from the data streams form
coverage density connections and thus have less computation and
data shuffling cost.

To evaluate with Spark Streaming precisely, we test the perfor-
mance of our algorithms in multiple Spark Streaming windows *4.
We first evaluate the effect of number of work nodes, n. In AWS,
we deployed from 2 to 8 compute units, namely n is varied from
2 to 8, and other parameters are used default settings.

*4 http://spark.apache.org/docs/latest/streaming-programming-guide.html

Fig. 11 Vary n from 2 to 8.

Fig. 12 Vary ε from 0.00005 to 0.005.

Fig. 13 Vary T from 40 to 80.

Figure 11 plots the throughput and latencies of TCompanion
under different n in 10 windows (i.e., each window’s size is 60 s)
respectively. Clearly, the throughput is higher and the latency is
smaller when we use more work nodes. It can be seen that our
method’s performance can be improved dramatically if we add
the number of work nodes. Namely, the scalability of our method
is good.

Lastly, we study the effect of time slot size T on the perfor-
mance and we vary T from 40 seconds to 80 seconds. We also set
window size to be same as T , and run the method in 6 windows.
As illustrated in Fig. 13 (a), the throughput are not related with
varying T , because the average processing time for each location
record is not related with T . However, the latency becomes high
with increase of T (see Fig. 13 (b)). The reason is larger T will
have more waiting time in Spark Streaming processing.

7. Discussion and Reflection

We discuss our reflection on three factors in the design and
implementation of the parallelism.
(1) Data parallelism - We focus on data parallelism that parti-

tion the workload over multiple worker nodes at the data
input stage and the data processing stage. During the data
input stage, the data partition is performed on continuous
streams that inject into the analysis workflow by a time-
window. Therefore, the partition method is not performed
one time only but rather iteratively as the data streams ar-

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

rive at a time interval. Our technique to balance continuous
streaming load is at two levels. First, at the algorithm level,
we apply the KD-tree partition algorithm that partitions of
trajectories are balanced across worker nodes. Second, at the
API level, we replace the default implementation of Spark to
assure data locality that data records from the same partition
are not spread on different worker nodes. At the data pro-
cessing stage, we examine various data aggregation methods
quantitatively and select the most efficient one to further re-
duce the size and frequency of data shuffling. As a result,
our method assures data shuffling is not the bottleneck of
throughput. This is validated by the execution time decom-
position.

(2) Algorithm composition - The discovery method is composed
by steps of analysis. Each step consists of functions such as
using inverted index and range search to detect a crow of
moving object in the gathering algorithm. Certainly the de-
tection can have alternative ways for searching and detecting
a crow. Therefore each way performs differently in terms of
computing intensity and data shuffling. Our design of the
workflow is modular that decouples the functions in each
step of the analysis method. Hence functions and even met-
rics can be changed or replaced in the workflow to select the
best suitable one in terms of accuracy and performance. For
example, we use point to polyline and polyline to polyline.

(3) Ensemble experiments - The benefit of the algorithm compo-
sition is it allows an ensemble approach to run experiments
with the same input and system level setup. The details of
experiments differ from one to one because of the function
selection, and choice of distance metrics. Each experiment
is a parallel computing pipeline and the discovery analysis
can run these pipeline concurrently. This remains our future
work to fully automate the ensemble experiment deployment
and launching.

8. Conclusion

In this paper, we devised a parallel discovery method called
Trajectory Companions on heterogeneous trajectory data stream.
The parallelism focuses on data partition and data aggregation to
improve data locality and hence reduce the data shuffling over-
head of the discovery framework. Our discovery algorithm con-
tains both spatial and temporal functions to measure distances
between trajectories over continuously updated streaming win-
dows. In experiments, our method is able to process up to 30,000
updates per second of moving objects within 14 seconds. The
modular structure of our analysis framework allows other dis-
tance metrics and clustering methods to be applied. It remains
our future work to refractor the current method as an algorithm of
service on the cloud.

distance metrics, load-balancing strategy. To optimize the
framework, we analyzed merging method and proposed IJHP to
minimize data shuffling. Experimental results demonstrated that
the proposed method has better accuracy and competitive run-
time performance to Gathering. Although the distance metrics
of PL2PL produces higher precision than P2PL, it also results in
higher latency due to more frequent data read and write remotely.

In a nutshell, our proposed framework can keep up the grow of
data stream with a few seconds delay, which achieves nearly real
time streaming data processing.

References

[1] Xian, Y., Xu, C., Elnikety, S. and Liu, Y.: Parallel Discovery of
Trajectory Companions from Heterogeneous Streaming Data, 2019
IEEE 43rd Annual Computer Software and Applications Conference
(COMPSAC), pp.453–462 (2019).

[2] Becker, B., Gschwind, S., Ohler, T., Seeger, B. and Widmayer, P.: An
asymptotically optimal multiversion b-tree, The VLDB Journal, Vol.5,
No.4, pp.264–275 (Dec. 1996).

[3] Eldawy, A. and Mokbel, M.F.: SpatialHadoop: A MapReduce Frame-
work for Spatial Data, 31st ICDE 2015, pp.1352–1363 (2015).

[4] Foley, T. and Sugerman, J.: Kd-tree acceleration structures for a
gpu raytracer, Proc. ACM SIGGRAPH/EUROGRAPHICS, pp.15–22
(2005).

[5] Gudmundsson, J. and van Kreveld, M.: Computing longest duration
flocks in trajectory data, Proc. GIS, pp.35–42 (2006).

[6] Guttman, A.: R-trees: A dynamic index structure for spatial searching,
Proc. SIGMOD, pp.47–57 (1984).

[7] Hadjieleftheriou, M., Kollios, G., Tsotras, V.J. and Gunopulos,
D.: Efficient indexing of spatiotemporal objects, Proc. 8th Inter-
national Conference on Extending Database Technology: Advances
in Database Technology, EDBT ’02, pp.251–268, Springer-Verlag
(2002).

[8] Jeung, H., Yiu, M.L., Zhou, X., Jensen, C.S. and Shen, H.T.: Discov-
ery of convoys in trajectory databases, Proc. 2010 IEEE International
Conference on Data Mining Workshops, pp.170–177 (2010).

[9] Karau, H., Konwinski, A., Wendell, P. and Zaharia, M.: Learning
Spark: Lightning-Fast Big Data Analytics, O’Reilly Media, Inc., 1st
edition (2015).

[10] Leibiusky, J., Eisbruch, G. and Simonassi, D.: Getting Started with
Storm, O’Reilly Media, Inc. (2012).

[11] Li, Z., Ding, B., Han, J. and Kays, R.: Swarm: Mining relaxed
temporal moving object clusters, Proc. VLDB Endow., Vol.3, No.1-2,
pp.723–734 (Sep. 2010).

[12] Magdy, A., Mokbel, M.F., Elnikety, S., Nath, S. and He, Y.: Mer-
cury: A memory-constrained spatio-temporal real-time search on mi-
croblogs, ICDE, pp.172–183 (2014).

[13] Miller, J., Raymond, M., Archer, J., Adem, S., Hansel, L., Konda,
S., Luti, M., Zhao, Y., Teredesai, A. and Ali, M.: An extensibil-
ity approach for spatio-temporal stream processing using microsoft
streaminsight, Proc. SSTD, pp.496–501 (2011).

[14] Neumeyer, L., Robbins, B., Nair, A. and Kesari, A.: S4: Distributed
stream computing platform, Proc. 2010 IEEE International Confer-
ence on Data Mining Workshops, pp.170–177 (2010).

[15] Rabkin, A., Arye, M., Sen, S., Pai, V.S. and Freedman, M.J.: Aggre-
gation and degradation in jetstream: Streaming analytics in the wide
area, Proc. USENIX, pp.275–288 (2014).

[16] Samet, H.: The quadtree and related hierarchical data structures, ACM
Comput. Surv., Vol.16, No.2, pp.187–260 (June 1984).

[17] Condie, T. and Conway, N., et al.: Mapreduce online, Proc. NSDI,
pp.313–328 (2010).

[18] Tang, L.-A., Zheng, Y., Xie, X., Yuan, J., Yu, X. and Han, J.: Retriev-
ing k-nearest neighboring trajectories by a set of point locations, Proc.
12th International Conference on Advances in Spatial and Temporal
Databases, SSTD’11, pp.223–241 (2011).

[19] Tang, L.-A., Zheng, Y., Yuan, J., Han, J., Leung, A., Hung, C.-C. and
Peng, W.-C.: On discovery of traveling companions from streaming
trajectories, ICDE 2012 (Apr. 2012).

[20] Tang, L.-A., Zheng, Y., Yuan, J., Han, J., Leung, A., Peng, W.-C. and
Porta, T.L.: A framework of traveling companion discovery on tra-
jectory data streams, ACM Trans. Intell. Syst. Technol., Vol.5, No.1,
pp.3:1–3:34 (Jan. 2014).

[21] Šaltenis, S., Jensen, C.S., Leutenegger, S.T. and Lopez, M.A.: In-
dexing the positions of continuously moving objects, Proc. SIGMOD,
pp.331–342 (2000).

[22] Xian, Y., Liu, Y. and Xu, C.: Parallel gathering discovery over big
trajectory data, 2016 IEEE International Conference on Big Data (Big
Data), pp.783–792 (Dec. 2016).

[23] Xian, Y., Xu, C. and Liu, Y.: Implementing trajectory data stream
analysis in parallel, 2016 IEEE International Conference on Big Data
(Big Data), pp.2431–2436 (Dec. 2016).

[24] Xu, W., Juri, N.R., Gupta, A., Deering, A., Bhat, C., Kuhr, J. and
Archer, J.: Supporting large scale connected vehicle data analy-
sis using HIVE, 2016 IEEE International Conference on Big Data,
pp.2296–2304, (2016).

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

[25] Yuan, J., Zheng, Y., Zhang, C., Xie, W., Xie, X. and Huang, Y.: T-
drive: Driving directions based on taxi trajectories, ACM SIGSPATIAL
GIS 2010, Association for Computing Machinery, Inc. (Nov. 2010).

[26] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley,
M., Franklin, M.J., Shenker, S. and Stoica, I.: Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster comput-
ing, Proc. USENIX, p.2 (2012).

[27] Zheng, K., Zheng, Y., Yuan, N.J. and Shang, S.: On discovery of
gathering patterns from trajectories, IEEE International Conference
on Data Engineering (ICDE 2013), IEEE (Apr. 2013).

[28] Zheng, K., Zheng, Y., Yuan, N.J., Shang, S. and Zhou, X.: Online dis-
covery of gathering patterns over trajectories, IEEE Trans. Knowledge
Discovery and Data Engineering (2014).

[29] Zheng, Y., Zhang, L., Xie, X. and Ma, W.-Y.: Mining interesting lo-
cations and travel sequences from gps trajectories, Proc. World Wide
Web, pp.791–800 (2009).

Yong Yi Xian received his M.A.Sc.
(2018) and B.Eng. (2012) degrees from
Concordia University, Montreal, all in
computer engineering. In 2011, he started
his career in Presagis, Montreal, Canada,
and gained experience in GIS and
aerospace modeling and simulation in-
dustry. He later joined Bloomberg LP

in 2018 as a senior engineer and has been involved in build-
ing cloud-based, large scale, and natural language processing
enabled data processing and reporting systems for information
governance, surveillance, and trade reconstruction. His areas
of specialty and interest include big data analytics, distributed
computing systems, and natural language processing.

Yan Liu is an Associate Professor in Fac-
ulty of Engineering and Computer Sci-
ence, Concordia University. She has over
15 years research experience of devel-
oping data intensive algorithms on dis-
tributed and parallel computing systems.
Before her faculty position, she was a se-
nior research scientist in Pacific North-

west National Laboratory (PNNL) in Washington State, deliv-
ering high performance and scalable data analysis platforms for
domains of power systems, scientific computing and engineer-
ing simulation. Her recent research focuses on parallel and dis-
tributed machine learning, and automatically scaling back-end
computing resources also by means of machine learning.

Chuanfei Xu received his B.E. degree in
2007 from Shenyang University of Tech-
nology, his M.E. degree and Ph.D. degree
in 2009 and 2013 from Computer Science,
Northeastern University, China. His re-
search interests include spatial database
management, uncertain data management
and natural language processing (NLP).

Sameh Elnikety is a systems researcher
at Microsoft, focusing on experimental
server systems. His research interests
span several areas including distributed
computing, databases and operating sys-
tems. His main research theme is mak-
ing large cloud services more efficient, re-
sponsive and reliable.

Elie Neghawi is a Ph.D. Student in Fac-
ulty of Engineering and Computer Sci-
ence at Concordia University and a Se-
nior IT Technology Consultant at SAP, fo-
cusing his research interests on distributed
computing and machine learning algo-
rithms. His main research theme is dis-
tributed machine learning efficient and re-

liable.

c© 2020 Information Processing Society of Japan

