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Abstract: The Internet of Things (IoT) malware keep evolving and utilize multiple vulnerabilities to infect IoT de-
vices. Besides malware, human attackers also utilize various tools to access and collect variable information on the
device. For instances, web UI of IP Cameras and routers are constantly searched and accessed if vulnerable. In order
to observe and analyze such a variety of attacks in depth, there is an increasing need for bare-metal IoT devices as
a honeypot, since it is costly to emulate device-specific vulnerabilities and complex functionalities from dedicated
services. However, operating bare-metal IoT honeypots has unique technical challenges mostly coming from their
low configurability as an embedded system. A bare-metal honeypot needs proper access control while it is allowing
attackers to access its inside to some degree, such as filter out bricking commands and changes of critical configu-
ration. From this observation, we propose ThingGate, a gateway for flexible operation of bare-metal IoT honeypot.
ThingGate employs a man-in-the-middle proxy to control and manage inbound and outbound traffic of the bare-metal
IoT honeypot. Moreover, it adds the functionality of web tracking, which is not provided by the web UI of the original
devices. We evaluate ThingGate with seven bare-metal IoT devices and show that it successfully blocks unwanted
incoming attacks, masks wireless access point information of the devices, and tracks attackers on the device web UI
while showing high observability of various attacks exploiting different vulnerabilities.
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1. Introduction

In recent years, people have been connecting various things to
the Internet for monitoring, collecting data, or remote manipula-
tion. Backend applications collect and exchange data with these
devices through the network. This network of this appearance
is called the Internet’s Internet (IoT). However, an IoT Malware
“Mirai” was used for conducting the massive Distributed Denial
of Service (DDOS) attack against Dyn DNS In October of 2016,
about 100,000 Mirai IoT botnet nodes were enlisted in this inci-
dent and reported attack rates were up to 1.2 Tbps [1]. Therefore,
cyber threats from IoT botnet have become a reality. To observe
cyber attacks against such devices and analyze the threats from
IoT malware, some researchers design new observation mecha-
nisms and build various honeypots. These honeypots include, for
example, IoTPOT [2], SIPHON [3], IoTCandyJar [4], and real de-
vices Honeypot for observing Web UI of IoT devices [5].

The competition between hackers and cybersecurity re-
searchers is an endless war. IoT malware keeps evolving and
exploits multiple vulnerabilities to infect IoT devices. Since May
2018, the Mirai and Gafgyt malware families that assimilate mul-
tiple known exploits affecting the Internet of Things (IoT) de-
vices. These exploits come from 11 makers’ devices over HTTP,
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UPnP, Telnet, and SOAP protocols [6]. Besides well-known ac-
tivities such as DDoS, recent IoT malware diverse purposes,
including coin mining, click fraud, and sending spam emails.
Nonetheless, human attackers also utilize various tools to access
and collect variable information on the device. For example, We-
bUI of many IP Cameras and routers are constantly searched and
accessed if vulnerable. In order to observe and analyze such vari-
ety of attacks in depth, there is an increasing need for a bare-metal
IoT honeypot, namely a real IoT device as a honeypot, since it is
costly to emulate device-specific vulnerabilities and complicated
functionalities. The functions provided through the WebUI and
other dedicated services, such as UPnP.

However, it is worth noting that operating bare-metal IoT hon-
eypots have unique technical challenges, mostly coming from
their low configurability as an embedded system. For example,
honeypot operators may need to control the incoming traffic since
there are critical attacks that may destroy firmware and/or change
the network configuration of devices that could disconnect the
honeypot devices. Also, honeypot operators may need to mask
and/or replace outgoing responses from the honeypot devices as
they may contain information such as surrounding wireless access
points, which could reveal the physical location of the honeypot
devices.

In this research, we focus on the honeypot observing cyber
attacks against the WebUI of IoT devices. Many web honey-
pots record the source IP, Cookies, and HTTP header informa-
tion as to identity. However, attackers have already developed
countermeasures to evade tracking. Encrypted proxy and anony-
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mous networks, such as Tor [7], have been widely used to avoid
network tracking. Therefore, people develop new fingerprinting
from browsers. The browser fingerprinting technique can gen-
erate more information and track attackers. Even they might
have used proxies or anonymous networks to hide [8]. There-
fore, we utilize browser fingerprinting to identify attackers who
use browsers visiting our honeypot.

1.1 Research Questions
For the honeypot of physical IoT devices which contain We-

bUI, we want to figure out the following research questions.
( 1 ) If we build the honeypot with vulnerable devices, how to

prevent critical and destructive attack vectors?
( 2 ) Some attackers may change the setting of devices which

cause functional disorder in devices. Is there a convenient
way to prevent it?

( 3 ) How to prevent information leak from the WebUI of devices?

2. Definitions

2.1 Man-in-the-middle
The man-in-the-middle (MITM) refers to an attack in which

the attacker positions himself between two communicating par-
ties and secretly relays or alters the communication between these
parties, who believe that they are engaging in direct communica-
tion with each other. Messages intended for the legitimate site
are passed to the attacker instead, who saves valuable informa-
tion, passes the messages to the legitimate site, and forwards the
responses back to the user.

The MITM way can lead to the web proxy attack, in which a
malicious web proxy receives all web traffic from a compromised
computer and relays it to a legitimate site. The proxy collects
credentials and other confidential information from the traffic.
MITM flows are difficult to detect because a legitimate site can
appear to be functioning properly and the user may not be aware
that something is wrong [9]. We utilize a web proxy attack to
monitor and manage the flow between clients and our honeypot.

2.2 Transparent Proxy
In computer networks, a proxy server is a server that acts as

an intermediary for requests from clients seeking resources from
other servers [10]. A proxy server can fulfill the request from
the client, filter out, or modify the request in a specific way.
Transparent Proxying or a transparent proxy means we redirect
traffic into a proxy at the network layer, without any client con-
figuration [11]. The client is unaware that the response received
originates from the proxy server and not from the source server.
We conduct the flow forwarding through MITM proxy by pf of
FreeBSD [12] and socat [13].

2.3 Browser Fingerprinting
Browser fingerprinting involves making a recognizable subset

of users unique. The fingerprint is primarily used as a global iden-
tifier for those users. Furthermore, we can utilize a global iden-
tifier to create a web tracking mechanism for user browsers [12].
In 2012, Mowery and Shacham presented canvas fingerprinting,
which is a web fingerprinting algorithm [15]. They demonstrated

that the new HTML5 feature could be used to generate a relatively
unique fingerprint that could be used to track users.

Canvas fingerprinting uses the browser’s Canvas API to draw
invisible images and extract a persistent, long-term fingerprint
without the user’s knowledge [16]. Tracking mechanisms have
advanced such that these mechanisms are difficult to control and
detect and are resilient to blocking or removing. Another feature
of canvas fingerprinting is that the resulting fingerprint may differ
from one browser to another on the same machine [17]. In this
study, we use fingerprintjs2 [18], which is an open-source library
of canvas fingerprinting, to achieve the web tracking function.

2.4 Cyber Attacks against WebUI of Physical IoT Devices
In 2017, Ezawa et al. [3] propose a Honeypot consisting of

physical IoT devices to observe attacks against the WebUI of IoT
devices. The devices include IP Cameras, routers, pocket routers,
a printer, and a TV receiver. In 2018, Tamiya et al. [19] employed
IP Cameras to build a decoy honeypot to capture the behavior of
peeping attackers. According to these two honeypots, we sum-
marized four kinds of cyber attacks against these WebUI:
( 1 ) Configuration information theft attacks

If the device contains vulnerabilities of information disclo-
sure or weak credentials. The attacker can collect the con-
figuration and parameters of devices by some URLs, such as
get status.cgi.

( 2 ) Modification of the configuration
According to the observation of the two honeypots, attack-
ers may modify the DDNS, VPN, credentials, and network
configuration.

( 3 ) Snapshot attacks
Snapshot is a feature of IP Cameras and offers a current time
image of the live stream to users. Once the clients send the
HTTP request of the snapshot, the web server will provide
the current time image in a JPG or PNG file.

( 4 ) Long term peeping
This attack collected by IP Cameras when some clients ac-
cess the URL of the live stream. Moreover, the clients stay
on the web page of live streams for several hours.

3. ThingGate

3.1 System Goal
The use of conventional IoT devices for building new honey-

pots raises the following challenges:
( 1 ) Inconvenient reset or restore mechanism

The reset or recovery process need some manual operation
on devices. Many devices place the reset button on the con-
trol panel, and users have to press the button for a while to
trigger the reset function.

( 2 ) Threat of service segmentation fault attacks or brickering
command
Some attack vectors, such as BrickerBot, can impair de-
vices [20]. BrickerBot prevents devices from working again
even with a factory reset. Moreover, some vulnerabilities,
such as CVE-2017-17020, may cause a service shutdown.
These types of attack vectors require the employment of hu-
man resource for maintenance [21].
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( 3 ) Misplaced IoT cyber-attacks flow
For analyzing attack vectors against IoT devices, purchasing
all of physical IoT devices to build honeypot is not afford-
able. We only can utilize a limited number of devices in a
honeypot. If the devices’ weakness does not fit the incoming
attack vector, this attack fails and devices cannot capture the
further flow or binaries from clients

( 4 ) Exposure risk from the sensor information
In SIPHoN [3], Guarnizo et al. indicated that scanning for
Wi-Fi networks is a feature often offered in the admin in-
terfaces of IP Cameras. The goal of SIPHON is to collect
world-wide cyber attacks against IoT via a few devices de-
ployed locally. However, their research did not mention if
the Wi-Fi Access Point (AP) name may expose location or
not. The Wi-Fi AP list may dynamically show any scanned
AP, include a Personal Hotspot from a passerby’s mobile de-
vices. The name of AP in WebUI may include personal or
organization information to exposing the physical location
of honeypot. For video and audio information leakage risk,
we place our devices in a close room to prevent sound and
image information leakage.

ThingGate is a customized MITM proxy for managing flow
between clients and the honeypot that consists of physical IoT
devices. To face the challenges from the physical IoT devices,
we define the following goals.
( 1 ) Incoming traffic management

We wish to block the incoming flow of unwanted or deadly
attack vectors.

( 2 ) Response information management
Our program checks the HTTP response from IoT devices
and prevents the leakage or exposure of sensitive informa-
tion. Blocking Wi-Fi with an electromagnetic shielding con-
tainer is costly. We hope to prevent leakage through a simple
and light-weight method. The attackers might use browsers,
and we inject browser fingerprinting JavaScript codes to
track attackers.

( 3 ) Real-time analysis of misplaced cyberattack
IoT malware employs various vulnerabilities from WebUI
of devices, and injects OS command in the URL. However,
some malware didn’t check targeted devices before they send
malicious HTTP requests. For the misplaced command in-
jection URL (CI-URL) attack target is not in our physical
IoT devices, we can conduct real-time analysis and down-
load tasks.

3.2 System Overview
Our design, which was inspired by SIPHON architecture [3], is

displayed in Fig. 1. Our honeypot consists solely of real IoT de-
vices. Moreover, SIPHON’s forwarder is improved with MITM
proxy to manage the forward traffic from wormholes to local
physical IoT devices. We design a module to analyze some CI-
URLs. These flows may target IoT devices other than ours.

Wormhole. The wormhole device contains some ports open
to the general Internet on a public IP address. We transparently
forward the incoming traffic toward these ports through MITM
proxy to a specific port on a remote physical IoT device. For-

Fig. 1 System overview of ThingGate.

Fig. 2 System Architecture of ThingGate.

warding is conducted through socat [13], which is a command-
line-based utility that establishes two bidirectional byte streams.

CI-URL Analysis and Downloader (CAD). If the flow con-
tains features of CI-URLs, then we redirect the HTTP request
to CAD. CAD provides 200 response codes to the client and
analyzes the CI-URL. If CAD successfully extracts download
links from the flow, real-time download tasks of links can be con-
ducted.

MITM Proxy. The socat utility ensures that the traffic between
the wormhole and the IoT device has managed to accomplish the
protection and HTTP response rewriting tasks in real time. The
proxy examines all the flows and decides to block, delegate to de-
vices, or redirect the flow to the CI-URL analysis and downloader
(CAD). The proxy conducts the modification of the flow through
the MITM way.

IoT Devices. IoT devices are typical commercial off-the-shelf
devices that contain vulnerabilities. In this research, we focus on
cyber attacks against the WebUI of IoT devices. Thus, we only
forward incoming HTTP flow to its HTTP service ports.

Data Storage. The storage dumps traffic records from the
wormholes and aggregates the data for offline analysis. For exam-
ple, Wireshark is used to analyze the headers of HTTP requests
in dumped traffic files.

System Architecture and Modules. The system architecture
of the ThingGate system is displayed in Fig. 2. The MITM proxy
transparently manages the input and output flow of the honeypot
constructed with physical IoT devices in real time. IoT devices
answer the flow delegated by the proxy and send the HTTP re-
sponse back to the client through the MITM proxy. Moreover,
the proxy redirects specific HTTP requests that contain CI-URLs
to the CAD. Then CAD extracts links and downloads malware
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Fig. 3 The processing flow of Request controller.

binaries. Moreover, our proxy injects fingerprinting JavaScript
codes into the HTTP response content and replaces sensitive in-
formation with fabricated material.

The details of the modules are as follows:
Request Controller. The request controller is in charge of

incoming HTTP requests. The request controller reviews ev-
ery request and determines whether the flow should be directly
forwarded to IoT devices. The process of URL checking is il-
lustrated in Fig. 3. First, we examine whether the URLs uti-
lize the dangerous vulnerability of our IoT devices. For exam-
ple, D-Link’s IP Camera, DCS-5020L, contains vulnerabilities
in its WebUI. If attackers post a long string value to the URL
“/setSystemNetwork” in the form parameters, then the HTTP re-
quest causes the web service to crash [21]. Therefore, the request
controller replaces this URL with another valid URL. Second,
according to Ezawa’s study, some attackers change the DDNS,
VPN, or network settings of IoT devices [6] to prevent other
clients from accessing the device. These attacks may incur the
necessity of performing manual tasks such as rebooting or reset-
ting devices. Therefore, we must protect these critical configura-
tions. The request controller compares the URLs of the incoming
request, filters out the requests that cause unwanted configuration
changes, and replaces these URLs with other valid URLs of the
WebUI. Third, our program verifies the operating system (OS)
commands and different URLs embedded in the URL. The re-
quest controller redirects these CI-URLs to the CAD. Finally, the
request controller forwards the remaining HTTP requests to IoT
devices.

Response Controller. The response controller is in charge of
the HTTP responses from IoT devices. Two conditions trigger
action by the response controller.
( 1 ) The HTTP response from IoT devices contains a body tag.

The response controller injects fingerprinting JavaScript
codes into the body tag. The JavaScript library creates a
hash fingerprint if the client can support the JavaScript code.

( 2 ) The HTTP response includes sensitive information
In this research, we focus on the Wi-Fi AP list. The name of
the Wi-Fi AP may consist of a username or information con-

Fig. 4 The encoded URL of CI-URL and decoded results.

Fig. 5 Download Scripts from CI-URL.

cerning the organization or location. The response controller
replaces all APs with fabricated AP information.

For supporting more protocols in the future, such as HTTPS,
Telnet, and UPnP, we will upgrade the Response controller to
generate corresponding traffic according to our rules and proto-
cols.

CI-URL Analyzer. is responsible for the two analysis of
extracting download links from the CI-URLs and downloaded
scripts. The CI-URL analyzer includes two components, namely
the URL parser and script parser. The URL parser decodes the CI-
URLs and transforms them into OS commands (Fig. 4). The CI-
URL in Fig. 4 utilizes the vulnerability of the D-Link router DSL-
2750B [22]. The URL parser decodes this CI-URL and extracts
the link from the OS commands, “http://yyy.yyy.173.159/d.” The
CI-URL analyzer also passes the link to the downloader.

If we successfully download the file and the file is a shell script
file (e.g., the script displayed in Fig. 5), then the script parser an-
alyzes the content, traverses all parameters, and extracts the links
of malware. Finally, the script parser passes the links of malware
to the downloader.

Downloader is responsible for malware binaries download
tasks. We found the header parameters’ value in HTTP re-
quests conducted by IoT devices may be distinguished from
Unix/Linux server operating system. For example, the user-agent
value conducted by macOS Mojave 10.14.2’s wget command is
“Wget/1.13.4 (darwin13.1.0)”. The “darwin13.1.0.” is a library
name of macOS packages [23]. In contrast to the user-agent
value produced by macOS, the produced by the router A in Ta-
ble 1 is “Wget./1.16 (linux-gnu).” Therefore, the user-agent in
HTTP header may expose the information of the download client.
Therefore, we customized our header values appear as similar as
possible to IoT devices.

4. Evaluation

4.1 Prototype and Data Set
We developed a prototype of ThingGate using Python and the

MITM proxy open-source software [11]. We performed four dif-
ferent experiments with seven physical IoT devices to evaluate the
effectiveness of ThingGate. Table 1 presents the specification of
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Table 1 IoT devices used in experiments.

Table 2 Data set for analysis.

our devices, all of which contained vulnerabilities that had been
publicly disclosed. Besides, we installed ThingGate on a server
with Intel Core i5 i5-2400 Quad-core (4 Core) 3.10 GHz Proces-
sor, 16 GB RAM, and 1.8 Terabytes disk.

Table 2 presents the two data sets collected by our honeypot
through ThingGate. From September 8 to October 13, 2018, we
used seven devices and 19 IP addresses to collect the attack flow
(data set 1). ThingGate only forwarded and recorded traffic to
devices. Moreover, we analyzed the URL list of critical configu-
rations and the URLs of deadly vulnerabilities from our IoT de-
vices. We designed and implemented the prototype of ThingGate
according to data set 1. And then, from November 17, 2018, to
June 31, 2019, we deployed ThingGate and forwarded 19 IP ad-
dresses to conduct the evaluation experiments. The collected flow
for this period is labeled as data set 2.

There are 58,923 different attacker IPs from data set 2. We
use autonomous system number (ASN) to extract the background
information of attacker IP address. An autonomous system
(AS) [24] is a collection of connected IP routing prefixes under
the control of one or more network operators on behalf of a sin-
gle administrative entity or domain. The AS presents a common,
clearly defined routing policy to the interne. An ISP must have
an officially registered ASN. Therefore, we can use ASN of IP
address to verify the ISP of IP address. Moreover, the database,
“ipinfo” provides type data of all ASNs [25]. The database de-
fines four kinds of ASN, including ISP, EDUCATION, HOST-
ING, and BUSINESS. For the ASN registers by security-related
companies, such as Google are labelled as BUSINESS type. We
use the database to categorize our attackers’ IP address.

Table 3 Statistics of ASN type for data set 2.

Table 4 Top 10 ASN of attackers.

Table 3 shows the distribution of ASN type, ISP is the top one
type of our attackers (77.96%). Besides, the sum of EDUCA-
TION and BUSINESS is about 13.31%. Therefore, the attacks
conducted by traditional hackers. Table 4 shows the top 10 ASN
of attackers’ IP address. Top one is an ISP in Brazil. There are
eight ISPs and two HOSTING companies in the top 10.

Table 5 shows the distribution of HTTP methods in data set2.
The GET and POST accounted for the vast majority (97%) which
contain various cyber attacks against HTTP services. Moreover,
some of the OPTION method flows come from the Real Time
Streaming Protocol (RTSP) [26]. The RTSP traffic means some
attackers or malware recognized our devices are IP Cameras and
want to utilize our RTSP services. Besides, the M-SEARCH and
NOTIFY traffic are based on Universal Plug and Play protocol
(UPnP) [27]. Our devices disabled the UPnP port and services by
default, but the clients try to attack our UPnP service. For the
PROFIND flows, the clients blindly sent remote buffer overflow
packets which target IIS 6.0 [28].

Table 6 presents the statistics of HTTP requests, attackers’ IP a
and URLs. Because we forward fifteen IP for IP Camera A1, A2,
and A3, they got the most HTTP requests. However, IP Cam-
era C got the most HTTP requests and clients’ IP on condition
forwarding only one IP traffic to each device.
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Table 5 HTTP method statistics for data set 2.

Table 6 Statistics of cyber attacks. Observation of 7 months.

4.2 Cyber Attacks Against the WebUI of Physical IoT De-
vices

According to data set 2, there are 1,920,653 cyber attacks em-
ployed HTTP requests to attack our honeypot. Some of these
attacks are only able to be observed by physical devices. We
collected similar attacks presented in Ezawa’s and Tamiya’s hon-
eypot [5], [19]. We found attackers attempt to capture and mod-
ify the configuration of devices, remotely control direction and
zoom of IP Camera, peep the live video, snapshot of IP Camera
and utilized the remote code execution (RCE) vulnerability of de-
vices [29]. In addition, after the RCE attack vector, the attacker
download devices’ live stream by a hidden web application. The
application “/video.cgi” did not appear in source code and can be
customized by width and height parameters. Table 7 shows the
statistic and description of the attack against our physical device.

There were 49 source IPs watched the live stream of the cam-
era. Among them, five IPs were peeking over an hour. The max-
imum time of peeking is about 18 hours. Moreover, some clients
from 21 source IP addresses adjusted the directional and zoom of
the camera. One American client applied the RCE exploit code
of IP Camera C to attack IP Camera C and D. The Live stream for
long term peeping, the real-time response of control direction and
zoom, and the whole scenario of RCE attack are hard to simulate
by VM-based honeypot. Our physical devices behind ThingGate
successfully observed these kinds of cyber attacks.

Table 7 Cyber attacks against WebUI of IoT devices. Observation of 7
months from IP Camera A1∼A3, B, C, and D.

Table 8 Configuration blacklist and replaced pathnames against IP Camera
A1∼A3.

4.3 Blocking Unwanted Flow Experiments
4.3.1 Design of Experiment

We analyzed our devices and created a list of configuration
URLs and dangerous vulnerabilities. From the WebUI and device
manuals, we choose 51 critical configuration URLs. Moreover,
finding one bricking URL from the security report of IP Camera
C. We extract the pathname of configuration URLs to build a
blacklist. Further, we select target pages in devices for replacing
the pathname in the blacklist. Table 8 presents the nine black-
list and mapping rules against IP Camera A1∼A3. Moreover, we
define twelve rules for Router A, ten rules for IP camera B, ten
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Fig. 6 The HTTP request of a modifying configuration attack.

Fig. 7 Web tracking flow of ThingGate.

rules for IP camera C, and ten rules for IP camera D. According
to these rules, ThingGate redirects flow to the target pages if the
incoming traffic matched the blacklist. The flow of one IP address
was forwarded to all devices except for the three IP Cameras.
4.3.2 Experimental Results

From data set 2, we found on June 7th, an American attacker
accessed our Wi-Fi router in the honeypot and modified the LAN
DNS setting, point to a Vietnam server. ThingGate successfully
blocked the HTTP request, filtered out the form data, and replace
the URL with another URL in WebUI. Figure 6 shows the detail
information of the HTTP request. The green rectangle marks the
parameters about LAN DNS setting.

4.4 Web Tracking Experiments
4.4.1 Design of Experiment

We conducted this experiment on all devices in our honeypot.
As illustrated in Fig. 7, ThingGate examined the HTTP re-

sponse content from all of the devices. If the response code equals
200 and the HTML contains the body tag, then the proxy injects
fingerprinting JavaScript codes in response. If the client can ren-
der our JavaScript codes, then the client generates a canvas fin-
gerprint and sends it back to ThingGate. However, if the client
tool can’t render our JavaScript, the tracking will be failed.
4.4.2 Experimental Results

From data set 2, we found that clients from 18 different source
IPs successfully sent their fingerprint values to ThingGate. We
collected 26 different fingerprint values from these clients. The
geographic information on the IPs of the fingerprinted clients is
displayed in Fig. 8. Among 18 clients, seven were from Japan
(39%) and six were from the United States (33%). In total, 72%
of the clients were from these two countries. Four clients pro-
vided only one fingerprint value, whereas the other 14 clients
provided two or more fingerprint values. Moreover, we discov-
ered that one of the four single-fingerprinted clients was Google-

Fig. 8 Country distribution of fingerprinted clients.

Fig. 9 Googlebot’s user-agent and the verifying result.

bot [30]. We verified Googlebot by using a reverse DNS lookup
on the accessed IP address according to a Google document [31]
(Fig. 9). Googlebot attempts to access the IP Camera C and sends
requests against 18 different URLs of the WebUI. These URLs
contain the snapshot, parameters of the camera, DDNS, and Wi-
Fi setting pages. Googlebot successfully collected the configu-
ration information of the devices, including our fabricated Wi-Fi
AP list.

Among the fingerprinted clients, three America clients sent the
same two fingerprint values back to ThingGate. Table 9 presents
the attack features of the three clients. They almost traversed
the forwarding IP of the honeypot. Moreover, more than 27%
of HTTP requests were utilized in the HEAD method to attack
our devices, and 83% of the URLs between the three clients were
common among them. The identical features and fingerprint val-
ues implied that the three clients belonged to the same attacker.

4.5 Managing Misplaced Attacks Experiments
4.5.1 Design of Experiment

ThingGate examines all of the incoming flow against 19 IP ad-
dresses. If any different site with OS commands is embedded
in the URL, our program redirects the flow to CAD through an
MITM way. Next, the CI-URL analyzer analyzes the URLs and
scripts downloaded from the URLs. The downloader handles all
downloading tasks if our parsers extract any link during the anal-
ysis.
4.5.2 Experimental Results

The attack flow of data set 2 revealed that ThingGate redirected
the HTTP requests of 411 CI-URLs to CAD. These CI-URLs
contained 50 different URLs that exploited seven vulnerabilities.
Figure 10 depicts the vulnerability distribution of the URLs. A
total of 76% of the CI-URLs used the top two vulnerabilities from
products of D-Link and ThinkPHP. The usage of these two vul-
nerabilities was three times that of other vulnerabilities. Table 10
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Table 9 Features of the fingerprinted clients.

Table 10 Information of Vulnerabilities. Observation of 7 months from IP Camera A1∼A3, B, C, and D.

Fig. 10 Vulnerability distribution of CI-URL.

presents information on the seven vulnerabilities, including the
maker, model, version, and path of the WebUI.

From the 411 CI-URLs, the CAD downloaded 150 different
malware binaries and 23 scripts. Therefore, we searched for
an optimal solution for labeling these malware binaries. Virus-
Total [38] was the platform used to obtain scan results from 66
antivirus engines. We sent 12,821 unique malware MD5s from
IoTPOT in 2017 and selected the most common malware fam-
ily name as the representative malware category from the Virus-
Total reports. We also discovered that Kaspersky, DrWeb, and
ESET-NOD32 are the top three antivirus engines because of their
high detection ratio and consistency. We conducted a local scan
of 40,203 different IoT malware binaries and found that DrWeb
could label 39,245 of them, which comprises 97.61% of the sub-

Fig. 11 Statistic of malware labels.

mitted malware. The labeling performance of DrWeb surpassed
that of both Kaspersky (69.82%) and ESET-NOD32 (74.57%).
Therefore, we employed DrWeb to label the IoT malware col-
lected by the CAD in data set 2.

DrWeb successfully marked 148 binaries. Figure 11 illustrates
the statistics of malware labels. Mirai malware accounts for the
vast majority of binary files (92%). We discovered that 18 Mi-
rai binaries employed ThinkPHP’s vulnerability to infect victim
sites. Moreover, the BTCMine malware (one binary) is a mining
trojan. The attacker of the BTCMine malware also utilized the
vulnerability of ThinkPHP to attack our honeypot.
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Fig. 12 Fabricated Wi-Fi AP list.

Table 11 Attacker who request Wi-Fi information. Observation of 7
months from IP Camera A1∼A3, B, C, and D.

4.6 Fabricated Sensor Information Experiment
4.6.1 Design of Experiment

We selected the WebUI of all of the IP Cameras as victim de-
vices that we would like to protect. ThingGate monitored the flow
of 18 IPs forwarded to these cameras. If clients requested the web
page of scanning Wi-Fi information, we replaced the information
with fabricated information. Figure 12 depicts the webpages be-
fore and after modification with ThingGate.
4.6.2 Experimental Results

In data set 2, we found that ThingGate sent fabricated Wi-Fi in-
formation to 44 different clients in 80 HTTP response. Table 11
presents part of the attackers’ geographical location, number of
requests sent, and duration of visit to our honeypot. The Google-
bot client only sent 23 HTTP requests in one day.

4.7 Stress Testing against IoT Devices
4.7.1 Design of Experiment

IP Camera B only can offer four clients to view live stream
video. Therefore, we assume up to five users may watch the
live stream of IP Cameras concurrently. Our testing employs five
Chrome browsers (v72.0.3626.121) on five computers to login IP
Cameras and to view the pages contain live streams. We both
conduct the testing through ThingGate or access WebUI directly.
Moverover, examining each condition for ten times.

Table 12 IoT devices used in experiments.

4.7.2 Experimental Results
Table 12 shows the statistic of testing results between Thing-

Gate and directly forwarding flow. Our results show attackers
would receive the same rendering video under the two conditions,
with or without ThingGate.

5. Related Work

In Ref. [3], Guarnizo et al. proposed the SIPHON architecture,
which is a scalable high-interaction honeypot platform for IoT de-
vices. Our architecture leverages IoT devices physically present
at one location and connected to the Internet through so-called
wormholes distributed worldwide. The resulting architecture al-
lows the exposure of a few physical devices over numerous geo-
graphically distributed IP addresses.

Many embedded devices have WebUI for device management
and operation, and some of them are open to the Internet with
vulnerability and weak credentials. Ezawa et al. [5] proposed the
use of a honeypot to monitor attacks against the WebUI of IoT de-
vices by employing bare-metal devices. The observation results
contained attacks against regular web servers and indicated that
some attacks are automatically conducted through certain tools
or types of malware. The observation also suggests that some at-
tackers changed the DDNS, VPN, and network settings, resulting
in the device becoming unavailable for other attackers.

Tamiya et al. [19] employed a decoy honeypot of five IP Cam-
eras to capture the behavior of human-like attackers. His research
shows the behavior including extracting environment parameter
of devices, downloading the snapshot of live streams, and long-
term peeping live streams.

Compared to existing literature, we find the previous honeypot
of physical IoT devices lacks abilities against sensitive informa-
tion leaks and dangerous commands. Our work focuses on the
high interaction honeypot consisting of physical IoT devices. Our
approach improves the security of the honeypot, including pro-
tecting sensitive data collecting by sensors. Besides, our program
monitoring and manage the incoming traffic to avoid dangerous
commands. Moreover, we extended the web tracking function to
WebUI of physical devices. Further, our setup allows us to cap-
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ture and analyze some misplaced attacks across different remote
code execution vulnerabilities in real-time.

6. Discussion

From the observation of cyber attacks in data set 2, our hon-
eypot successfully collected attacks against physical IoT de-
vices Through ThingGate. These attacks, such as peeping video
streams, control the direction of the camera, and RCE attacks first
and then download live streams via hidden web applications, are
hard to simulate by the virtual machine. The difference between
general web applications and the WebUI of IoT devices is sen-
sor data. The sensor data includes numeric, text, and streaming
video, which depends on the type of sensor. The streaming data
and the reaction of manipulating the sensor, such as rotating the
camera, are hard to emulating by traditional honeypots. There
are number of attacks on IP cameras including actually peeping
the video by logging into the WebUI of the camera. There are
also number of attacks on routers where configurations of router
(such as DNS setting, VPN, etc.) are altered by attackers. It is
hard to emulate these functionalities of Camera and routers by
low-interaction honeypot and therefore, bare-metal honeypot is
necessary.

From the unwanted block experiment, the results show that
ThinkGate can block the attack, which changes critical config-
uration. We confirm that ThingGate can protect devices from
misconfiguration.

In addition, we also found 44 clients request 80 times for the
Wi-Fi AP information web page. ThingGate sent back fabricated
sensor information to these clients and successfully prevent in-
formation leakage. Of the 44 clients, 41 clients employed a pre-
defined list to scan victims; two are human-like attackers and
Googlebot. From the web tracking experiment, we successfully
extended a tracking function to IoT devices and tracked an at-
tacker employed three American IP addresses to visit our honey-
pot. ThingGate added the browser fingerprinting functionality to
WebUI of physical IoT devices.

About the misplaced attacks, ThingGate extracts 411 CI-URL
and download 149 different malware binaries and 23 scripts.
Moreover, we found 18 binaries utilized the ThinkPHP vulner-
ability, which is not an IoT device but a web application frame-
work. The abuse of HTTP 80 port becomes much serious. From
the stress testing results, attackers can get the same rendering live
stream from IP cameras through ThingGate. Hence, we can build
the bare-metal IoT honeypots together with ThingGate.

By protecting the configuration of devices, the attack vectors
targeted the configuration would fail. The failure might make
attackers perceive that the devices are unusual. Moreover, the in-
jected JavaScript code sends a special HTTP request contains fin-
gerprinting data to ThingGate. An attentive attacker may aware
of the MITM attack and realize the target is a honeypot.

6.1 Limitations
ThingGate does have some limitation. Many of the limitations

come from the design of CI-URL analyzer. First, the URL parser
only analyzes the CI-URL whose OS commands the attacker em-
bedded in URL. Our program did not check other header field

or form data yet. Second, the script parser only was able to
handle several kinds of shell scripts. A Linux sandbox can re-
solve more types of scripts. However, the sandbox must be mon-
itored and implemented with the high-security design because
of the Brickerbot. Thirdly, our web tracking function relies on
JavaScript and Canvas fingerprint. Therefore, if the clients can-
not render the JavaScript code, the client cannot trigger finger-
print function.

7. Conclusion and Future Works

7.1 Conclusion
We combine the ability of the transparent proxy and web track-

ing library, develop a supporting mechanism for honeypot of
physical IoT devices. ThingGate can improve the security of
honeypot, extend the functionality of web tracking, manage the
incoming traffic, and output response content via MITM way. We
evaluated ThingGate on the public internet, examined the effec-
tiveness of ThingGate. In our observation, ThingGate did not
yield the cyber attacks against physical devices, such as RCE at-
tack and long term peeping. In our experimental result, we suc-
cessfully track one American attacker use multiple IP addresses
to visit our honeypot. To handle the unwanted incoming flow,
we confirm that ThingGate can block traffic, which changes the
critical configuration. Moreover, ThingGate collected 149 mal-
ware binaries and 23 scripts from 411 misplaced CI-URL, which
employed seven vulnerabilities. Furthermore, ThingGate fooled
seven clients who requested the Wi-Fi AP list in WebUI with fab-
ricated AP.

7.2 Future Works
In this research, we only exam HTTP traffic. We think that ex-

tending the proxy scope for more protocols is essential, such as
HTTPS, Telnet, and UPnP. Therefore, future works should focus
on how to improve existing methodologies for building advanced
honeypot.
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