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Abstract: Elliptic curve cryptosystems (ECCs) are widely used because of their short key size. ECCs can ensure
sufficient security with shorter keys, using less memory to reduce parameters. Hence, ECCs are typically used in IoT
devices. The dominant computation of an ECC is scalar multiplication Q = kP for P ∈ E(Fq). Thus, the security and
efficiency of scalar multiplication are paramount. To render secure ECCs, complete addition (CA) formulae can be
employed for secure scalar multiplication algorithms. However, this requires significant memory; thus, it is not suitable
for compact devices. Several types of coordinates exist for elliptic curves such as affine, Jacobian, Projective and so
on. The CA formulae are not based on affine coordinates and, thus, require considerable memory. In this study, we
achieve a compact ECC by focusing on affine coordinates. In fact, affine coordinates are highly advantageous in terms
of memory but require many if statements for scalar multiplication owing to exceptional points. We propose two
scalar multiplication algorithms with the extended affine formulae to delete some exceptional inputs for scalar multi-
plication. Our two algorithms reduce memory cost up to 37% or 21%. In many cases such as NIST elliptic curves, our
two algorithms are the most efficient if I

M < 12, for the ratio of computational cost of inversion and multiplication. The
experiment shows that our algorithms can compute the elliptic curve scalar multiplication correctly and efficiently.
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1. Introduction

Elliptic curve cryptosystems (ECCs) are widely used because
of their short key size. ECCs can ensure sufficient security with
shorter keys, using less memory to reduce parameters. Hence,
ECCs are typically used for Internet-of-things (IoT) devices [2].
The dominant computation of ECCs is scalar multiplication Q =

kP for P ∈ E(Fq). Thus, the security and efficiency of the scalar
multiplication are paramount.

Studies of secure elliptic curve scalar multiplication algorithms
can be divided into two categories. The first research direction is
to find efficient and secure scalar multiplication algorithms [3],
[4], [5], [6], [7]. The second direction is to find efficient and se-
cure coordinates with addition formulae [8], [9], [10], [11], [12].
Several types of coordinates for elliptic curves exist (such as
affine, Jacobian, or Projective). Although it appears that we only
need to combine scalar multiplication algorithms with coordi-
nates, it is not simple because some scalar multiplications re-
quire branches when the addition formulae are applied to them.
Branches introduce simple power analysis (SPA). For example,
in the case of affine or Jacobian coordinates, both doubling and
addition formulae exist for two inputs of P and Q. That is, when
the scalar multiplication algorithm employs addition formulae in
affine or Jacobian coordinates, we need to verify whether the two
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input points are equal. In fact, not only the condition P = Q but
also other input points such as O+ P, P− P, and 2P = O become
exceptional inputs. Hence, researchers have investigated com-
plete addition (CA) formulae [8], [9], [10], which can be com-
puted for any two input points. Further, new methods have been
proposed by combining a scalar multiplication algorithm with CA
formulae to protect the elliptic curve scalar multiplication from
a side channel attack (SCA) [13]. CA formulae operate well to
exclude such branches. However, CA formulae are not efficient
from the memory and computational standpoints. Particularly,
CA formulae are not based on affine coordinates and, thus, re-
quire significant memory.

In this study, we achieve a compact ECC by focusing on affine
coordinates. Although affine coordinates are highly advantageous
in terms of memory, they require if statements for scalar
multiplication owing to exceptional points. We adopt two ap-
proaches. First, we examine a scalar multiplication with the input
point and scalar k by defining three notions: generality of k (a
scalar multiplication algorithm can operate on any input scalar
k), secure generality (a scalar multiplication algorithm can re-
sist SCA with generality of k), and executable coordinates (co-
ordinates with elliptic curve addition formulae, which can be
used to a scalar multiplication algorithm without introducing if
statements). Subsequently, we demonstrate that Joye’s right-
to-left (RL) 2-ary algorithm (Algorithm 2) [4] satisfies the secure

The preliminary version of this paper was published at IPSJ SIG on
CSEC in May 2019. The paper was recommended to be submitted to
Journal of Information Processing (JIP) by the chief examiner of SIGC-
SEC.

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

generality but that Joye’s double-add algorithm (Algorithm 1) [3]
does not satisfy secure generality. Further, we verify coordinates
that become executable. Second, we improve Joye’s RL 2-ary al-
gorithm to reduce exceptional point inputs and the limitations of
input k. We extend the affine to delete some exceptional inputs
for scalar multiplication. Subsequently, we propose a new scalar
multiplication, Algorithm 9, by combining our improved Joye’s
RL 2-ary algorithm with affine formulae and our extended affine
formulae. In this paper, combinations of affine formulae and ex-
tended affine formulae are called (extended) affine in short. We
propose Algorithm 10 to enhance the efficiency of Algorithm 9
by 2-bit scanning using the affine double and quadruple formulae
(DQ) [14] that can compute both 2P and 4P simultaneously with
only one inversion computation. Finally, we do a theoretical anal-
ysis of our algorithms and implement them. Algorithms 9 and 10
with (extended) affine reduce memory cost by 37% and 21% com-
pared with Algorithm 2 with CA formulae, respectively. As for
computational cost, we evaluate all algorithms by estimating the
number of modulo multiplication (M), modulo square (S ), mul-
tiplication with parameters a and b (ma and mb), addition (A),
and inversion (I). In summary, when omitting the computational
cost of ma, mb, and A, Algorithm 10 with (extended) affine is the
most efficient if 7.2 < I

M < 9.3, Algorithm 9 with (extended)
affine is the most efficient if I

M < 7.2, and Algorithm 2 with CA
formulae is the most efficient if I

M > 9.3. In many cases, such
as national institute of standards and technology (NIST) elliptic
curves, we can only omit the computational cost of ma and A.
Then, Algorithm 10 with (extended) affine is the most efficient if
7.2 < I

M < 12, Algorithm 9 with (extended) affine is the most ef-
ficient if I

M < 7.2, and Algorithm 2 with CA formulae is the most
efficient if I

M > 12. Experiments on NIST P224, P256, and P384
using GNU MP 6.1.2 show that both Algorithms 9 and 10 with
(extended) affine can compute elliptic curve scalar multiplication
more efficiently than Algorithm 2 with CA formulae.

This paper is organized as follows. First, we describe related
work in Section 2. In Section 3, we examine a scalar multiplica-
tion algorithm from the point of input scalar k, defining three new
notions. Subsequently, we extend the affine addition formulae
in Section 4. We improve Joye’s RL 2-ary algorithm to Algo-
rithms 9 and 10 in Section 5. We analyze Algorithms 9 and 10
with (extended) affine from the theoretical and experimental point
of view and compare them with Algorithm 2 with CA formulae
in Section 6. We conclude our work in Section 7.

2. Related Work

Studies of efficient and secure elliptic curve scalar multiplica-
tion algorithms can be divided into two categories. The first one is
efficient and secure scalar multiplication algorithms [3], [4], [5],
[6], [7]. We focus on the RL algorithms in this paper. The second
one is to find efficient and secure coordinates with elliptic curve
addition formulae [8], [9], [10], [11], [12]. Although CA formu-
lae operate well to exclude the branches, which introduce simple
power analysis (SPA), they are not efficient from the memory and
computational standpoints.

2.1 Scalar Multiplication
Joye’s double-add algorithm, Algorithm 1 can regularly com-

pute scalar multiplications, scanning a scalar from least signif-
icant bit (LSB) to most significant bit (MSB) [3]. As for Joye’s
regular RL 2-ary algorithm (Algorithm 2) [4], it can compute reg-
ularly without dummy operations. Thus, in Joye’s regular RL
2-ary algorithm, security issues depend on the elliptic curve addi-
tion formulae. If we use addition formulae on affine or Jacobian
coordinates, branches to avoid additions of two inputs (such as
P+P, P−P, and O+P) and the doubling of P with 2P = O exist.
Branches result in SCA, specifically the SPA. Hence, upon imple-
mentation, we should use “if statements” carefully. Meanwhile,
if we use CA formulae [9], then we exclude “if statements” but
sacrifice memory and computational efficiency. The Joye’s regu-
lar 2-ary algorithm in Ref. [4] is improved from Algorithm 2 by
assuming that the MSB of the input scalar is always “1”. How-
ever, it cannot compute scalar multiplications correctly when the
scalar begins with “0”. Thus we focus on Algorithm 2.

2.2 Complete Addition (CA) Formulae
Izu and Takagi proposed the x-only differential addition and

doubling formulae [8], which proved to be exceptional only if
both input coordinates of x and z are 0 [13]. These addition for-
mulae are applied to the Montgomery ladder in which after the
computation of the x-coordinate, the y-coordinate can be recov-
ered by the formula of Ebeid and Lambert [15].

Renes et al. proposed complete addition formulae for prime
order elliptic curves [9]. Based on the theorems of Bosma and
Lenstra [16], the complete addition formulae for an elliptic curve
E(Fp) without points of order two can be obtained. Note that
E(Fp) with prime order excludes the points of order two. Thus,
we can use the complete addition formulae on E(Fp) with prime
order. The authors also mentioned that if the complete addition
formulae were used in an application, their efficiency could be
improved based on specific parameters and further computation.
However, they remain costly.

Wronski presented a new idea to obtain complete addition
formulae for an elliptic curve ES W/Fp in the short Weierstrass
form [10]. We can expand ES W/Fp to ES W/Fp2 and subsequently
obtain the isomorphism ϕ from ES W/Fp2 to the twisted Hessian
curve EtH/Fp2 when both conditions of 3|#ES W/Fq2 and q ≡ 1
(mod 3) are satisfied. Using the arithmetic on EtH/Fp2 , we can
compute the elliptic curve scalar multiplication more quickly. Af-
ter kP′ was computed on the twisted Hessian curve EtH/Fp2 , we
can use ϕ−1 to transform kP′ to a real result kP on ES W/Fp. Fur-
ther, the addition formulae on the twisted Hessian curve EtH/Fp2

may be complete when parameter a of the twisted Hessian curve
EtH/Fp2 : ax3 + y3 + 1 = dxy is not a cube in Fq.

Table 1 summarizes the addition formulae including the CA
formulae, where M, S , I, and A are the costs for one field mul-
tiplication, square, inversion, and addition, respectively. Further,
ma and mb are the costs for multiplication to a and b, respectively.

Assuming that S = 0.8M and ignoring the computational cost
of ma, mb, and A, the computational cost of ADD + DBL in the
CA formulae is 24M. Subsequently, the computational cost of
ADD + DBL in affine is more efficient than that in the CA for-
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Table 1 Computational complexity of elliptic curve addition formulae.

Method Conditions ADD DBL Memory

x-only addition [8] x− or z-coordinate � 0 8M + 2S 5M + 3S 10

Complete addition [9] 2 � #E(Fp) 12M + 3ma + 2mb + 23A 12M + 3ma + 2mb + 23A 15

Affine - 2M + S + I 2M + 2S + I 5

Jacobian - 11M + 5S M + 8S 8

Algorithm 1 Joye’s double-add algorithm [3]

Input: P ∈ E(Fp), k =
∑ł−1

i=0 ki2i

Output: kP

Uses: R[0], R[1]

1: R[0]← O
2: R[1]← P

3: for i = 0 to ł − 1 do

4: R[1 − ki]← 2R[1 − ki] + R[ki]

5: end for

6: return R[0]

Algorithm 2 Joye’s RL 2-ary algorithm [4]

Input: P ∈ E(Fp), k =
∑ł−1

i=0 ki2i

Output: kP

Uses: A, R[1], R[2]

Initialization

1: R[1]← O, R[2]← O, A← P

Main loop

2: for i = 0 to ł − 2 do

3: R[1 + ki]← R[1 + ki] + A, A← 2A

4: end for

Aggregation and final correction

5: A← (kł−1 − 1)A + R[1] + 2R[2]

6: A← A + P

7: return A

mulae or Jacobian when I < 8.8M or I < 8M. Meanwhile, the
computational cost of ADD + DBL in Jacobian is always more
efficient than that in the complete addition by 1.6M.

3. Exceptional Inputs in Scalar Multiplication

This section analyzes two algorithms (Algorithms 1–2) with an
input scalar k =

∑ł−1
i=0 ki2i (in binary) and an elliptic curve point P

from the following three aspects: generality of k, secure general-
ity, and executable coordinates.

3.1 Generality of k
We define the generality of k as follows. The scalar multipli-

cation should compute kP for ∀k ∈ Z/NZ, where k ∈ {0, 1}ł and
N is the order of P. Subsequently, it includes a case where the
MSB of k is zero (kł−1 = 0). We say that a scalar multiplication
satisfies the generality of k if it can operate for any ∀k ∈ Z/NZ
with kł−1 = 0 or kł−1 = 1. Let us investigate whether Algo-
rithms 1–2 satisfy the generality of input scalar k. The Joye’s
double-add algorithm (Algorithm 1) can operate for any input
scalar ∀k ∈ Z/NZ with kł−1 = 0 or kł−1 = 1. It is obvious that
Algorithm 1 can compute kP correctly when kł−1 = 1. Algo-
rithm 1 scans the scalar from right and reads “0”s at the end if
kł−1 = 0. The “0”s read at the end do not change the value saved
in R[0], which is the final correct computation result. In sum-

mary, Algorithm 1 can compute kP correctly with any input scalar
∀k ∈ Z/NZ with kł−1 = 0 or kł−1 = 1.

Joye’s RL m-ary algorithm satisfies generality of k, implying
that it can compute kP for any input ∀k ∈ Z/NZ with kł−1 = 0 or
kł−1 = 1. The proof is given in Appendix A.1. We herein focus
on the case of m = 2, which is described by Algorithm 2.

3.2 Secure Generality
We define the notion of the secure generality added to the gen-

erality of k as follows. If a scalar multiplication can compute kP

regularly without dummy operations satisfying generality of k for
∀k ∈ Z/NZ with kł−1 = 0 or kł−1 = 1, where N is the order of P,
then we say that such an algorithm satisfies the secure generality.

Algorithm 2 executes the same computations of addition and
doubling without any dummy operation for every bit of scalar.
It is regular without dummy operations for any k; thus, it satis-
fies the secure generality. Algorithm 1 also executes the same
computations of addition and doubling without any dummy op-
erations until the final input bit kł−1 of a scalar k. Its final step
in the main loop becomes a dummy operation when processing
kł−1 = 0. In detail, Algorithm 1 reads “0”s at the end if kł−1 = 0.
Subsequently, the computation R[1] ← 2R[1] + R[0] becomes a
dummy operation. Thus, we can know whether the scalar begins
with “0”s by inserting safe-error to R[1−ki]← 2R[1−ki]+R[ki].
If the result does not change, then the MSB of the scalar is “0”.
Thus, Algorithm 1 does not satisfy the secure generality.

3.3 Executable Coordinates
Let us define the notion of coordinates in a scalar multiplica-

tion algorithm. If the coordinates can be executed for an algo-
rithm for ∀k ∈ Z/NZ without exceptional inputs, we say that co-
ordinates are executable coordinates for the algorithm, where N

is the order of P in E(Fp). This notion is important because even
if a scalar multiplication algorithm satisfies secure generality, we
must choose executable coordinates.

Let us investigate the executable coordinates in Algorithm 1.
Algorithm 1 requires addition or doubling formulae with O. This
is why neither affine nor Jacobian coordinates are executable. Let
us investigate Algorithm 2. Algorithm 2 contains exceptional in-
puts k. R[1] and R[2] are initialized as O, and A is initialized as
P in Step 1. In the main loop, O + P appears independent of k in
Step 3. It is obvious that O + P, P + P, and −P + P are computed
when k = 1, 2, 0 in the aggregation and final correction, respec-
tively. In summary, Algorithm 2 has to compute addition with O
independent to k, P + P if k = 2, and P − P if k = 0. Neither the
affine nor Jacobian coordinates can compute all of O + P, P + P,
and −P + P. Meanwhile, CA formulae [9] are executable coor-
dinates. As shown in Section 2, we must sacrifice computational
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and memory cost if we use CA formulae.
We herein focus on Algorithm 2, as it satisfies the secure gen-

erality of k. Specifically, we improve it by adapting it to affine
coordinates that requires a small memory. Jacobian coordinates
are also executable for our new Algorithms 9–10.

4. Extended Affine Addition Formulae

Affine formulae are advantageous because of less memory us-
age. The computational cost, however, depends on the ratio of
inversion cost to multiplication cost.

The detailed algorithms are shown in Algorithms 4 and 5. It
is noteworthy that both Algorithms 4 and 5 can retain the value
of the input point of P, which can be used continually as the
next input. Affine formulae have exceptional points. O cannot
be represented explicitly, while it is described as a point at infin-
ity. Thus, affine formulae cannot compute O+ P = O, P− P = O,
or 2P = O. The addition formula cannot compute P + P, which
can only be computed by the doubling formula. When imple-
menting affine formulae, branches are required to avoid such ex-
ceptional points. We want to fully utilize affine formulae because
they reduce memory. Scalar multiplication algorithms should sat-
isfy the secure generality in Section 3; thus, they are suitable for
any k ∈ Z/NZ, which includes a special case of k = 0. Algo-
rithm 2 satisfies the secure generality but the affine coordinates
are not executable on them.

Thus, we extend the affine formulae in such a way that they
can compute exceptional computations of P−P = O and 2P = O.
The corresponding operations are shown in Algorithms 6 and 7,
which can compute P − P = O and 2P = O when E(Fp) does not
include a point (0, 0). For example, E(Fp) without two-torsion
points satisfies the condition, including the prime order elliptic
curve on the Weierstrass form. Importantly, both Algorithms 6
and 7 retain the value of the input point of P similar to Algo-
rithms 4 and 5. Let us explain our idea of the extended affine

Algorithm 3 Extend Euclidean Algorithm
Input: x0, x1, x2, y0, y1, y2, a, p, r, q

Output: a−1 mod p

1: x0 = 1, y0 = 0, x1 = 0, y1 = 1

2: while p � 0 do

3: r = a mod p, q = a/p

4: x2 = x0 − q · x1, y2 = y0 − q · y1

5: a = p, p = r

6: x0 = x1, x1 = x2

7: y0 = y1, y1 = y2

8: end while

9: return x0

Algorithm 4 Affine addition formula
Input: P = (x1, y1) and Q = (x2, y2)

Output: P, P + Q

1: t0 ← (x2 − x1)−1

2: y2 ← y2 − y1

3: t0 ← t0y2

4: y2 ← t2
0 − x1 − x2

5: x2 ← (x1 − y2)t0 − y1

6: return (x1, y1), (y2, x2)

formulae. The inversion of a (mod p) can be computed by the ex-
tended Euclidean algorithm (Algorithm 3), Ecd(a, p), or Fermat’s
little theorem, Fermat(a, p) = ap−2 (mod p). Interestingly, Algo-
rithm 3 outputs 0 with inputs a = 0 and any p; Fermat’s little
theorem computes 0p−2 = 0 with inputs a = 0 and any p; that is,
both are executable for a special input of “0”. Therefore, Algo-
rithms 6 and 7 compute (x2 − x1)−1 and (2y1)−1 in the beginning
by extended Euclidean algorithm or Fermat’s little theorem and
execute the remaining parts. Subsequently, the results for ordi-
nary inputs P and Q are the same as those of Algorithms 4 and 5,
respectively. Furthermore, the results for the exceptional inputs
of P − P and 2P = O can be given as (0, 0), which is assumed as
O = (0, 0).

The extended affine addition formula is transformed from
the original affine addition formula by extracting the factor of
(x2 − x1)−1. The computational cost of Algorithm 6 is 6M + S + I

and its memory cost is seven field elements. The extended affine
doubling formula is transformed from the original affine doubling
formula by extracting (2y1)−1. The computational cost of Algo-
rithm 7 is 4M + 4S + I and its memory cost is also seven field
elements.

Remark 1 Neither Algorithm 4 nor 5 can output P − P =

(0, 0) or 2P = (0, 0), even if an inversion of x2 − x1 or 2y1 is
computed by the Euclidean algorithm or Fermat’s little theorem.

Algorithm 5 Affine doubling formula
Input: P = (x1, y1)

Output: P, 2P

1: t0 ← 3x2
1 + a

2: t1 ← (2y1)−1

3: t0 ← t0t1
4: t1 ← t2

0 − 2x1

5: t2 ← (x1 − t1)t0 − y1

6: return (x1, y1), (t1, t2)

Algorithm 6 Extended affine addition
Input: P = (x1, y1) and Q = (x2, y2)

Output: P, P + Q

1: t0 ← (x2 − x1)−1

2: y2 ← y2 − y1

3: x2 ← x2 − x1

4: t1 ← (x2 + 2x1)x2

5: x2 ← y1 x2

6: t2 ← (y2
2t0 − t1)t0

7: t1 ← ((x1 − t2)y2 − x2)t0
8: return (x1, y1), (t2, t1)

Algorithm 7 Extended affine doubling
Input: P = (x1, y1)

Output: P, 2P

1: t0 ← 3x2
1 + a, t1 ← (2y1)−1

2: t4 ← y2
1, t2 ← 8x1t4

3: t3 ← t2
0 − t2, t2 ← t2

1

4: t3 ← t3t2, x1 ← x1 − t3
5: t0 ← t0 x1, t4 ← 2t4
6: t0 ← (t0 − t4)t1
7: x1 ← x1 + t3
8: return (x1, y1), (t3, t0)
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Theorem 1 Let E(Fp) be y2 = x3 + ax + b, b � 0 (mod p),
meaning that point (0, 0) is not on E(Fp). P and Q are points on
E(Fp). By setting (0, 0) as O, the extended addition formula can
compute the addition of P and Q correctly if P � Q (P � O,
Q � O), P − P = O, and O + O. The extended doubling formula
can compute the doubling of P correctly for any point on E(Fp).

Proof 1 Firstly we prove that Algorithm 6 can compute P +

Q = O and O + O = O correctly. When computing P + Q = O
(for example P = (x1, y1) = (x, y) and Q = (x2, y2) = (x,−y)),
the inversion of zero ((x2 − x1) = (x − x) = 0) has to be com-
puted. As we stated, by the extended Euclidean algorithm, or by
using Fermat’s little theorem, we obtain zero for the inversion of
zero. This demonstrates that by our Algorithm 6, we can compute
P + Q = O:

x3 = 0, y3 = 0. (1)

This implies P + Q = O = (0, 0). Further, we regard (0, 0) as
O. Subsequently, our variant of affine addition formula computes
P+Q = O correctly. Further, it is clear thatO+O = O (O = (0, 0))
can be computed correctly.

We should emphasize that extracting the factor of (x2 − x1)−1

does not affect the addition of other points because the factor
(x2 − x1)−1 becomes zero only when computing P + Q = O and
O + O = O, and in the other situation, extracting the factor of
(x2 − x1)−1 is always safe.

Secondly we prove that Algorithm 7 can compute 2P = O
correctly where P is the point of order two. When computing
2P = O, where the two-torsion point P = (x1, y1) = (x1, 0) is
of zero y-coordinate, the inversion of zero 2y1 = 0 has to be
computed. Subsequently, we can compute 2P = (0, 0) by our ex-
tended affine doubling formula. Further, we regard (0, 0) as O,
implying that our variant of the affine doubling formula can com-
pute 2P = O correctly when the point (0, 0) is not on E(Fp).

Further, extracting the factor of (2y1)−1 does not affect the dou-
bling of other points. The y-coordinate of P becomes zero only
when 2P = O. The variant of the affine doubling formula is
exception-free, implying that it can compute the doubling of all
points on E(Fp), which does not include the point (0, 0).

�
Importantly, the original affine addition formulae cannot com-

pute P + P, P + Q = O, P + O, and 2P = O, while our extended
affine addition formulae can compute P+Q = O and 2P = O cor-
rectly. The Jacobian and Projective addition formulae can com-
pute P + Q = O and 2P = O correctly. Thus, both coordinates
become “executable coordinates” in our Algorithms 9–10, where
extended affine coordinates are “executable coordinates”. This
implies that if our algorithms perform well on the extended affine
to compute elliptic curve scalar multiplications, our approach can
be easily extended to the Jacobian addition formulae or Projective
addition formulae.

5. Secure and Efficient RL Elliptic Curve
Scalar Multiplication

We improve Algorithm 2 and propose Algorithms 9 and 10,
which avoid exceptional inputs such as P + P, P + O, P − P,
and 2P = O with a two-torsion point P. Then, we combine Al-

gorithms 9 and 10 with (extended) affine to secure elliptic curve
scalar multiplication algorithms.

We also enhance the efficiency of our method by two-bit
scanning using the affine double and quadruple formulae (DQ-
formula) [14], which can compute both 2P and 4P simultaneously
with only one inversion computation, denoted by {2P, 4P} ←
DQ(P). Thus, the computational cost of obtaining both 2P and
4P in affine coordinates is t({2P, 4P} ← P) = 8M + 8S + I. We
revise the details of operations in Algorithm 8 to optimize the use
of memory. In fact, the necessary memory in the DQ-formula is
improved to 10 field elements.

First, we improve Algorithm 2 to obtain the new 2-ary RL al-
gorithm 9 and combine it with two-bit scanning to obtain the new
two-bit 2-ary RL algorithm 10. For Algorithm 10, we adjust the
length of |k| to be odd by padding “0” in front of input scalar |k|.
Thus, two-bit scanning can operate well for even or odd length
of |k|. Both Algorithms 9 and 10 assume that k ∈ Z/NZ is in
k ∈ [− N

2 ,
N
2 ]. Actually, k is determined by modulo N; thus, this is

a natural setting. This technique ensures that our algorithms ex-
clude exceptional points exactly, as shown in Theorem 2. Then, k

is represented by k = (−1)kł
∑ł−1

i=0 ki2i (ki ∈ {0, 1}), where kł is the
sign bit and 0 ≤ |k| ≤ N

2 .
Algorithms 9 and 10 consist of three parts: initialization, main

loop, and final correction. Compared with Algorithm 2, we
change the initialization of R[.] to avoid the exceptional initial-
ization of O and the exceptional computation O + P in the main
loop. The initialization of R[.] causes R[0] + 2R[1] = P to be

Algorithm 8 Affine double and quadruple formulae
Input: P(x1, y1)

Output: 2P, 4P

1: t0 = x2
1, t1 = 2y2

1, t2 = t2
1

2: t1 = 3((t1 + x1)2 − t0 − t2), t0 = 3t0 + a, t3 = t2
0

3: t1 = (t1 − t3)t0, t2 = 2t2, t1 = t1 − t2
4: t3 = 2t1y1, t3 = t−1

3 , t0 = t0t1t3
5: x2 = t2

0 − 2x1, y2 = (x1 − x2)t0 − y1, t3 = t2t3
6: t0 = (3x2

2 + a)t3, x3 = t2
0 − 2x2, y3 = (x2 − x3)t0 − y2

7: return (x2, y2), (x3, y3)

Algorithm 9 New 2-ary RL algorithm

Input: P ∈ E(Fp), k ∈ [− N
2 ,

N
2 ], k = (−1)kł

∑ł−1
i=0 ki2i, kł ∈ {0, 1}

Output: kP

Uses: A, R[0], R[1]

Initialization

1: R[0] = −P

2: R[1] = P

3: A← 2P

4: R[k0]← R[k0] + A

Main loop

5: for i = 1 to ł − 1 do

6: R[ki]← R[ki] + A

7: A← 2A

8: end for

Final correction

9: R[k0]← R[k0] − P

10: A← −A + R[0] + 2R[1]

11: A = (−1)kł × A

12: return A
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Algorithm 10 New two-bit 2-ary RL algorithm

Input: P ∈ E(Fp), k ∈ [− N
2 ,

N
2 ], k = (−1)kł

∑ł−1
i=0 ki2i, kł ∈ {0, 1}

Output: kP

Uses: A, A[1], R[0], R[1]

Initialization

1: R[0] = −P

2: R[1] = P

3: {A, A[1]} ← DQ(P) = {2P, 4P}
4: R[k0]← R[k0] + A

Main loop

5: for i = 1 to ł − 1 do

6: R[ki]← R[ki] + A

7: R[ki+1]← R[ki+1] + A[1]

8: {A, A[1]} ← DQ(A[1])

9: i = i + 2

10: end for

Final correction

11: R[k0]← R[k0] − P

12: A← −A + R[0] + 2R[1]

13: A = (−1)kł × A

14: return A

added to the final result in the final step of our algorithms. Thus,
we avoid the exceptional computation in the original final correc-
tion, A ← A + P, of Algorithm 2. Step 3 of Algorithms 9 and
10 helps to avoid the exceptional computations of P + P or P − P

if A is initialized as P. The final correction adjusts the excess
computations by Step 3 in Algorithms 9 and 10.

Next, we explain the (extended) affine (ordinary and our ex-
tended version) that is used in Algorithms 9 and 10. The origi-
nal affine coordinates are used in Steps 1–9 of Algorithm 9 and
Steps 1–11 of Algorithm 10. Our extended affine formulae are
used only once in Step 10 of Algorithm 9 and Step 12 of Algo-
rithm 10. Actually, extended affine is necessary only for k = 0. If
k = 0 is surely excluded from the input, then we can use only or-
dinary affine in the whole Algorithms 9 and 10. Our Algorithms 9
and 10 satisfy generality of k and secure generality. Theorem 2
proves that Algorithms 9–10 avoid all exceptional computations
of (extended) affine when k ∈ [− N

2 ,
N
2 ].

Theorem 2 Let E(Fp) be an elliptic curve without two-
torsion points. Let P ∈ E(Fp), P � O be an elliptic curve point,
whose order is N � 3. Then, Algorithms 9 and 10 using (ex-
tended) affine can compute kP correctly for any input k ∈ [− N

2 ,
N
2 ]

without introducing conditional statements.
Proof 2 We prove that all three parts exclude the exceptional

computations of affine coordinates, which are additions of P ± P

and O+P, and doubling of 2P = O. The doubling of 2P = O does
not appear in the algorithms because of the assumption that E(Fp)
is without two-torsion points. Thus, we only focus on exceptional
additions.

In the initialization, R[0] and R[1] initialized as (Px,−Py) and
(Px, Py) are “odd” scalar points such as (2t + 1)P, t ∈ Z. A initial-
ized as ((2P)x, (2P)y) is an “even” scalar point such as (2t)P, t ∈ Z.
It is obvious that R[0] ← −P + 2P or R[1] ← P + 2P in Step 4
can be computed correctly by the original affine addition formula
if N � 3.

In the main loop, it is noteworthy that 1) A � O because of
E(Fp) without two-torsion points and A is always updated as

Table 2 Comparison analysis.

Computational cost Memory

Alg. 2 + CA [9] (ł + 1)(24M + 6ma + 4mb + 46A) 19

Alg. 9 + (extended) affine (6.4ł + 16)M + (2ł + 4)I 12

Alg. 10 + (extended) affine (10ł + 23.2)M + ( 3ł+9
2 )I 15

an “even” scalar point until 2łP, 2ł < N because of |k| ≤ N
2 .

2) R[0] � O is always updated as an “odd” scalar point with a
smaller scalar than A after one loop computation. 3) R[1] � O is
also always updated as an “odd” scalar point. If |k| = {1}ł, R[1]
is always with a larger scalar than A and is updated to (2ł + 1)P,
(2ł+1) ≤ N at the end of main loop. If N = (2ł+1) then |k| = {1}ł,
which is larger than N

2 , cannot be a valid input. Thus, R[1] may be
with a larger scalar than A but never equals to NP = O. In sum-
mary, R[0], R[1], A � O are scalar points of P whose scalars are
never over N. Therefore, during the main loop, the exceptional
computations O + P and P + Q = O does not appear. The excep-
tional addition P+P does not appear because that the “odd” scalar
point (R[.]) can never be the same point as the “even” scalar point
(A). The computations in the main loop exclude the exceptional
computations of affine coordinates.

In the final correction, the exceptional computation O+ P does
not appear in Step 9 of Algorithm 9. Because after the main loop,
R[k0] � O is shown. The exceptional computation P+ P does not
appear in Step 9 of Algorithm 9. R[k0] is an “odd” scalar point
and −P = (N − 1)P is an “even” scalar point. They cannot be
the same. Step 9 of Algorithm 9 computes P − P = O when only
k0 = 0. However, we can put a “0” in front of |k| to avoid this.
This additional “0” causes R[0] ← R[0] + 2łP which can also be
computed correctly and A is updated as (2ł+1)P. In Step 10 of
Algorithm 9, −A, R[0], 2R[1] cannot be O which excludes excep-
tional computation of P + O. R[0] has a smaller scalar than A

which excludes the exceptional computation of P− P when com-
puting −A+R[0]. If −A = R[0] which means that the input scalar
k is even and k0 = 0, −A = (N − 2ł) is with “odd” scalar and
R[0] ← R[0] − P computed in Step 9 is with “even” scalar. They
cannot be the same where we have a contradiction. So −A � R[0]
excludes exceptional computation P+P. If k = 0, the last addition
of Step 10 in Algorithm 9 computes the exceptional computation,
P−P. Our extended affine formula can be used here to avoid this.

The two-bit scanning version analysis proceeds in an analo-
gous way.

�

6. Efficiency and Memory Analysis

6.1 Theoretical Analysis
We analyze the computational and memory cost of Algo-

rithms 9 and 10 with (extended) affine and Algorithm 2 with CA
formulae, which is shown in Table 2. The memory cost counts
the number of Fp elements, including the memory used in the
addition formulae. As for computational cost, we evaluate all al-
gorithms by estimating the number of modulo multiplication (M),
modulo square (S ), multiplication with parameters a and b (ma

and mb), addition (A), and inversion (I). The total computational
cost of Algorithm 2 with CA formulae is (ł + 1)24M if we ig-
nore the computational cost of ma, mb, and A. Assuming the
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Table 3 Efficiency analysis.

ma = mb ma = A = 0 mb = A = 0 ma = mb = M
= A = 0 mb = M ma = M A = 0

Alg. 2 + CA [9] I
M > 9.3 I

M > 12 I
M > 13.3 I

M > 16

Alg. 9 + (extended) affine I
M < 7.2 I

M < 7.2 I
M < 7.2 I

M < 7.2

Alg. 10 + (extended) affine 7.2 < I
M < 9.3 7.2 < I

M < 12 7.2 < I
M < 13.3 7.2 < I

M < 16

Table 4 NIST elliptic curves.

P-224 y2 = x3 − 3x + 18958286285566608000408668544493926415504680968679321075787234672564

P-256 y2 = x3 − 3x + 41058363725152142129326129780047268409114441015993725554835256314039467401291

P-384 y2 = x3 − 3x + 275801935599597058778490118403890480930569058563615685214287073019886892413098608651362607648837451077654
39761230575

Table 5 Average computation time for one scalar (ms).

P-224 P-256 P-384

Alg. 2 + CA [9] 1.925 2.271 3.871

Alg. 9 + (extended) affine 1.378 1.816 3.618

Alg. 10 + (extended) affine 1.355 1.697 3.301

ratio of S = 0.8M, Algorithms 9 and 10 with (extended) affine
are more efficient than Algorithm 2 with CA formulae if I

M < 8.8
and I

M < 9.3, respectively. Algorithm 10 is more efficient than
Algorithm 9 if I

M > 7.2. In summary, when omitting the compu-
tational cost of ma, mb, and A, Algorithm 10 is the most efficient
if 7.2 < I

M < 9.3, Algorithm 9 is the most efficient if I
M < 7.2,

and Algorithm 2 is the most efficient if I
M > 9.3. In many cases,

such as NIST elliptic curves, we can only omit the computational
cost of ma and A. Then, Algorithm 10 is the most efficient if
7.2 < I

M < 12, Algorithm 9 is the most efficient if I
M < 7.2,

and Algorithm 2 is the most efficient if I
M > 12. Depending on

whether ignoring computational costs of ma and mb or not, we
summarize the most efficient algorithms depending on the I

M in
Table 3.

As for the memory cost, Algorithms 9 and 10 can reduce that
of Algorithm 2 with CA formulae by 37% and 21%, respectively.

6.2 Experimental Results
We have implemented Algorithms 9 and 10 with (extended)

affine and Algorithm 2 with CA formulae on NIST P-224, P-256,
and P-384, which are shown in Table 4. We randomly gener-
ate 105 test scalars during the interval of [− N

2 ,
N
2 ], where N is

the order of the point P. The experimental platform uses C pro-
gramming language with GNU MP 6.1.2 and Intel (R) Core (TM)
i7-8650U CPU @ 1.90 GHz 2.11 GHz personal computer with
16.0 GB RAM 64-bit; the operating system is Windows 10.

Table 5 shows the average scalar multiplication time of Al-
gorithms 9 and 10 with (extended) affine and Algorithm 2 with
CA formulae. Table 5 shows that Algorithms 9 and 10 reduce
the computational time of Algorithm 2 by 28.39% and 29.62%,
20.04% and 25.28%, and 6.53% and 14.72%, over NIST P-224,
P-256, and P-384, respectively.

As we have already established, the efficiency of our algo-
rithms depends on the ratio I

M . Our Algorithm 10 is the most
efficient in our experiment, although the ratio I

M in the GNU MP
library is approximately between 4 and 7 in Table 6. Function
calls and the number of loops may cost time. Algorithm 10 has

Table 6 Fundamental computation time cost of GNU MP (ms).

M S I I
M

224 bits 0.00062433 0.00061695 0.00225568 4.40395554

256 bits 0.00060135 0.0006014 0.00254518 4.93937316

384 bits 0.0006502 0.00065214 0.00358089 6.87693726

fewer function calls and loops, which saves time. Consequently,
Algorithm 10 with (extended) affine may be the most efficient
over all NIST elliptic curves regardless of I

M .

7. Conclusion

We have proposed two new secure and compact RL elliptic
curve scalar multiplication Algorithms 9 and 10 with (extended)
affine coordinates. Our algorithms have generality of k and secure
generality and can exclude exceptional computations of O + P,
P − P = O, and P + P. Our extended affine coordinates can com-
pute P − P = O and 2P = O by introducing a point (0, 0) as O
when an elliptic curve E(Fp) � (0, 0). From the theoretical point
of view, our results can be summarized as follows. When omitting
the computational cost of ma, mb, and A, Algorithm 10 with (ex-
tended) affine is the most efficient if 7.2 < I

M < 9.3, Algorithm 9
with (extended) affine is the most efficient if I

M < 7.2, and Al-
gorithm 2 with CA formulae is the most efficient if I

M > 9.3. In
many cases, such as for NIST elliptic curves, we can only omit
the computational cost of ma and A. In this case, Algorithm 10
with (extended) affine is the most efficient if 7.2 < I

M < 12, Algo-
rithm 9 with (extended) affine is the most efficient if I

M < 7.2, and
Algorithm 2 with CA formulae is the most efficient if I

M > 12.
Algorithms 9 and 10 with (extended) affine can reduce the mem-
ory of Algorithm 2 with CA formulae by 37% and 21%, respec-
tively.
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Editor’s Recommendation
This paper proposes efficient algorithms for elliptic curve cryp-

tography (ECC), which yet secure against side-channel attacks.
In ECC, side-channel information mainly leaks from the fact that
conventional formulae for ECC operations need to handle the
point at infinity as an exceptional input. Previous works therefore
proposed new formulae to circumvent such exception. In contrast
with them, the paper proposes to handle the point at infinity as a
point (0, 0) and shows conventional Affine formula can properly
handle the point as usual input. The paper also provides a theo-
retical analysis of security and efficiency, and shows superiority
compared with previous works. The paper gives a new approach
for secure ECC implementations and thus is selected as a recom-
mended paper.

(Chief examiner of SIGCSEC Toshihiro Yamauchi)

Appendix

A.1 Proof of Generality of k of Joye’s Regular
RL m-ary Algorithm

Algorithm 11 Joye’s RL m-ary algorithm [4]

Input: P ∈ E(Fp), k =
∑ł−1

i=0 kimi

Output: kP

Uses: A and R[1], . . . , R[m]

Initialization

1: for i = 1 to m do

2: R[i]← O
3: end for

4: A← P

Main loop

5: for i = 0 to ł − 2 do

6: R[1 + ki]← R[1 + ki] + A

7: A← mA

8: end for

Aggregation and final correction

9: A← (kł−1 − 1)A +
∑m

i=1(m + i − 2)R[i]

10: A← A + P

11: return A

Theorem 3 Joye’s regular RL m-ary algorithm, Algo-
rithm 11, can correctly compute kP with any input scalar k ∈
{0, . . . ,m − 1}ł and P ∈ E(Fp).
Proof:
Let k =

∑ł−1
i=0 αimi be an m-ary representation of scalar with

αi ∈ [0,m − 1]
Case 1: The MSB of k is not zero, αł−1 ∈ [1,m − 1]. Joye’s reg-
ular RL m-ary algorithm computing kP correctly is described in
Ref. [4].
Case 2: The MSB of k is zero, αł−1 = 0, and k � 0. Assuming
that the length of “0”s before the first bit αi (αi � 0) is N, the
length of the rest part is n = ł − N. From Algorithm 11, we can
see the values will be updated as:

R[1] R[αi + 1] A

Initialization O O P

Reading αi · · · +mn−1P mnP
(A′)

Reading 0 +A′ · · · mA′
before αi

Reading +mN−1A′ · · · mN A′
αł−2 = 0

Because of a series of “0”s in front of αi, in the aggregation of
Algorithm 11, (A′ + mA′ + · · · + mN−1A′)(m − 1) − mN A′ = −A′

will be computed. When the MSB of k′ is not zero, Algorithm 11
will compute (α′ł−1 − 1) A′

m for α′ł−1 in Step 9. When the MSB
of k is zero, αł−1 = 0, and k � 0, Algorithm 11 will com-
pute (m + αi − 1) A′

m for the first nonzero bit αi in Step 9. Then
(m + αi − 1) A′

m − (α′ł−1 − 1) A′
m = A′ when αi = α

′
ł−1 will be added

to the correct result because of αi. And finally −A′ + A′ = O will
influence the result because of the first nonzero bit αi and ‘0’s in
front of αi. This indicates that there’s no influence to the final
result when the MSB of scalar k is ‘0’.
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Case 3: k = 0, (P + mP + · · · + mł−2P)(m − 1) − mł−1P + P = O.
Thus, Joye’s regular RL m-ary algorithm is of generality of k.
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