
IPSJ Transactions on Mathematical Modeling and Its Applications Vol.13 No.2 61–68 (Aug. 2020)

Regular Paper

Node-perturbation Learning Applied
for Soft-committee Machine

Kazuyuki Hara1,a) Kentaro Katahira2,b) Masato Okada3,4,c)

Received: November 13, 2019, Revised: January 6, 2020,
Accepted: February 20, 2020

Abstract: Node-perturbation learning is an online stochastic gradient descent method for neural networks. It estimates
the gradient of the error surface by calculating the change in error between the perturbed output and the non-perturbed
output. Node-perturbation can be applied to problems where the objective function is not defined. Node-perturbation
learning is applied to only a simple perceptrons, so we explore the application of node perturbation learning to a multi-
layer neural network called a soft committee machine and analyze the dynamic properties of the learning process. We
conduct computer analysis to show the validity of the proposed method.

Keywords: node-perturbation learning, soft committee machine, on-line learning, perturbation, generalization error,
statistical mechanics method

1. Introduction

Supervised learning in neural networks [1] can be formulated
as an optimization of an objective function that quantifies the sys-
tem’s performance. The optimization is carried out by calculating
the gradient of the objective function explicitly and updating the
parameters by a small step in the direction of the locally greatest
improvement. However, computing a direct gradient to follow
can be problematic. For instance, reinforcement learning has no
explicit form of the objective function, so we cannot calculate a
gradient for it.

As a solution to this problem, Williams et al. [2] proposed
node-perturbation learning [3] (NP learning) based on the online
stochastic gradient method for a simple perceptron [5]. NP learn-
ing estimates the gradient by examining the change in the scalar
objective value when noise is added to the output of the network
noise. If the objective value becomes smaller when noise is added
to the network output, the weight vector changes in the direction
of the noise. As a result, NP learning can be formulated as a re-
inforcement learning in which all the weight vectors are updated
using a scalar reward, instead of a target vector as in the gradient
method. Here, Werfel et al. calculated the learning curve of NP
learning for linear perceptron by using the ensemble mean [4].
For more complex problems, i.e., linearly not separable prob-

1 College of Industrial Technology, Nihon University, Narashino, Chiba
275–8575, Japan

2 Graduate School of Informatics, Nagoya University, Nagoya, Aichi 464–
8601, Japan

3 Graduate School of Sciences, The University of Tokyo, Bunkyo, Tokyo
113–0033, Japan

4 Graduate School of Frontier Sciences, The University of Tokyo,
Kashiwa, Chiba, 277–8561, Japan

a) hara.kazuyuki@nihon-u.ac.jp
b) katahira.kentaro@b.mbox.nagoya-u.ac.jp
c) okada@edu.k.u-tokyo.ac.jp

lems, the multilayer architecture is required, and NP learning for
multilayer network is an open problem in the machine learning
research.

In the current paper, our opportunity is to explore the imple-
ment methods of NP learning in the multilayer network, and
to show the learning behavior of the NP learning for the mul-
tilayer network. We also want to give insights for NP learn-
ing for multilayer networks. We implement NP learning in two
ways, i.e., by adding perturbation noise to the hidden layer or
by adding noise to the output layer. We formulate NP learning
for soft-committee machine by using the statistical mechanical
method [6], [7], [8], [9], and analyzed the behavior of the learning
equations of adding noise to output unit or adding noise to hidden
unit, based on the signal-to-noise analysis. The generalization er-
ror is given by using the order parameters Rkk′s and Qk′l′ those
are given by time course of the student weight vectors. A soft-
committee machine, that is used as a multilayer network in this
paper, has a simple network structure; however, it suffers from
plateau phenomena and symmetry breaking. Plateau phenom-
ena and symmetry breaking in two implementations are shown
and compared in the generalization error. We analyze reasons of
worse generalization error in two implementation and give sug-
gestions to improve the generalization. We also compared NP
learning with noisy learning. These our findings give insights for
the NP learning for multilayer networks.

2. Previous Study

Previous study in NP learning, Williams et al. [2] proposed
node-perturbation learning [3] based on the online stochastic gra-
dient method. In this paper, the simple perceptron is used. Werfel
et al. calculated the learning curve of NP learning for linear sim-
ple perceptron by using the ensemble mean [4]. Cho et al. [14]
calculated the learning curve of NP learning without noiseless

c© 2020 Information Processing Society of Japan 61

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.13 No.2 61–68 (Aug. 2020)

baseline by calculating ensemble mean.
We calculated the dynamics of NP learning applied for linear

perceptrons [13] by using statistical mechanics method. We also
calculated dynamics of NP learning applied for non-linear per-
ceptrons [15] by using statistical mechanics method.

Prevous study in analysis of the soft-committee machine by us-
ing the statistical mechanics method, Saad [8] and Biehl [6], [7]
independently calculated the dynamics of gradient descent learn-
ing for soft-committee machine.

In this paper, we apply NP learning for soft-committee ma-
chine. This is the first paper that apply the NP learning to the mul-
tilayer networks. In NP learning applied for non-linear percep-
trons, the error is calculated for sum of the squared error of each
output unit. As shown in Eq. (18), the error of soft-committee ma-
chine is calculated for the squared error of total of outputs. So, in
soft-committee machine, we must consider cross-correlation of
the outputs.

3. Formulation

Here, we formulate the teacher and student networks and
derive a learning rule for applying the NP learning algorithm
to a soft-committee machine. Supervised-learning and online-
learning settings are assumed.

3.1 Model
First, we introduce the teacher-student formulation that is used

in the statistical mechanical method. Then, we use their formu-
lations to build the NP learning algorithm. The teacher network
(teacher) generates the target of the student network (student) for
a given input. By introducing a teacher network, we can directly
measure the similarity of the student weight vector to the teacher
weight vector.

Figure 1 shows the teacher and student, which are soft-
committee machines with N inputs and one linear output. The
teacher and student receive the same input vector x(m) at the mth
learning iteration. The teacher output t(m) is used as the scalar
target for x(m). Note that the iteration m is not shown in the fig-
ure. The teacher includes K hidden units, while the student in-
cludes M hidden units. The inner potential of hidden units of
the teacher and student are the inner products of the input vec-
tor and the weight vector from the input to hidden layer. In the
following part of the paper, the weight vector from the input to
hidden layer is called the weight vector. The activation function
of the hidden unit output is a non-linear function and the function
is applied to the inner-potential of hidden unit. All weights from
the hidden layer to the output layer for the teacher and student
soft-committee machines are set to one [8]. The network output
is determined by majority vote of hidden unit outputs.

Each element x(m)
j , j = 1 ∼ N of the input vector x(m) is drawn

from a probability distribution P(x j) with zero mean and unit vari-
ance. The statistics of x(m) in the thermodynamic limit, N → ∞,
are〈

x(m)
j

〉
= 0,

〈
(x(m)

j)2
〉
= 1, ||x(m)|| = √N. (1)

Here, 〈· · · 〉 means the average of all elements, and || · || means the
norm of a vector.

Fig. 1 Structure of Teacher and student networks.

The teacher is not to the object of the learning. Thus, the
teacher weight vectors w∗k , k = 1 ∼ K are not updated during the
learning process. The kth weight vector w∗k is an N-dimensional
vector, and each element w∗k j, j = 1 ∼ N is drawn from a proba-
bility distribution P(w∗k j) with mean zero and variance 1/N. The
statistics of the jth element of the kth weight vector for the teacher
w∗k j in the thermodynamic limit, N → ∞, are

〈
w∗k j

〉
= 0,

〈
(w∗k j)

2
〉
=

1
N
, ||w∗k || = 1. (2)

The inner potential of the kth hidden unit for x(m) is written as

d(m)
k =

N∑
j=1

w∗k jx
(m)
j = w∗k · x(m), (3)

The inner potential of the hidden unit dk in the thermodynamic
limit, N → ∞, obeys a Gaussian distribution with zero mean and
unit variance. The kth hidden unit output is denoted as g(d(m)

k)
where g(·) is a non-linear activation function. The output of
teacher at the mth iteration t(m) is calculated as

t(m) =

K∑
k=1

g(d(m)
k) (4)

The student consists of M hidden units. To ease the analysis, we
assume that each element of the initial weight vector from the jth
element of k′th weight vector w(0)

k′ j is drawn from a probability dis-
tribution P(wk′ j) with mean zero and variance 1/N. The statistics
of the jth element of the k′th weight vector wk′ j of the student in
the thermodynamic limit, N → ∞, are

〈
w(0)

k′ j

〉
= 0,

〈
(w(0)

k′ j)
2
〉
=

1
N
, ||w(0)

k′ || = 1. (5)

The inner potential of the k′th hidden unit for input x(m) at the
mth iteration is

y(m)
k′ =

N∑
j=1

w(m)
k′ j x(m)

j = w(m)
k′ · x(m). (6)

The distribution of the inner potential yk′ in the thermodynamic
limit, N → ∞, becomes a Gaussian with mean zero and variance
Q2

k′k′ Here, Q2
k′k′ = wk′ ·wk′ . The output of the k′th hidden unit

of the student is denoted as g(y(m)
k′) where g(·) is a non-linear acti-

vation function. The output of the student at the mth iteration s(m)

is calculated as

s(m) =

M∑
k′=1

g(yk′) (7)

c© 2020 Information Processing Society of Japan 62

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.13 No.2 61–68 (Aug. 2020)

The weight vector wk′ is updated by using the stochastic gradient
descent algorithm. Note that the weights from the hidden layer
to the output of the student are fixed to +1 and are not objects of
learning.

3.2 Node-perturbation Learning Applied for Soft-
committee Machine

Here, we describe the node-perturbation learning (NP learn-
ing) algorithm that is applied for the soft-committee machine.
First, we formulate the NP learning. The objective function is
the squared error. The squared error at the mth learning iteration
is defined as

E(m) =
1
2

(t(m) − s(m))2 =
1
2

⎛⎜⎜⎜⎜⎜⎝
K∑

l=1

g(d(m)
l) −

M∑
l′=1

g(y(m)
l′)

⎞⎟⎟⎟⎟⎟⎠
2

. (8)

The weight vector of the student is updated in the direction of the
noise if the squared error becomes smaller when noise is added
to the network output, otherwise not updated. Accordingly, the
learning equation is defined as

w(m+1)
k′ j = w(m)

k′ j −
η

N
(E(m)
ξ − E(m))ek′ j (9)

Here, ek′ j is defined as ek′ j ≡ ∂ ln fk/∂wk′ j and is called the char-
acteristic eligibility of wk′ j and fk is the probability mass function
determining the value of student output. Eξ is the squared error
when the noise is added to the network output. NP learning can
be accomplished in two ways: (1) by adding noise to the output
layer or (2) by adding noise to the hidden layer.
3.2.1 Adding Noise to the Output Layer

The squared error when noise is added to the output layer (the
output NP case) is defined as

E(m)
ξ =

1
2

(
t(m) − (s(m) + ξ(m))

)2

=
1
2

⎛⎜⎜⎜⎜⎜⎝
K∑

l=1

g(d(m)
l) −

M∑
l′=1

g(y(m)
l′) − (ξ(m))2

⎞⎟⎟⎟⎟⎟⎠
2

. (10)

Here, the added noise ξ is drawn from the Gaussian distribution
with mean zero and variance σ2

ξ . E(m)
ξ − E(m) is calculated as

E(m)
ξ − E(m)

= −1
2

⎧⎪⎪⎨⎪⎪⎩2ξ(m)

⎛⎜⎜⎜⎜⎜⎝
K∑

l=1

g(d(m)
l) −

M∑
l′=1

g(y(m)
l′)

⎞⎟⎟⎟⎟⎟⎠ − (ξ(m))2

⎫⎪⎪⎬⎪⎪⎭ . (11)

In Eq. (11),
∑K

l=1 g(d
(m)
l) − ∑M

l′=1 g(yl′)(m) is the gradient of the
squared error. Although NP learning doesn’t use the gradient ex-
plicitly, as shown in Eq. (9), the gradient information is implic-
itly included in Eq. (11). Equation (11) becomes negative when
Eξ < E, and the weight vector is updated in the direction of the
noise ξ [2]. Independent noise is added to the output layer unit at
every learning iteration. The iteration number m on the noise ξ
is omitted. Accordingly, the learning equation of the output NP
case is defined as

w(m+1)
k′ j = w(m)

k′ j +
η

2Nσ2
ξ

·
⎧⎪⎪⎨⎪⎪⎩2(ξ)2

⎛⎜⎜⎜⎜⎜⎝
K∑

l=1

g(d(m)
l)−

M∑
l′=1

g(y(m)
l′)

⎞⎟⎟⎟⎟⎟⎠− (ξ)3

⎫⎪⎪⎬⎪⎪⎭ g′(y(m)
k′)x(m)

j

(12)

In Eq. (12), the derivative at each hidden unit g′(yk′) is indepen-
dent from those of other hidden units, then the weight wk′ j is up-
dated independently.
3.2.2 Adding Noise to the Hidden Layer

As above, the noise ξk′ added to each hidden unit is drawn from
a probability distribution with mean zero and variance σ2

ξ . The
squared error in this case is defined as

E(m)
ξ =

1
2

⎛⎜⎜⎜⎜⎜⎝
K∑

l=1

g(dl) −
M∑

l′=1

(g(yl′) + ξl′)

⎞⎟⎟⎟⎟⎟⎠
2

. (13)

Here, E(m)
ξ − E(m) is calculated as

E(m)
ξ − E(m) = − 1

2

⎧⎪⎪⎨⎪⎪⎩2
M∑

l′=1

ξk′

⎛⎜⎜⎜⎜⎜⎝
K∑

l=1

g(dl) −
M∑

l′=1

g(yl′)

⎞⎟⎟⎟⎟⎟⎠

−
⎛⎜⎜⎜⎜⎜⎝

M∑
l′=1

ξl′

⎞⎟⎟⎟⎟⎟⎠
2⎫⎪⎪⎪⎬⎪⎪⎪⎭ (14)

Similar to the above expression for the noise added to the output
layer,

∑K
l=1 g(d

(m)
l) − ∑M

l′=1 g(yl′)(m) is the gradient of the squared
error. As well, Eq. (14) becomes negative when Eξ < E, and the
weight vector is updated in the direction of ξl′ . Identical distribu-
tion is used for the noise. The iteration number m on the noise ξ
is omitted. The learning equation for the case of adding noise to
the hidden layer (hidden NP case) is defined as

w(m+1)
k′ j = w(m)

k′ j +
η

2N

⎧⎪⎪⎪⎨⎪⎪⎪⎩2
M∑

l′=1

ξl′

⎛⎜⎜⎜⎜⎜⎝
K∑

l=1

g(dl) −
M∑

l′=1

g(yl′)

⎞⎟⎟⎟⎟⎟⎠

−
⎛⎜⎜⎜⎜⎜⎝

M∑
l′=1

ξl′

⎞⎟⎟⎟⎟⎟⎠
2⎫⎪⎪⎪⎬⎪⎪⎪⎭ g′(yk′)

ξk′

σ2
ξ

x j (15)

We separate the noise on k′th hidden unit ξk′ and those come from
other hidden units ξl′ , then the learning equation rewritten as the
next equation. ξk′ is considered as a signal and ξl′ is considered
as a noise in the signal to noise analysis.

w(m+1)
k′ j = w(m)

k′ j +
η

2Nσ2
ξ

·
⎧⎪⎪⎨⎪⎪⎩2((ξk′)

2+

M∑
l′�k′
ξl′ξk′)

⎛⎜⎜⎜⎜⎜⎝
K∑

l=1

g(d(m)
l)−

M∑
l′=1

g(y(m)
l′)

⎞⎟⎟⎟⎟⎟⎠

−
⎛⎜⎜⎜⎜⎜⎜⎝(ξk′)3+

M∑
l′�k′

(ξl′)
2xk′ +

M∑
l′=1

M∑
i′�l′
ξl′ξi′ξk′

⎞⎟⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ g′(y(m)

k′)x(m)
j

(16)

Here, the iteration number m on the noise ξ is omitted.
In Eq. (16),

∑M
l′�k′ ξl′ξk′ and

∑M
l′�k′ (ξl′)

2xk′ +
∑M

l′
∑M

i′�l′ ξl′ξi′ξk′

are the cross-talk noise from other hidden units. Each hidden unit
receives the sum of the noises added to each hidden unit. How-
ever, the mean value of the cross-talk noise is eliminated because
ξk′ is independent of the other hidden-unit noises. The derivative
of each hidden unit g′(yk′) is independent from those of the other
hidden units.

3.3 Generalization Error
The generalization error of applying NP learning to a soft-

committee machine matches that of the soft-committee machine

c© 2020 Information Processing Society of Japan 63

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.13 No.2 61–68 (Aug. 2020)

itself. Therefore, it is given by the squared error averaged over all
possible inputs, as follows:

εg =

∫
dxP(x)E = 〈E〉 . (17)

Here, P(x) is the probabilistic distribution of the input. 〈·〉 de-
notes the average over the inputs. The generalization error of
the soft-committee machine using stochastic gradient descent is
given by Saad et al., and we follow their calculation [8]. Accord-
ingly, the generalization error is

εg =
1
2
〈E〉 = 1

2

〈⎛⎜⎜⎜⎜⎜⎝
K∑

k=1

g(dk) −
M∑

k′=1

g(yk)

⎞⎟⎟⎟⎟⎟⎠
2〉

=
1
2

⎧⎪⎪⎨⎪⎪⎩
K∑

k=1

K∑
l=1

〈g(dk)g(dl)〉 +
K∑

k′=1

M∑
l′=1

〈g(yk′)g(yl′)〉

− 2
K∑

k=1

M∑
k′=1

〈g(dk)g(yk′)〉
⎫⎪⎪⎬⎪⎪⎭ (18)

Here, g(·) is a sigmoidal function, i.e., g(x) = erf
(x√

2

)
. Eq. (18)

can thus be rewritten as

εg =
1
π

⎧⎪⎪⎨⎪⎪⎩
K∑

k=1

K∑
l=1

arcsin
Tkl√

1 + Tkk
√

1 + Tll

+

M∑
k′=1

M∑
l′=1

arcsin
Qk′l′√

1 + Qk′k′
√

1 + Ql′l′

− 2
K∑

k=1

M∑
k′=1

arcsin
Rkk′√

1 + Tkk
√

1 + Qk′k′

⎫⎪⎪⎬⎪⎪⎭ . (19)

Here, Tkl, Qk′l′ , and Rkk′ are the order parameters defined by

Tkl = 〈dkdl〉 = w∗k ·w∗l (20)

Qk′l′ = 〈yk′yl′ 〉 = wk′ ·wl′ (21)

Rkk′ = 〈dkyk′ 〉 = w∗k ·wk′ (22)

Note that Tkl is a constant value and is the correlation between the
weight vectors w∗k of the kth weight vector and the lth weight vec-
tors w∗l . In the limit N → ∞, Tkl = δkl, where δkl is the Kronecker
delta. By substituting Eqs. (21) and (22) at each learning itera-
tion m into Eq. (19), we can calculate the generalization error at
m. In the following part of the paper, we call Rkk′ and Qk′l′ as the
overlap.

The overlaps Rkk′ and Qk′l′ in learning are determined with the
following procedure. Rkk′ is calculated at each learning iteration
as the inner product of the k′th weight vector of the student and
the kth teacher weight vector. Qk′l′ is calculated as the inner prod-
uct of the k′ weight vector of the student at each learning iteration
and the l′th student weight vector. For the output NP case, the
weight vector is updated using Eq. (12), while for the hidden NP
case, it is updated by Eq. (16). Equations (12) and (16) are recur-
sion forms for updating the weight. The weights at each iteration
are calculated in three steps: (1) initialize the weight vectors of
the teacher and student by drawing from a probability distribution
in accordance with Eqs. (2) and (5); (2) generate input by draw-
ing from a probability distribution in accordance with Eq. (1); (3)
update the weights by using Eq. (12) or (16). Steps (2) and (3) are
repeated until the learning stopping conditions are satisfied.

From Eq. (8), the generalization error is zero when the teacher
and student are identical. As such, Rkk′ and Qk′l′ satisfy the fol-
lowing conditions in the thermodynamic limit, N → ∞.

Qk′l′ = δk′l′ (23)

Rkk′ = δkk′ (24)

4. Results

This section compares the dynamic properties of the case of
adding noise to the output, the case of adding noise to the hidden
layer, and the case of noisy learning.

The procedure described in Section 3.3 is used to determine
Rkk′ and Qk′l′ at each learning iteration, and the generalization er-
ror is calculated by substituting Rkk′ and Qk′l′ into Eq. (19). The
initial weight vectors of the teacher and student are set using the
same procedure as in Section 3.1. In the following, the results of
ten trials using different initial weight vectors are plotted on the
same graph. Learning was stopped at t = m/N = 10000. Here,
N = 1000, and m is the number of learning iterations.

4.1 Effect of Varying the Number of Hidden Units
In the output NP case, the noise added to the output unit prop-

agates to the hidden units as common noise. Other hand, in the
hidden NP case, noise is added to the hidden units independently,
but from Eq. (13), the input potential of the output unit is the sum
of those of the hidden unit outputs with noise (

∑
l′ (g(yi′) + ξl′)),

and this cross-talk noise propagates to each hidden unit when the
weight vector is updated, as shown in Eq. (16). Consequently, the
number of hidden units is set to 3, 5, or 7.

Figure 2 shows the results. We set the learning step size to
η = 0.1 and drew the perturbation noise from a probability distri-

(1) output layer NP K = 3 (2) hidden layer NP K = 3

(3) output layer NP K = 5 (4) hidden layer NP K = 5

(5) output layer NP K = 7 (6) hidden layer NP K = 7

Fig. 2 Time course of the generalization error in the output NP and hidden
NP cases. Number of hidden units K = 3, 5, or 7.

c© 2020 Information Processing Society of Japan 64

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.13 No.2 61–68 (Aug. 2020)

(1) η = 0.1, σ2
ξ = 10−30 (2) η = 0.01, σξ = 10−5

Fig. 3 Evaluation changing two of the learning conditions: (1) effect of
using a smaller perturbation noise and (2) effect of using a smaller
learning step size. The original (baseline) conditions are σ2

ξ = 10−5

and η = 0.1.

bution with mean zero and variance σ2
ξ = 10−5. The teacher and

student had the same architecture, so they had the same number
of hidden units, i.e., K = M. Figure 2 (1), (3), and (5) show the
results of the output NP case, and Fig. 2 (2), (4), and (6) show the
results for the hidden NP case. In these figures, the horizontal
axis is time t = m/N, where m is the number of learning itera-
tions and N is the number of input dimensions, i.e., N = 1000.
The vertical axis is the generalization error.

From Fig. 2 (1), (3), and (5), it is clear that the residual error
becomes larger as the number of hidden units increases. How-
ever, the time it takes to escape from the plateau changes slightly
with the number of hidden units. On the other hand, the escape
from the plateau in Fig. 2 (2), (4), and (6) occurs later and at a
larger number of hidden units. For K = 7, the learning time is
very long (longer than the plot), and the generalization error does
not monotonically decrease. These results show that in the hidden
NP case, the cross-talk noise in each hidden unit is not eliminated
when the number of hidden units is large, and this noise has a
bad effect on the learning. Therefore, we investigated the effect
of varying the learning conditions of the hidden NP case, i.e., by
making the perturbation noise and learning step size smaller.

Figure 3 shows the results. The number of hidden units was
K = 7, as in Fig. 2 (6). In (1), the learning step size is the same
as in Fig. 2 (6), but the perturbation noise is σ2

ξ = 10−30. It is ap-
parent that the smaller perturbation noise didn’t shorten the time
it took to escape from the plateau. Thus, the magnitude of the
variance of the perturbation noise has no effect on the plateau
phenomenon. The noise makes the residual error smaller as its
variance becomes smaller. Figure 3 (2) shows the case of per-
turbation noise having the same variance as in Fig. 2 (6), but a
learning step size of η = 0.01. In this figure, the generalization
error decreases. Overall, these results indicate that the general-
ization error converges within a sufficiently short learning time
by using a smaller learning step size.

4.2 Effect of Varying the Learning Step Size
Next, we analyzed the effect of changing the learning step size.

As described in Section 4.1, the number of hidden units in the
teacher and student was set to K = M = 3, and the number of in-
put dimensions was N = 1000. The variance of the perturbation
noise for both cases was set to σ2

ξ = 10−5. Moreover, the mean
of the noise was zero in both cases. The learning step sizes were
0.1, 0.2, 0.3, 0.4, 0.5, and 0.6.

Figure 4 shows the generalization error for the output NP case,

(1) η = 0.1 (2) η = 0.2

(3) η = 0.3 (4) η = 0.4

(5) η = 0.5 (6) η = 0.6

Fig. 4 Time course of the generalization error of the output NP case for
different learning step sizes.

(1) η = 0.1 (2) η = 0.2

(3) η = 0.3 (4) η = 0.4

(5) η = 0.5 (6) η = 0.6

Fig. 5 Time course of the generalization error of the hidden NP case for
different learning step sizes.

and Fig. 5 shows it for the hidden NP case. The generalization
error was calculated following the procedure in Section 3.3. In
Fig. 4, the generalization error decreases until the learning step
size η is less than 0.5. The time it takes to escape from the plateau
for 0.3 ≤ η ≤ 0.5 was independent of size of the learning step
size. The residual error was much larger when η = 0.6. We will
discuss the reason for the enlarged error later. It took longer to

c© 2020 Information Processing Society of Japan 65

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.13 No.2 61–68 (Aug. 2020)

(1) time course of Rkk′ (left) and Qkl′ (right) when η = 0.1.

(2) time course of Rkk′ (left) and Qkl′ (right) when η = 0.5.

(3) time course of Rkk′ (left) and Qkl′ (right) when η = 0.6.

Fig. 6 Time course of overlap Rkk′ and Qkl′ in the output NP case.

escape from the plateau when η < 0.3 than when 0.3 ≤ η ≤ 0.5.
As shown in Fig. 5, the generalization error in the hidden NP

case converged for η = 0.1, 0.2, and 0.3. However, the residual
error was large, and the generalization error did not decrease for
η > 0.4. The residual error was larger than that of the output NP
case for the same variance of perturbation noise and learning step
size. Therefore, the hidden NP case can use only a smaller range
of learning step sizes. Next, we investigated the reasons for the
poor convergence in this case by examining the behavior of Rkk′

and Qk′l′ .
From Eq. (14), the generalization error was zero when the order

parameters were Tkk = 1, Tkk′ = 0, Rkk = 1, Rkk′ = 0, Qk′k′ = 1,
and Qk′l′ = 0. Thus, a large residual error may occur when the
order parameters do not satisfy the conditions that achieve a gen-
eralization error of zero. For the output NP case, we analyzed
settings of η = 0.1, η = 0.5 and η = 0.6. For the hidden NP case,
we analyzed settings of η = 0.1, η = 0.3 and η = 0.4.

Figure 6 shows the time courses of Rkk′ and Qk′l′ in the output
NP case. In the figures, horizontal axis is time t = m/N, and ver-
tical axis is Rkk′ or Qk′l′ . (1) shows the case of η = 0.1, (2) that
of η = 0.5, and (3) that of η = 0.6. Rkk′ is the inner product of
the kth weight vector of the teacher and the k′th weight vector of
the student. Thus, if the teacher and student vectors are identi-
cal, Rkk′ = 1. For K = 3, if the three teacher weight vectors and
three student weight vectors are identical, then R11 = 1, R22 = 1,
R33 = 1, and Rkk′ = 0, where k � k′. Qk′l′ is the inner product
of the k′th weight vector of the student and the l′th weight vector
of the student. When k′ = l′, Qk′k′ is the norm of the k′th weight
vector. From Eq. (2), the norm of the teacher weight vector is 1,
so Qk′k′ is 1 if the generalization error is zero. Moreover, when
k′ � l′, Qk′l′ is the correlation between k′th weight vector wk′ and

(1) time course of Rkk′ (left) and Qkl′ (right) when η = 0.1.

(2) time course of Rkk′ (left) and Qkl′ (right) when η = 0.3.

(3) time course of Rkk′ (left) and Qkl′ (right) when η = 0.4.

Fig. 7 Time course of overlap Rkk′ and Qkl′ in the hidden NP case.

the l′th weight vector wl′ , and Qk′l′ = 0 if the generalization error
converges to zero.

From Fig. 6 (1), the three Rkk converged to almost 1, and Rkk′

converged to almost zero at t = 10000. All three Qk′k′ converged
to Qk′k′ = 1, and others converged to Qk′l′ = 0. It is clear that the
output NP case for η = 0.1 achieved a generalization error of zero.
Figure 6 (2) (η = 0.5) show the behavior of Rkk′ and Qk′l′ just be-
fore the residual error suddenly enlarged. From the figure, the be-
havior of the overlaps Rkk′ and Qk′l′ are similar to that of Fig. 6 (1).
From these results, It is clear that the output NP case for η = 0.5
also achieved a generalization error of zero. Figure 6 (3) shows
different behavior from what is shown in Fig. 6 (1) and Fig. 6 (2).
All three Rkk converged to almost 1, and two Rkk′ converged to
around zero. However, the other Rkk′ did not converge to zero
and remained large. In addition, two Qk′k′ converged to 1, while
one Qk′k′ converged to 3. Qk′l′ did not converge to zero. There-
fore, when η = 0.6, some of the overlaps converged to too large a
value, and this may have led to a larger residual error.

Figure 7 show the time courses of Rkk′ and Qk′l′ in the hidden
NP case. (1) depicts results for when η = 0.1, (2) for η = 0.3, and
(3) for η = 0.4. The results in (1) and (2) are similar to those in
Fig. 6 (1) and (2); thus, they show that the hidden NP case learned
properly when η = 0.1 and η = 0.3. The results in (3) are simi-
lar to those of Fig. 6 (3). Therefore, the hidden NP case failed to
learn when η = 0.4.

If the cross-talk noise in the hidden NP case is not eliminated,
then the squared error becomes larger, and a larger squared error
enlarges the norm of the weight vector. By comparing the Qk′k′

of the output NP case (Fig. 6 (2)) and that of the hidden NP case
(Fig. 7 (3)) given similar learning step sizes, we see that the norm
of the weight vector is much longer than that of the output NP

c© 2020 Information Processing Society of Japan 66

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.13 No.2 61–68 (Aug. 2020)

case, and this means that the hidden NP case has a much larger
squared error than the output NP case has.

4.3 Comparison with Noisy Learning
Perturbation noise is added to the output layer or hidden layer

of student to get gradient information of the squared error. How-
ever, it is also useful for clarifying the difference in effect of
adding noise in noisy learning and adding noise in NP learning.
The learning equation of noisy learning is as follows:

w(m+1)
k′ j = w(m)

k′ j +
η

N

⎧⎪⎪⎨⎪⎪⎩
K∑

l=1

g(d(m)
l) −

M∑
l′=1

(
g(y(m)

l′
)
− ξ
⎫⎪⎪⎬⎪⎪⎭

× g′(yk′)x(m)
j , (25)

w(m+1)
k′ j = w(m)

k′ j +
η

N

⎧⎪⎪⎨⎪⎪⎩
K∑

l=1

g(d(m)
l) −

M∑
l′=1

(
g(y(m)

l′) + ξl′
)⎫⎪⎪⎬⎪⎪⎭

× g′(yk′)x(m)
j . (26)

Here, Eq. (25) is noisy learning in which noise is added to the
output layer, while Eq. (26) is noisy learning in which noise is
added to the hidden layer. In Eqs. (25) and (26), g(x) = erf(x√

2
).

Figure 8 shows the results.
The learning step size was η = 0.1, and the added noise was

drawn from a probability distribution of mean zero and variance
σ2 = 10−5. The number of hidden units was K = 3 or K = 5.
In the figures, the horizontal axis is time t = m/N, and the ver-
tical axis is the generalization error. The generalization error
was calculated using Rkk′ and Qk′l′ at each learning iteration and
Eq. (19). From Fig. 8 (1) and (2), the time it takes to escape from
the plateau in the output NP case is almost the same as that of
noisy learning when noise is added to the output layer. How-
ever, the residual error is small in noisy learning. Although it
is not shown in Fig. 8 (1) and (2), we found that the residual er-
ror of noisy learning when noise is added to the output layer was
2 × 10−11. The time it takes to escape from the plateau in both
the output NP case and noisy learning when noise is added to the
output layer did not change when the hidden units were increased
from K = 3 to K = 5. These results indicate that the output
NP case and noisy learning when noise is added to the output
had similar learning performances, except for the residual error.
From Fig. 8 (3), the time it takes to escape from the plateau in the
hidden NP case and noisy learning when noise is added to the
hidden layer were similar; however, from Fig. 8 (4), the hidden
NP case took much longer to escape from the plateau. Although
it is not shown in Fig. 8 (3) and (4), we found that the residual er-
ror of noisy learning when noise is added to the hidden layer was
8 × 10−11. It is interesting that NP learning using implicit gradi-
ent information has similar performance to noisy learning using
explicit gradient information.

5. Conclution

We proposed two implement methods of NP learning for mul-
tilayer networks; adding noise to either the output layer or hidden
layer of a soft-committee machine. We analyze the learning equa-
tion of output NP case. It adding noise to output unit, so each hid-
den unit receive the same error. So, each hidden unit may updates

(1) output NP case (left) and noisy learning in which noise is added to the
output layer (right). K = 3.

(2) output NP case (left) and noisy learning in which noise is added to the
output layer (right). K = 5.

(3) hidden NP case (left) and noisy learning in which noise is added to the
hidden layer (right). K = 3.

(4) hidden NP case (left) and noisy learning in which noise is added to the
hidden layer (right). K = 5

Fig. 8 Generalization errors of NP learning and noisy learning.

the same way and learning is done improperly. However, by using
characteristic eligibility of weight, the derivative of each hidden
unit is independent, and output NP case can learn properly. This
analysis was supported by the computer analysis. We also an-
alyzed the learning equations of two implementations by using
signal-to-noise analysis. The results show that adding noise to
output is free from cross-talk noise from other hidden units, and
adding noise to hidden units is affected by cross-talk noise. This
affect tend to be larger when the number of hidden units becomes
larger. So, adding noise to hidden units have some limitation in
the number of hidden units.

We compared two implementations by the time it takes to es-
cape from the plateau phenomena. As the results of signal-to-
noise analysis of the two learning equations, output NP case has
an advantage to hidden NP case. In output NP case, the time
it tales to escape from the plateau phenomena is not changed
for number of hidden units, and the size of learning step size.
However, in hidden NP case, the time it takes to escape from
plateau delayed for larger number of hidden units, and larger size

c© 2020 Information Processing Society of Japan 67

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.13 No.2 61–68 (Aug. 2020)

of learning step size. So, output NP case is selected as implemen-
tation of NP learning for soft-committee machine.

When the number of hidden units is large or the learning step
size is large, worth generalization error is obtained for both im-
plementations. The reason of worth generalization error is ana-
lyzed in terms of the overlaps Rkk′ and Qk′l′ . From the results,
the reason is due to the cross-talk noise, and the length of student
vectors becomes larger by the cross-talk noise and this becomes
cause larger generalization error. However, it is possible to im-
prove the generalization by using smaller learning step size.

Moreover, we compared the proposed NP learnings with noisy
learning. The results showed that performance of output NP case
was similar to that of the noisy learning. Therefore, it is found
that output NP case does’t use explicit gradient information, how-
ever, it achieved the similar performance as the noisy learning that
using explicit gradient information. In the future, we will analyze
the application of NP learning to a two layer network.

References

[1] Widrow, B. and Lehr, M.A.: 30 years of adaptive neural networks:
Perceptron, Madaline, and Backpropagation, Proc. IEEE, Vol.78,
No.9, pp.1415–1442 (1990).

[2] Williams, R.J.: Simple statistical gradient-following algorithms
for connectionist reinforcement learning, Machine Learning, Vol.8,
pp.229–256 (1992).

[3] Fiete, I.R., Fee, M.S. and Seung, H.S.: Model of Birdsong Learn-
ing Based on Gradient Estimation by Dynamic Perturbation of Neu-
ral Conductances, Journal of Neurophysiology, Vol.98, pp.2038–2057
(2007).

[4] Werfel, J., Xie, X. and Sueng, H.S.: Learning curves for stochastic
gradient descent in linear feedforward networks, Neural Computation,
Vol.17, pp.2699–2718 (2005).

[5] Saad, D. (Ed.): On-line learning in neural networks, Cambridge:
Cambridge University Press (1999).

[6] Biehl, M. and Riegler, P.: On-Line Learning with a Perceptron, Euro-
physics Letters, Vol.28, No.7, pp.525–530 (1994).

[7] Biehl, A. and Schwarze, H.: Learning by on-line gradient descent, J.
Phys. A: MAth. Gen., Vol.28, 643 (1995).

[8] Saad, D. and Solla, S.A.: On-line learning in soft committee machines,
Physical Review E, Vol.52, No.4 (1995).

[9] Nishimori, H.: Statistical physics of spin glass and information pro-
cessing: An introduction, Oxford: Oxford University Press (2001).

[10] Engel, A. and den Broeck, C.V.: Statistical Mechanics of Learning,
Cambridge University Press, Cambridge, UK, 1st edition (2001).

[11] Krogh, A.: Learning with noise in a linear perceptron, Journal of
Physics A: Mathematical and General, Vol.25, No.5, pp.1119–1133
(1992).

[12] Krogh, A. and Hertz, J.A.: Generalization on a linear perceptron in the
presence of noise, Journal of Physics A: Mathematical and General,
Vol.25, No.5, pp.1135–1147 (1992).

[13] Hara, K., Katahira, K., Okanoya, K. and Okada, M.: Statistical me-
chanics of on-line node-perturbation learning, Information Processing
Society of Japan Trans. Mathematical Modeling and Its Applications,
Vol.4, No.1, pp.72–81 (2011).

[14] Cho, T., Katahira, K., Okanoya, K. and Okada, M.: Node perturbation
learning without noiseless baseline, Neural Networks, Vol.24, pp.267–
272 (2011).

[15] Hara, K., Katahira, K., Okanoya, K. and Okada, M.: Statistical me-
chanics of Node-perturbation Learning for nonlinear perceptron, Jour-
nal of Physical Society of Japan, Vol.82, 054001 (2013).

[16] Moody, J.E.: The effective number of parameters: An analysis of gen-
eralization and regularization in nonlinear learning systems, Proc. Ad-
vances in Neural Information Processing Systems, Vol.4, pp.847–854
(1991).

[17] Bishop, C.M.: Training with noise is equivalent to Tikhonov regular-
ization, Neural Computation, Vol.7, No.1, pp.108–116 (1995).

Kazuyuki Hara received a B. Eng. and
an M. Eng. degrees from Nihon Univer-
sity in 1979 and 1981 respectively and a
Ph.D degree from Kanazawa University
in 1997. He was involved in NEC Home
Electronics Corporation from 1981 until
1987. He joined Toyama Polytechnic Col-
lege in 1987 where he was a lecturer. He

joined Tokyo Metropolitan College of Technology in 1998 where
he was an associate professor and became a professor in 2005.
He became a professor at Nihon University in 2010. His current
research interests include statistical mechanics of on-line learn-
ing. He is a senior member of the IPSJ and a member of the JPS,
IEEE and IEICE.

Kentaro Katahira received his B.S. de-
gree from Chiba University in 2002 and
M.S. and Ph.D. degrees from The Univer-
sity of Tokyo in 2004, 2009, respectively.
From 2004 to 2005, he worked at Yamaha
Corporation. From 2009 to 2012, he was
an researcher of Japan Science Technol-
ogy Agency, ERATO, OKANOYA Emo-

tional Information Project. Currently, he is an associate professor
at Graduate School of Informatics, Nagoya University. His re-
search interests include computational and statistical modeling of
behavior and learning of psychology.

Masato Okada received B.Sc. degree in
physics from Osaka City University in
1985, M.Sc. degree in physics and Ph.D
degrees in science from Osaka University,
Osaka, Japan, in 1987, and 1997, respec-
tively. From 1987 to 1989, he worked at
Mitsubishi Electric Corporation, and from
1991 to 1996, he was a Research Asso-

ciate at Osaka University. He was a Researcher on the Kawato
Dynamic Brain Project until 2001. He was a Deputy Head of the
Laboratory for Mathematical Neuroscience, RIKEN Brain Sci-
ence Institute, Saitama, Japan, and a PRESTO Researcher on in-
telligent cooperation and control at the Japan Science and Tech-
nology Agency until 2004. Currently, he is a Professor in the
Graduate School of Frontier Science, The University of Tokyo.
His research interests include the computational aspects of neural
networks and statistical mechanics for information processing.

c© 2020 Information Processing Society of Japan 68

