
IPSJ SIG Technical Report

Interval Query Problem on Cube-free Median Graphs

Soh Kumabe1,a)

Abstract: In this paper, we introduce the interval query problem on cube-free median graphs. Let G be
a cube-free median graph and S be a commutative semigroup. For each vertex v in G, we are given an
element p(v) in S. For each query, we are given two vertices u, v in G and asked to calculate the sum
of p(z) over all vertices z belonging to a u − v shortest path. This is a common generalization of range
query problems on trees and grids. In this paper, we provide an algorithm to answer each interval query
in O(log2 n) time. The required data structure is constructed in O(n log3 n) time and O(n log2 n) space. To
obtain our algorithm, we introduce a new technique, named the stairs decomposition, to decompose an
interval of cube-free median graphs into simpler substructures.

Keywords: Median Graphs, Data Structures, Range Query Problems

1. Introduction
The range query problem [1] is one of the most fun-

damental problems in the literature on data structures,
particularly for string algorithms [2]. Let f be a func-
tion defined on arrays. In the range query problem, we
are given an array P = (p(1), . . . , p(n)) of n elements and a
range query defined by two integers i, j with 1 ≤ i ≤ j ≤ n.
For each query (i, j), we are asked to return the value
f ((p(i), . . . , p(j))). The main interest of this problem is
the case where f is defined via a semigroup operator [3].
Let S be a semigroup with operator ⊕, and let P con-
sist of elements in S. Then, the function f is defined as
f ((p(i), . . . , p(j))) = p(i) ⊕ . . . ⊕ p(j). Typical examples of
semigroup operators are sum, max, and min. The funda-
mental result [3], [4] is that for any constant integer k, a
range query can be answered in O(αk(n)) time, where αk

is a slow-growing function related to the inverse of the
Ackermann function. The required data structure is con-
structed in linear time and space. Range minimum query
problem, i.e., ⊕ = min, is one of the well-studied prob-
lems in the literature, and it admits a constant-time algo-
rithm with a data structure constructed in linear time and
space [1], [5], [6], [7], [8].

This problem is generalized into trees and grids. In these
settings, we are given a tree/grid G and an element p(v)
for each vertex of G. As a query, given two vertices u, v
in G, we are asked to calculate the sum *1 of the elements
assigned at the vertices on a u − v shortest path. In par-
ticular, we are asked to calculate the sum of the elements

1 The University of Tokyo, Bunkyo, Tokyo 113–8654, Japan
a) soh kumabe@mist.i.u-tokyo.ac.jp
*1 In this paper, for simplicity, we represent the semigroup oper-

ation by the terms of summation; that is, we denote a ⊕ a′ by
the word sum of a and a′ for a, a′ ∈ S.

on the unique u − v path for trees and the axis-parallel
rectangle with corners (u, v) on its diagonal for grids. For
constant dimensional grids, a constant-time algorithm for
range minimum query is known [9]. For range query prob-
lem on trees, an almost-constant time algorithm [10] with
linear space is known on semigroup operators; see [11] for
further survey on the problem on tree, especially for dy-
namic version.

In this paper, we introduce a common generalization
of the two above mentioned cases, named interval query
problem on median graphs. Let G = (V(G), E(G)) be a con-
nected graph with n vertices. For two vertices u, v ∈ V(G),
let the interval I[u, v] be the set of vertices belonging to a
u−v shortest path, where the length of a path is defined by
the number of its edges. The graph G is called a median
graph if for all u, v, w ∈ V(G), I[u, v] ∩ I[v, w] ∩ I[w, u] is a
singleton [12], [13], [14]. The median graph G is said to
be cube-free if G does not contain a cube as an induced
subgraph. Trees and grids are examples of cube-free me-
dian graphs. In our problem, we are given a median graph
G and an element p(v) of a commutative semigroup S for
each vertex v of G. As a query, given two vertices u, v
in G, we are asked to calculate p(I[u, v]) *2. The interval
query problem on cube-free median graphs is a common
generalization of the range query problems on trees and
grids.

In this paper, we provide an algorithm to the interval
query problem on cube-free median graphs. The main re-
sult here is presented as follows:
Theorem 1. There is an algorithm to answer interval
queries on cube-free median graphs in O(log2 n) time. The
required data structure is constructed in O(n log3 n) time

*2 For a vertex subset X, we denote the sum of p(z) over all z ∈ X
by p(X).

1ⓒ 2020 Information Processing Society of Japan

Vol.2020-AL-179 No.2
2020/9/1

IPSJ SIG Technical Report

and O(n log2 n) space, where n is the number of vertices in
a given cube-free median graph.

The time complexity of answering a query matches the
complexity for the two-dimensional range tree [15] in the
orthogonal range query problem, without acceleration via
fractional cascading [16].

To obtain the algorithm, we introduce a new technique,
named the stairs decomposition. This technique provides a
new method to decompose an interval of cube-free median
graphs into a constant number of smaller intervals. Most
of the candidates of the smaller intervals, which we refer to
as stairs, are well-structured, and an efficient algorithm to
answer the interval queries can be constructed. The rest
are not necessarily stairs; however, each of them are one of
the O(n log n) candidates, and we can precalculate all the
answers of the interval queries on these intervals.

Designing fast algorithms for median graphs is a recently
emerging topic. The distance labeling scheme [17] is a
type of data structure that is defined by the encoder and
decoder pair. The encoder receives a graph and assigns
a label for each vertex, whereas the decoder receives two
labels and computes the distance of the two vertices with
these labels. For cube-free median graphs, there is a dis-
tance labeling scheme that assigns labels with O(log3 n) bits
for each vertex [18]. Very recently, a linear-time algorithm
to find the median of median graphs was built [19]. This
paper continues with this line of research and utilizes some
of the techniques presented in these previous studies.

Various applications can be considered in the interval
query problem on median graphs. The solution space
of a 2-SAT formula forms a median graph, where two
solutions are adjacent if one of them can be obtained
by negating a set of pairwise dependent variables of the
other [20], [21], [22]. For two solutions u and v, the interval
I[u, v] corresponds to the set of the solutions x, such that
for each truth variable, if the same truth value is assigned
in u and v, so does x. Suppose we can answer the inter-
val queries to calculate sum (resp. min) in polylogarithmic
time with a data structure of subquadratic time and space.
Then, if we have the list of all feasible solutions of the given
2-SAT formula, we can calculate the number (resp. mini-
mum weight) of these solutions in polynomial time of the
number of variables for each query, without precalculating
the answers for all possible queries. In social choice the-
ory, the structure of median graphs naturally arises as a
generalization of single-crossing preferences [23], [24] and
every closed Condorcet domains admits the structure of
a median graph [25]. For two preferences u and v, the
voters with their preferences in interval I[u, v] prefer can-
didate x to candidate y whenever both u and v prefer x
to y. Therefore, using interval query, we can count the
number of voters w such that for all pairs of candidates, at
least one of u and v has the same preference order as w be-
tween these candidates. Although these structures are not
necessarily cube-free, we hope that our result will be the

first and important step toward obtaining fast algorithms
for these problems.

The rest of this paper is organized as follows. In Sec-
tion 2, we summarize the basic properties of median graphs
and trees. In Section 4, we introduce the stairs decompo-
sition for special intervals. In Section 5, we explain our
algorithm for special intervals. We generalize the results
to general intervals in Section 6, while some detailed parts
of our algorithm is omitted. We omit the construction
algorithm of required data structure. Note that, the con-
struction algorithm also accelerate the time complexity of
construction algorithm of the distance labeling scheme on
cube-free median graphs [18] from O(n2 log n) to O(n log2 n),
together with the algorithm of the linear-time median cal-
culation in [19]. A more detailed outline is provided in
Section 3.

2. Basic Tools for Cube-Free Median Graphs
and Trees

In this section, we introduce basic facts about cube-free
median graphs and trees.

Let G be a connected, undirected, finite graph. We de-
note the vertex set of G by V(G). For two vertices u and
v in G, we write u ∼ v if u and v is adjacent. For two ver-
tices u and v of G, the distance d(u, v) between them is the
minimum number of edges on a path connecting u and v,
and the interval I[u, v] is the set of vertices w which sat-
isfies d(u, v) = d(u, w) + d(w, v). The graph G is a median
graph if for any three vertices u, v, w, I[u, v]∩ I[v, w]∩ I[w, u]
contains exactly one vertex, called median of u, v and w.
Median graphs are bipartite and do not contain K2,3 as
a subgraph. A median graph is cube-free if it does not
contain a cube as an induced subgraph. The followings
hold.
Lemma 1 ([26]). Any interval in a cube-free median graph
induces an induced subgraph of two-dimensional grid.
Lemma 2 ([18]). Let u, v, w1, w2 be four pairwise distinct
vertices of a median graph such that v ∼ w1, v ∼ w2 and
d(u, v)− 1 = d(u, w1) = d(u, w2). Then, there is unique vertex
z with w1 ∼ z, w2 ∼ z and d(u, z) = d(u, v) − 2.

From now on, let G be a cube-free median graph with n
vertices. Let X be a subset of V(G). For vertex z ∈ V(G)
and x ∈ X, x is the gate of z in X if for all w ∈ X, x ∈ I[z, w].
The gate of z in X is unique (if exists) because it is the
unique vertex in X that minimizes the distance from z.
X is gated if all vertices z ∈ V(G) has a gate in X. The
following equivalence result is known.
Lemma 3 ([18], [27]). Let X be a vertex subset of the me-
dian graph G. Then, following three conditions are equiv-
alent.
(a) X is gated.
(b) X is convex, i.e., I[u, v] ⊆ X for all u, v ∈ X.
(c) X induces connected subgraph and X is locally convex,

i.e., I[u, v] ⊆ X for all u, v ∈ X with d(u, v) = 2.
An induced subgraph of G is gated (resp. convex, locally

convex) if its vertex set is gated (resp. convex, locally con-

2ⓒ 2020 Information Processing Society of Japan

Vol.2020-AL-179 No.2
2020/9/1

IPSJ SIG Technical Report

vex). The intersection of two convex subset is convex. Any
interval is convex.

For gated subset X and a vertex x ∈ X, the fiber FX(x) of
x with respect to X is the set of vertices in G whose gate in
X is x. Two fibers FX(x), FX(y) are neighboring if there are
vertices x′ ∈ FX(x) and y′ ∈ FX(y) such that x′ ∼ y′, which
is equivalent to x ∼ y [18]. The fibers for all x ∈ X defines
a partition of V(G). For two adjacent vertices x, y ∈ X, the
boundary TX(x, y) of FX(x) relative to FX(y) is the set of the
vertices which has a neighbor in FX(y). TX(x, y) and TX(y, x)
are isomorphic. A vertex in TX(x, y) has unique neighbor
in TX(y, x), which is the corresponding vertex under that
isomorphism. For vertex x ∈ X, the total boundary TX(x)
of FX(x) is the union of all TX(x, y) for y ∈ X with x ∼ y. The
subgraph H is isometric in G if for all u, v ∈ V(H), there is
a path in H with length d(u, v). A rooted tree has gated
branches if any of its root-leaf paths are gated. The next
lemma exploits the structures of the boundaries of fibers.
Lemma 4. Let X be a gated vertex subset of cube-free me-
dian graph G. Let x, y ∈ X and assume x ∼ y. Then, the
followings hold.
(i) ([18]) TX(x, y) induces a tree, which is convex.
(ii) ([18]) TX(x) induces the tree with gated branches, which
is isometric to G.

The following is folklore in the literature of median
graphs.
Lemma 5 (folklore). Let X be the convex vertex set of a
median graph and let Y be the convex subset of X. For
x ∈ X, let F(x) be the fiber of x with respect to X. Then,∪
y∈Y F(x) is convex.
Let T be the tree with gated branches. For a vertex

v ∈ V(G) and w ∈ T , w is an imprint of v if I[v, w] ∩ T = {w}.
If T is gated, the imprint is equal to the gate and therefore
unique. Even if it is not the case, we can state following.
Lemma 6. Let T be the tree with gated branches. Let
u ∈ V(G). Then, the following statements hold.
(i) ([18]) There are at most two imprints of u in T .
(ii) Assume u has two distinct imprints w1, w2 in T . Then,
w1, w2 ∈ I[r, u].
Lemma 7. Let T be the tree with gated branches and
w ∈ V(T). Then, the set of vertices with an imprint w
in T is gated.

For a vertex m ∈ V(G), the star St(m) of m is the set of
vertices x ∈ V(G) such that there is an edge or a square that
contains both m and x. St(m) is gated. The vertex m ∈ V(G)
is median of G if it minimizes the sum of distances to all
vertices in G. The following holds.
Lemma 8 ([18]). All the fibers of St(m) of a median graph
contains at most n

2 vertices.
For a rooted tree T that is rooted at r, a vertex u ∈ V(T)

is an ancestor of v and v is a descendant of u if there is a
path from u to v, only going toward the leaves. The vertex
subset is a column of T if for any two vertices x, y in T , x
is either an ancestor or a descendant of y. The vertex t is
the lowest common ancestor [8] of u and v if t is an ances-
tor of both u and v that minimizes the distance between

u and t (or equivalently, v and t) in T . There is a data
structure that is constructed in linear time and space such
that, given two vertices on T , it returns the lowest com-
mon ancestor of them in constant time [7]. u is a parent
of v and v is a child of u if u is an ancestor of v and u ∼ v.
Let X ⊆ V(T) and u ∈ V(T). The nearest ancestor of u in X
on T is the vertex v ∈ X such that v is an ancestor of u and
minimizes d(u, v).

Let T be a rooted tree rooted at r. For a vertex v ∈ V(T),
let Tv be a subtree of T rooted at v. An edge (u, v) in G such
that u is the parent of v is heavy-edge if |V(Tu)| ≤ 2|V(Tv)|
and light-edge otherwise. Each vertex has at most one
child such that the edge between them is a heavy-edge.
The heavy-path is the maximal path that only contains
heavy-edges. The heavy-light decomposition is the decom-
position of T into heavy-paths. Note that, there is at most
O(log n) light-edges on any root-leaf path on T .

3. Outline and Organization
In this section we roughly describe our algorithm. Let

m be a median of G and for x ∈ St(m), let F(x) be the fiber
of x in St(m). Let u, v be vertices of cube-free median graph
G. Consider calculating p(I[u, v]). If u and v are in the
same fiber F(x) of St(m), we calculate the answer by using
the algorithm on F(x), which is recursively defined. From
Lemma 8, we have at most O(log n) recursion steps. Other-
wise, we can show that I[u, v] intersects with only constant
number of fibers, and for each fiber F(x) that intersects
I[u, v], I[u, v] ∩ F(x) can be represented as I[ux, vx] for some
vertices ux, vx ∈ F(x) such that vx is on the total boundary
of F(x). Thus it is sufficient to construct an algorithm to
answer the query with one end of the interval is on the
total boundary of the fiber F(x).

To do this, we introduce a technique to decompose in-
tervals, named the stairs decomposition. Let T be the tree
with gated branches and assume u ∈ V(G) and v ∈ V(T).
We decompose an interval I[u, v] into a disjoint union of
an interval I and at most two special structures, named
stairs, which we describe later. Such a decomposition can
be calculated in O(log n) time with appropriate preprocess-
ing. Here, we can take I as one of the O(n) candidates of
intervals. We just precalculate and store the value p(I) for
each candidate, and recall it when we answer the queries.

Let P = (s = w0, . . . , wk = t) be a column of T . For a
vertex x with gate s in P, the interval I[x, t] induces stairs
if for all i = 0, . . . , k, the set of vertices in I[x, t] with gate
wi in P induces a path. Ps,t is the base of L and the vertex
x is the top of L. The base starts at s and ends at t.

Now we just need to construct an algorithm such that,
given a base and a top of the stairs L, it calculate the value
p(V(L)) quickly. Let P be a root-leaf path of T . We can
use segment trees to answer the stairs queries whose base
is a subpath of P in O(log n) time. To answer the general
queries, we use a heavy-light decomposition of T .

The whole paper is organized as follows. In Section 4,
we introduce the stairs decomposition of the intervals with

3ⓒ 2020 Information Processing Society of Japan

Vol.2020-AL-179 No.2
2020/9/1

IPSJ SIG Technical Report

one end on the tree with gated branches. In Section 5, we
construct an algorithm and a data structure for the inter-
val queries for the same cases. In Section 6, we prove that
we can decompose a given interval into constant number
of intervals with one of the ends on the total boundaries
of the fibers of St(m). Due to the space constraint, we
omit some detailed parts in these sections and algorithm
to construct our data structure efficiently.

4. The Stairs Decomposition of the Intervals
with One End on the Boundary

In this section, we introduce the stairs decomposition of
the interval with one end on the boundary of a fiber.

4.1 The case with One End on a Convex Path
Let P be a convex path. In this section, we investigate

the structure of an interval such that one of the endpoints
is on P.

Consider an interval I[u, v] such that v is on P. Let w be
the gate of u in P. The purpose here is to prove that I[u, v]
can be decomposed into the disjoint union of an interval
I[u, w] and a stairs (see Figure (a)), if w , v. We assume
w , v because otherwise we have no need of decomposition.
Let w′ be the neighbor of w in P between w and v. We take
the embedding of I[u, v] into a two-dimensional grid (see
Lemma 1). We naively introduce a xy-coordinate system
with w = (0, 0), w′ = (0, 1) and u = (xu, yu) with yu ≥ 0. Now,
we can state following.
Lemma 9. If a vertex z on I[u, v] ∩ V(P) is not on x-axis,
there is no vertex other than z in I[u, v] with gate z in P.

Since such z does not affect the possibility of decom-
position (we can just add such vertices at the end of the
stairs), we can assume that v = (0, yv) for yv > 0. Especially,
from convexity, we have that all vertices in I[u, v] has non-
negative y-coordinate. Now, we have that I[u, v] \ I[u, w]
is the set of vertices with positive x-coordinate and forms
stairs (see figure (a)), which is the desired result.

To build an algorithm to calculate p(I[u, v]) as the sum
of p(I[u, w]) and p(I[u, v] \ I[u, w]), we should identify the
top e′ of the stairs. Instead of direct identification, we
rather identify the unique neighbor of it in I[u, w], named
the entrance e of the stairs: The top e′ can be determined
as the neighbor of e with gate w′ on P. Here, we have that
e is the gate of u in the boundary of F(w) with respect to
F(w′), where F(w) (resp. F(w′)) is the fiber of w (resp. w′)
with respect to P. Indeed, this gate should be in I[u, w]
from the definition of the gate and e is the only candidate
of it. We can calculate e in O(log n) time by working on
the appropriate data structure on total boundary of the
fiber of w with respect to P. Due to the space constraint,
we omit this algorithm.

4.2 Single Imprint
Let T be a tree with gated branches, rooted at r. Here we

give the stairs decomposition of the interval I[u, v], where
v is on T . First, we treat the case that there is exactly one

imprint w of u in T in I[u, v]. Let t be a lowest common
ancestor of w and v in T . t might coincide with w or v.
Let P (resp. P′) be the root-leaf path of T that contains w
(resp. v).

Since P′ is convex, we can decompose I[u, v] into a stairs
L′ with base on P′ and an interval I[u, t]. Since P is convex,
we can further decompose the interval I[u, t] into a stairs L
with base on P and an interval I[u, w]. Since u has at most
two imprints in T , I[u, w] is one of the O(n) candidates of
the intervals. This is the stairs decomposition we obtain
here.

To bound the size of the data structure we construct in
Section 5, we should ensure that stairs L and L′ contains
only vertices with an imprint on P and P′, respectively.
Let BL (resp. BL′) be the base of L (resp. L′). We prove
the following.
Lemma 10. The following statements hold.
(i) I[u, v] contains no vertices in T other than the vertices
on the w − v path on T .
(ii) For a vertex z in L′, the gate of z in P′ is an imprint of
z in T .
(iii) For a vertex z in L, the gate of z in P is an imprint of
z in T .

We should also make algorithms to identify the top of
the stairs L and L′. The top of L can be found by applying
the discussion in previous subsection by precalculating the
entrances for all possible patterns of u and w, because the
start of the base of L is uniquely determined as a parent of
w, independent to v. However, we cannot apply it to find
the top of L′, because the start of the base of L′ is a child
of t, not a parent. Instead, we calculate the top of L′ by
case-analysis of the positional relation of the stairs. Intu-
itively, we divide cases by the angle formed by BL and BL′ .
We have essentially two cases*3 to tract, which this angle
is π/2 (Figure (b)) or π (Figure (c)) (we omit the formal
definition of these cases and proof of the fact that they
cover all cases). In the case in Figure (b), the entrance e
of L′ can be found on BL. In the case in Figure (c), e can be
found on the total boundary of the vertex set with imprint
t. In both case, we can find the entrance in O(log n) time.
Due to the space constraint, we omit this algorithm.

4.3 Double Imprints
Here we treat the case that there are two imprints w1, w2

of u in T in I[u, v]. Let w be the lowest common ancestor of
w1 and w2 in T . From (ii) of Lemma 6 and isometricity of T ,
d(u, w1)+ d(w1, w) = d(u, r)− d(w, r) = d(u, w2)+ d(w2, w) holds
and especially we have w1, w2 ∈ I[u, w]. Let t be the low-
est common ancestor of w and v. From d(u, w1) + d(w1, v) =
d(u, w2)+d(w2, v) and isometricity of T , t is an ancestor of w.
Let P (resp. P′) be any root-leaf path of T that contains
w (resp. v).

Since P′ is convex, we can decompose I[u, v] into a stairs

*3 To explain all cases by these two, we take T as the maximal
tree with gated branches that contains the fiber we consider,
rather than the fiber itself.

4ⓒ 2020 Information Processing Society of Japan

Vol.2020-AL-179 No.2
2020/9/1

IPSJ SIG Technical Report

u

w w′ v

e e′

(a) decomposition of I[u, v] into an interval I[u, w] and
stairs I[e′, v].

The bold line represents P.

w

t v

e

u

L

L′

(b) stairs decomposition of I[u, v].
(single imprint, first case)

vw t

e

u

L

L′

(c) stairs decomposition of I[u, v].
(single imprint, second case)

vt

w

w1

u

w2

L
L′

(d) stairs decomposition of I[u, v].
(double imprints)

L′ with base on P′ and an interval I[u, t]. Since the subpath
of P between r and w is convex, we can further decompose
the interval I[u, t] into a stairs L with base on P and an
interval I[u, w] (actually, we can prove that L is a line).
Now, I[u, w] is one of the O(n) candidates of the intervals
because w is the lowest common ancestor of two imprints
of u in T . This is the stairs decomposition we obtain here.

Let BL (resp. BL′) be the base of L (resp. L′). From the
same reason as the case with a single imprint, we prove
the following lemma.
Lemma 11. The following statements hold.
(i) I[u, v] contains no vertices in T other than vertices in
w1 − v and w2 − v path on T .
(ii) For a vertex z in L′, the gate of z in P′ is an imprint of
z in T .
(iii) For a vertex z in L, the gate of z in P is an imprint of
z in T .

We should also make a way to identify the top of the
stairs L′. We have only one case to tract, shown in Fig-
ure (d), which we can find the entrance on w1 − t or w2 − t
path on T (we formally define the case in Section ??). We
can find it in O(log n) time. Due to the space constraint,
we omit this algorithm.

5. Query Procession of the Case with One End
on the Tree with Gated Branches

In this section, we construct an algorithm and a data
structure that answers the queries with one of the end-
points on the tree with gated branches. That part is the
core of our algorithm.

5.1 Query Procession for Maximal Stairs with Base on
Gated Path

Here we construct an algorithm and a data structure for
the stairs whose base is contained in the gated path P. For
simplicity, we assume that P contains 2q vertices for some
integer q. We do not lose generality by this restriction be-
cause we can safely attach dummy vertices at the last of
P. Let P = (w0, . . . , w2q−1). It is convenient to consider the
direction of P, as if P is directed from w0 to w2q−1. The
reverse P̄ of P is the same path as P as an undirected path
but has different direction, i.e., P̄ = (w2q−1, . . . , w0). We
represent the path between wx and wy on P by P[x, y].

Let us formally define the queries to answer here. A
query is represented by three vertices x, wa, wb such that
the gate of x on P is wa, and asks to answer the value
p(L(x, wa, wb)), where L(x, wa, wb) represents the stairs with
top x and base starts at wa and ends at wb. We construct
two data structures, the first one treats the case a ≤ b and
the second one treat the case a > b. The second data struc-
ture is just obtained by building the first data structure
on the reverse of P, therefore we can assume that for all
queries, wa ≤ wb holds.

For i = 0, . . . , 2q − 1, let Fi be the fiber of wi with respect
to P. For i = 0, . . . , 2q−2 and z ∈ Fi, the successor succP(z) of
z is the gate of z in Fi+1. It is important that, for a < i < b,

5ⓒ 2020 Information Processing Society of Japan

Vol.2020-AL-179 No.2
2020/9/1

IPSJ SIG Technical Report

if Fi∩V(L(x, wa, wb)) induces z−wi path, Fi+1∩V(L(x, wa, wb))
induces succP(z) − wi+1 path.

Here we construct a complete binary tree, which is re-
ferred to as segment tree, to answer the queries. For each
d = 0, . . . , q and for each i = 0, 1, . . . , 2q−d − 1, we prepare a
node that corresponds to P[i × 2d, (i + 1) × 2d − 1]. For each
node v that corresponds to P[l, r] and for each z ∈ Fl, we
store the vertex s(z, l, r) = succr−l

P (z) and the value S (z, l, r) =
p(L(z, wl, wr)) = p(I[succ0

P(z), wl]) ⊕ . . . ⊕ p(I[succr−l
P (z), wr]),

where the succk
P(z) is recursively defined by succ0

P(z) = z
and succk+1

P (z) = succP(succk
P(z)) for all 0 ≤ k.

Here we show the algorithm to calculate p(L(x, wa, wb))
in Algorithm 1. We call the procedure StairsQueryP(0, 2q −
1, a, b, x) to calculate it, and the algorithm returns the pair
of the vertex succb−a+1

P (x) and the value p(L(x, wa, wb)). The
time complexity is O(q) = O(log n).

Algorithm 1 StairsQueryP(l, r, a, b, x)
1: if [l, r] ⊆ [a, b] then
2: return (s(x, l, r), S (x, l, r))
3: end if
4: med ← ⌊ l+r

2 ⌋
5: if b ≤ med then
6: return StairsQueryP(l,med, a, b, x)
7: end if
8: if med < a then
9: return StairsQueryP(med + 1, r, a, b, x)

10: end if
11: (x′, S 1)← StairsQueryP(l,med, a, b, x)
12: (x′′, S 2)← StairsQueryP(med + 1, r, a, b, succP(x′))
13: return (x′′, S 1 ⊕ S 2)

This data structure is constructed as Algorithm 2. The
correctness is clear and the time complexity is O(nq) ≤
O(n log n), assuming that we know the vertex succP(x) and
the value p(I[x, wi]) for all i = 0, . . . , 2q − 1 and x ∈ Fi. The
size of the data structure is clearly O(nq) ≤ O(n log n). Due
to the space constraint, we omit algorithms to calculate
such succP(x) and p(I[x, wi]).

5.2 Query Procession for Stairs with Base on the Tree
with Gated Branches

Let T be the tree with gated branches. Here we construct
an algorithm and a data structure for the stairs whose base
is a column of T . The simplest idea is to prepare the data
structure discussed in the previous subsection for all root-
leaf paths on T , but in this case the total size of the data
structure can be as worse as O(n2 log n). To reduce the
size, we instead prepare the above data structure on every
heavy-path of heavy-light decomposition of T .

For a vertex w ∈ V(T), let F(w) be the set of vertices
with an imprint w. For an edge (w, w′) of T and a vertex
z ∈ F(w), we denote succw,w′ (z) by the gate of z in F(w′).
For the stairs L whose base starts at w1 and ends at w2

such that w1, w, w
′, w2 are located on some column of T in

this order, if F(w)∩V(L) induces z−w path, F(w′)∩V(L) is
succw,w′ (z) − w′ path.

Algorithm 2 Construction of the Data Structure for Stairs
with Base on Gated Path
Input: A cube-free median graph G, a gated path P = (w0, . . . , w2q−1)

for i = 0, . . . , 2q − 1 do
for all x ∈ Fi do

s(x, i, i)← x
S (x, i, i)← p(L(x, wi, wi)) = p(I[x, wi])

end for
end for
for d = q − 1, . . . , 0 do

for i = 0, . . . , 2q−d − 1 do
a← i × 2d , b← (i + 1

2) × 2d , c← (i + 1) × 2d

for all x ∈ Fi do
s(x, a, c − 1)← s(succP(s, a, b − 1), b, c − 1)
S (x, a, c − 1)← S (x, a, b − 1) ⊕ S (succP(s(x, a, b − 1)), b, c − 1)

end for
end for

end for

Algorithm 3 StairsQuery(u, w, v)
Input: w, v ∈ V(T), u ∈ V(G) such that w and v are on the same

column of T and u ∈ F(w)
Let Q be the w − v path on T and P1, . . . , Pk be the list of heavy-
paths that contains vertices in Q, in the same order appearing in
Q
Let P1∩Q = (w = wP1 ,s1 , . . . , wP1 ,t1), P2∩Q = (wP2 ,s2 , . . . , wP2 ,t2), . . . , Pk∩
Q = (wPk ,sk , . . . , wPk ,tk = v)
(x, S)← StairsQueryP1

(0, 2qP1 − 1, s1, t1, u)
for i = 2, . . . , k do

(x′, S ′)← StairsQueryP1
(0, 2qPi − 1, si, ti, succwPi−1 ,ti−1 ,wPi ,si

(x))
x← x′, S ← S ⊕ S ′

end for
return (x, S)

6ⓒ 2020 Information Processing Society of Japan

Vol.2020-AL-179 No.2
2020/9/1

IPSJ SIG Technical Report

Let P be a heavy-path of T . Let VP be the set of ver-
tices that has an imprint in P. We build a data struc-
ture discussed in the previous subsection on the graph in-
duced by VP together with the gated path P; Lemma 10
and Lemma 11 ensures that, for any stairs L we want to
treat, all the vertices in L has an imprint in the base of
L. We can calculate the answer for the queries by Algo-
rithm 3, where the vertices in a heavy-path is represented
as P = (wP,0, . . . , wP,wqP).

The correctness of the algorithm is clear. The size of
the data structure is bounded by O(n log n), because the
size of the data structure on a heavy-path P is bounded
by O(|VP| log |VP|) and each vertex is in VP for at most two
heavy-paths P. We should make an algorithm to calculate
the successor efficiently. We can construct an O(log n)-
time algorithm. Due to the space constraint, we omit this
algorithm.

Now, the time complexity of Algorithm 3 is O(log2 n)
because k in the algorithm is at most O(log n). We summa-
rize our work to answer the interval queries in Algorithm 4,
which works in O(log2 n) time.

6. Decomposing Intervals into intervals with
One End on the Boundary

One of the remaining problems is decomposing an inter-
val with both ends in different fibers into smaller intervals
with one end on boundaries. Let m be the median of G.
For x ∈ St(m), let F(x) be the fiber of x with respect to
St(m). For v ∈ V(G), let r(v) be the vertex in St(m) that is
nearest from v. From definition of fibers, v ∈ F(r(v)) holds.

First, we prove that the intersection of an interval and
a fiber is indeed an interval. The following lemma holds.
Lemma 12. Let u, v be vertices and let x ∈ St(m). Let gu, gv

be the gate of u, v in F(x), respectively. Then, I[u, v]∩ F(x)
coincides with I[gu, gv] if it is nonempty.

Note that, unless r(u) = r(v), one of the gates of u or v in
F(x) is on the total boundary of F(x). Therefore, to obtain
the desired structural result, we just need to bound the
number of fibers with non-empty intersection with I[u, v].
We use following lemma in [18].
Lemma 13 ([18]). Let u, v be vertices with r(u) , r(v). Then,
one of the m ∈ I[u, v], r(u) ∼ r(v), or d(m, r(u)) = d(m, r(v)) =
d(r(u), r(v)) = 2 holds.

Assume m ∈ I[u, v]. Then, I[u, v] ∩ F(x) , ∅ means
x ∈ I[u, v]. Therefore the number of such fibers F(x) is
same as the number of vertices in I[u, v]∩St(m). Now, from
the fact that I[u, v] has a grid structure (see Lemma 1) and
St(m) consists of the vertices in an edge or a square that
contains m, we have that |I[u, v] ∩ St(m)| ≤ 9.

If r(u) ∼ r(v), from Lemma 5, we have I[u, v] ⊆ F(r(u)) ∪
F(r(v)). If d(r(u), r(v)) = 2, let w be the unique common
neighbor of r(u) and r(v). Then, from Lemma 5, we have
I[u, v] ⊆ F(r(u))∪ F(w)∪ F(r(v)). Therefore, in all cases, the
number of fibers with nonempty intersection with I[u, v] is
bounded by 9.

In any of these cases, we can list the fibers F(x) with

nonempty intersection with the given interval I[u, v]; it is
the set of the fibers of the vertices in I[r(u), r(v)] because∪

x∈I[r(u),r(v)] F(x) is convex, and, we can list them efficiently
by using the list of all squares in G. Now it is sufficient to
give a way to calculate the gate of u and v in each of these
fibers for our algorithm. Due to the space constraint, we
omit this algorithm.

References
[1] Harold N Gabow, Jon Louis Bentley, and Robert E Tar-

jan. Scaling and related techniques for geometry problems.
In Proceedings of the Sixteenth Annual ACM Symposium on
Theory of Computing, pp. 135–143, 1984.

[2] Dan Gusfield. Algorithms on stings, trees, and sequences:
Computer science and computational biology. Acm Sigact
News, Vol. 28, No. 4, pp. 41–60, 1997.

[3] Andrew C Yao. Space-time tradeoff for answering range
queries. In Proceedings of the Fourteenth Annual ACM Sym-
posium on Theory of Computing, pp. 128–136, 1982.

[4] Andrew C Yao. On the complexity of maintaining partial
sums. SIAM Journal on Computing, Vol. 14, No. 2, pp. 277–
288, 1985.

[5] Stephen Alstrup, Cyril Gavoille, Haim Kaplan, and Theis
Rauhe. Nearest common ancestors: a survey and a new dis-
tributed algorithm. In Proceedings of the Fourteenth Annual
ACM Symposium on Parallel Algorithms and Architectures,
pp. 258–264, 2002.

[6] Michael A Bender and Martin Farach-Colton. The LCA
problem revisited. In Latin American Symposium on The-
oretical Informatics, pp. 88–94, 2000.

[7] Michael A Bender, Martín Farach-Colton, Giridhar Pem-
masani, Steven Skiena, and Pavel Sumazin. Lowest common
ancestors in trees and directed acyclic graphs. Journal of Al-
gorithms, Vol. 57, No. 2, pp. 75–94, 2005.

[8] Dov Harel and Robert E Tarjan. Fast algorithms for find-
ing nearest common ancestors. SIAM Journal on Computing,
Vol. 13, No. 2, pp. 338–355, 1984.

[9] Hao Yuan and Mikhail J Atallah. Data structures for range
minimum queries in multidimensional arrays. In Proceedings
of the Twenty-First Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pp. 150–160, 2010.

[10] Bernard Chazelle. Computing on a free tree via complexity-
preserving mappings. Algorithmica, Vol. 2, No. 1-4, pp. 337–
361, 1987.

[11] Gerth Stølting Brodal, Pooya Davoodi, and S Srinivasa Rao.
Path minima queries in dynamic weighted trees. In Workshop
on Algorithms and Data Structures, pp. 290–301. Springer,
2011.

[12] SP Avann. Metric ternary distributive semi-lattices. Proceed-
ings of the American Mathematical Society, Vol. 12, No. 3,
pp. 407–414, 1961.

[13] Garrett Birkhoff and Stephen A Kiss. A ternary operation in
distributive lattices. Bulletin of the American Mathematical
Society, Vol. 53, No. 8, pp. 749–752, 1947.

[14] Ladislav Nebeskỳ. Median graphs. Commentationes Mathe-
maticae Universitatis Carolinae, Vol. 12, No. 2, pp. 317–325,
1971.

[15] George S Lueker. A data structure for orthogonal range
queries. In Proceedings of the nineteenth Annual Symposium
on Foundations of Computer Science, pp. 28–34, 1978.

[16] Bernard Chazelle and Leonidas J Guibas. Fractional cascad-
ing: I. A data structuring technique. Algorithmica, Vol. 1,
No. 1-4, pp. 133–162, 1986.

[17] David Peleg. Proximity-preserving labeling schemes. Journal
of Graph Theory, Vol. 33, No. 3, pp. 167–176, 2000.

[18] Victor Chepoi, Arnaud Labourel, and Sébastien Ratel. Dis-
tance labeling schemes for cube-free median graphs. In 44th
International Symposium on Mathematical Foundations of
Computer Science, pp. 15:1–15:14, 2019.

[19] Laurine Bénéteau, Jérémie Chalopin, Victor Chepoi, and
Yann Vaxès. Medians in median graphs and their cube com-
plexes in linear time. In Proceedings of the Forty-Seventh
International Colloquium on Automata, Languages, and Pro-
gramming, p. to appear, 2020.

[20] Hans-Jurgen Bandelt and Victor Chepoi. Metric graph the-
ory and geometry: a survey. Contemporary Mathematics,
Vol. 453, pp. 49–86, 2008.

7ⓒ 2020 Information Processing Society of Japan

Vol.2020-AL-179 No.2
2020/9/1

IPSJ SIG Technical Report

Algorithm 4 The Algorithm to Interval Query with One
End on T
Input: u, v ∈ V(G)

if d(u, v) = d(u, w)+d(w, v) holds for exactly one imprint w of u then
Let t be the lowest common ancestor of w and v
Let P = (r = w0, . . . , wk) and P′ = (r = w′0, . . . , w

′
k), where

wa = w
′
a = t and wb = w be the root-leaf path that contains

w and v, respectively
if w , t then

(Consider the decomposition of I[u, v] into I[u, w], L =

L(s, wb−1, t) and L′ = L(s′, w′a+1, v))
Find the entrance e of L
(z, S) ← StairsQuery(s, wb−1, t), where s is the neighbor of e in
F(wb−1)
if v = t then

return p(I[u, w]) ⊕ S
end if
if wa+1 has a neighbor in F(w′a+1) then

Find the entrance e′ of L′ using appropriate data struc-
ture (omitted)

else
Find the entrance e′ of L′ using using appropriate data
structure (omitted)

end if
(z′, S ′)← StairsQuery(s′, w′a+1, v), where s′ is the neighbor of e′

in F(w′a+1)
return p(I[u, w]) ⊕ S ⊕ S ′

else
if v = t then

return p(I[u, w])
end if
(Consider the decomposition of I[u, v] into I[u, w] and L′ =
L(s′, w′a+1, v))
Find the entrance e′ of L′

(z′, S ′)← StairsQuery(s′, w′a+1, v), where s′ is the neighbor of e′

in F(w′a+1)
return p(I[u, w]) ⊕ S ′

end if
else

Let w1, w2 be the imprints of u
Let w be the lowest common ancestor of w1 and w2

Let t be the lowest common ancestor of w and v
Let P1 = (r = w1,0, . . . , w1,k1), P2 = (r = w2,0, . . . , w2,k2) and
P′ = (r = w′0, . . . , w

′
k′), where w1,a = w2,a = w

′
a = t, w1,b = w2,b = w

be the root-leaf path that contains w1, w2 and v, respectively
(Consider the decomposition of I[u, v] into I[u, w], the path
(w1,a, . . . , w1,b−1) and L′ = L(s′, w′a+1, v))
Find the entrance e′ of L′ using using appropriate data struc-
ture (omitted)
(z′, S ′)← StairsQuery(s′, w′a+1, v), where s′ is the neighbor of e′ in
F(w′a+1)
if w = t then

return p(I[u, w]) ⊕ S ′

end if
(z, S)← StairsQuery(w1,b−1, w1,b−1, w1,a)
return p(I[u, w]) ⊕ S ⊕ S ′

end if

[21] Henry Martyn Mulder and Alexander Schrijver. Me-
dian graphs and helly hypergraphs. Discrete Mathematics,
Vol. 25, No. 1, pp. 41–50, 1979.

[22] Thomas J Schaefer. The complexity of satisfiability prob-
lems. In Proceedings of the Tenth Annual ACM Symposium
on Theory of Computing, pp. 216–226, 1978.

[23] Adam Clearwater, Clemens Puppe, and Arkadii Slinko. Gen-
eralizing the single-crossing property on lines and trees to in-
termediate preferences on median graphs. In Proceedings of
the Twenty-Fourth International Joint Conference on Artifi-
cial Intelligence, 2015.

[24] Gabrielle Demange. Majority relation and median represen-
tative ordering. SERIEs: Journal of the Spanish Economic
Association, Vol. 3, No. 1, pp. 95–109, 2012.

[25] Clemens Puppe and Arkadii Slinko. Condorcet domains, me-
dian graphs and the single-crossing property. Economic The-
ory, Vol. 67, No. 1, pp. 285–318, 2019.

[26] Victor Chepoi and Daniela Maftuleac. Shortest path prob-
lem in rectangular complexes of global nonpositive curvature.
Computational Geometry, Vol. 46, No. 1, pp. 51–64, 2013.

[27] Victor Chepoi. Classification of graphs by means of metric
triangles. Metody Diskret. Analiz, Vol. 49, pp. 75–93, 1989.

8ⓒ 2020 Information Processing Society of Japan

Vol.2020-AL-179 No.2
2020/9/1

