
IPSJ SIG Technical Report

Sorting by Five Prefix Reversals

Tetsuya Araki1,a) Takashi Horiyama2,b) Shin-ichi Nakano1,c) Yoshio Okamoto3,d)

Yota Otachi4,e) Ryuhei Uehara5,f) Takeaki Uno6,g) Katsuhisa Yamanaka7,h)

Abstract: Various forms of sorting have been proposed. Among them, we focus on sorting by a restricted set of re-
versals. Namely, for a given set of pairs of indices (i.e., intervals), we want to sort an array a by successively selecting
a pair i < j from the set and flipping the subsequence a[i], . . . , a[j]. This model includes sorting by prefix reversals
(a.k.a. pancake sort), sorting by adjacent transpositions, and it is an extension of the token swapping problem on a path
that appears in the context of reconfiguration problems. We prove that for any natural number n, there exists a set of
five intervals that can sort any sequence of length n with O(n log n) flips. Moreover, those intervals are achieved by
prefixes of the indices. Such a construction with a constant number of intervals has only been known when n is odd
and n mod 8 , 1. The number of flips is asymptotically best possible when only a constant number of intervals are
used.

Keywords: Cayley graph, pancake sort, reconfiguration problem, sorting by reversals

1. Introduction
Various forms of sorting problems have been studied over

the years. Among them, we consider sorting by reversals.
In sorting by reversals, for a given array of distinct numbers
a[0], a[1], . . . , a[n − 1], we are only allowed to flip a sequence
of consecutive indices. Namely, we specify two indices i and j
with 0 ≤ i < j ≤ n − 1, or specify an interval [i, j]. Then, we
transform the array

a[0], a[1], . . . , a[i − 1],

a[i], a[i + 1], . . . , a[j − 1], a[j], a[j + 1], . . . , a[n − 1]

to

a[0], a[1], . . . , a[i − 1],

a[j], a[j − 1], . . . , a[i + 1], a[i], a[j + 1], . . . , a[n − 1].

This operation is referred to as a flip of the interval [i, j]. The goal
is to have an array a′[0], a′[1], . . . , a′[n−1] so that a′[0] < a′[1] <
· · · < a′[n − 1], and fewer flips are preferable. It is known that

1 Gunma University, Japan
2 Hokkaido University, Japan
3 The University of Electro-Communications, Japan
4 Nagoya University, Japan
5 Japan Advanced Institute of Science and Technology, Japan
6 National Institute of Informatics, Japan
7 Iwate University, Japan
a) tetsuya.araki@gunma-u.ac.jp
b) horiyama@ist.hokudai.ac.jp
c) nakano@cs.gunma-u.ac.jp
d) okamotoy@uec.ac.jp
e) otachi@nagoya-u.jp
f) uehara@jaist.ac.jp
g) uno@nii.jp
h) yamanaka@cis.iwate-u.ac.jp

n − 1 flips are always sufficient [36]*1 and sometimes necessary
[4] for sorting by reversals.

Sorting by prefix reversals (also known as pancake sort) is an-
other form of sorting that was introduced by Dweighter [26] and
is related to sorting by reversals. In sorting by prefix reversals,
we only allow flips of intervals of the form [0, j], 1 ≤ j ≤ n − 1.
Garey, Johnson, and Lin [13] gave a comment that 2n−6 flips are
always sufficient and n + 1 flips are sometimes necessary when
n ≥ 7. Gates and Papadimitriou [19] proved that (5n + 5)/3 flips
are always sufficient, and 17n/16 flips are sometimes necessary.
Later, the bounds are improved as 18n/11 flips are always suffi-
cient [11] and 15n/14 flips are sometimes necessary [22].

Another usual way of sorting is performed by adjacent trans-
positions, where an adjacent transposition can be described as a
flip of the interval [i, i + 1], 0 ≤ i ≤ n − 2. For sorting by adja-
cent transpositions,

(
n
2

)
flips are always sufficient and sometimes

necessary [27], Sect. 5.2.2.
Looking at those examples, we observe the following for sort-

ing by reversals. First, a restricted set of intervals is sufficient for
sorting. Second, a set of possible intervals can affect the number
of flips for sorting. With these observations, we study sorting by
a restricted set of intervals. We are mainly interested in the sorta-
bility of a given set of intervals, and also the trade-off between
the number of intervals and the number of flips for sorting.

Contributions
We prove that for every natural number n, there exists a set

of five intervals for which we can sort any array of n distinct
numbers with O(n log n) flips. This is asymptotically optimal
as for any set of constant number of intervals, sorting requires

*1 The paper [36] indeed shows that n − 2 flips are always sufficient for
circular arrays. However, their argument can easily be adapted to show
that n − 1 flips are always sufficient for our setting.

1ⓒ 2020 Information Processing Society of Japan

Vol.2020-AL-179 No.1
2020/9/1

IPSJ SIG Technical Report

Ω(n log n) flips.
Prior to our work, Bass and Sudborough [5] proved that for ev-

ery odd number n with n mod 8 , 1, there exists a set of three in-
tervals for which we can sort any array of n distinct numbers with
O(n log n) flips. However, their restriction on n only gives O(n2)
upper bound for all n. Thus, our result improves their bound.

Our algorithm is similar to Quick Sort, and indeed inspired by
a result of Bass and Sudborough [5] whose algorithm is also sim-
ilar to Quick Sort.

Related work
Our work can be stated as problems of determining the diam-

eter of Cayley graphs of symmetric groups given a set of gener-
ators. Namely, our result can equivalently be stated as the exis-
tence of a set of five generators for which the diameter of Cayley
graph of the symmetric group S n is O(n log n), and these genera-
tors are given by (0, i)(1, i − 1) · · · (bi/2c, di/2e) for some i.

A conjecture by Babai and Seress [3] states that for any set
of generators, the Cayley graph of the symmetric group S n has
diameter polynomial in n, where the degree of the polynomial
is independent of the choice of generators. They proved the
upper bound of exp((1 + o(1))

√
n ln n), which was improved to

exp(O((log4 n) log log n)) [21].
Some researchers looked at the diameter of the Cayley graph

of the symmetric group S n for specific sets of generators. Babai,
Kantor, and Lubotsky [2] found a set of two generators that yields
the diameter of O(n log n). See [1] for another set of two gen-
erators of diameter O(n log n) that is attributed to Quisquarter.
Driscoll and Furst [12] proved that the Cayley graph has diam-
eter O(n2) if a set of generators consists of d-cycles for constant
d. This was generalized by McKenzie [28] when each generator
moves at most d elements: in this case the diameter is O(n2d).

Even with a very simple set of generators, the determination
of the diameter of the Cayley graph of the symmetric group is
not trivial. For example, an adjacent transposition, a cyclic shift,
and its inverse form a set of generators, and the diameter of the
Cayley graph in this case is not known. Currently, the best upper
bound is (3n2−4n)/2 [39], and the best lower bound is n(n−1)/6
[32].

Computational aspects have also attracted a lot of research. By
results of Furst, Hopcroft, and Luks [18], given a set of permu-
tations, we can decide if they generate the symmetric group in
polynomial time. Namely, the sortability question can be solved
in polynomial time. However, in many cases, the shortest path
problem in the Cayley graphs is NP-hard. Even and Goldreich
[14] proved that given a set of generators, it is NP-complete to
decide whether the distance between two specified vertices of the
Cayley graph is at most a given value, where the value is unary
encoded. The result was refined by Jerrum [23] who proved that
the problem is PSPACE-complete if the target value is binary en-
coded.

For sorting by reversals, computing the fewest flips to sort a
given array is NP-hard [10], and the currently best approximation
algorithm [6] achieves the approximation factor of 1.375. For
sorting by prefix reversals, computing the fewest flips to sort a
given array is NP-hard [9], and a 2-approximation algorithm is

the current best [17].
Sorting by adjacent transpositions can be seen as sorting by

a restricted set of transpositions. Here, a transposition is an
operation to swap two elements in an array.*2 A set of possi-
ble transpositions can be represented by an undirected graph on
{0, 1, . . . , n − 1}, where an edge between i and j means that the
elements at positions i and j can be swapped by a transposition.
The graph is often called the transposition graph. Sorting is al-
ways possible if and only if the transposition graph is connected
[8], Exercise 4.1.11. As for the diameter of the Cayley graphs, we
know n − 1 for complete graphs [23],

(
n
2

)
for paths and bn2/4c for

cycles [33]. For stars, the diameter is (3n − 4)/2 when n is even,
and (3n − 3)/2 when n is odd [31]. For the squares of paths (i.e.,
paths with additional edges that connect vertices at distance two),
we know the upper bound of 3n2/16 + O(n log n) [16] and the
lower bound of n2/6 [15]. For the grid, the diameter is O(n3/2)
and for the hypercube, the diameter is O(n(log n)(log log n)2)
[38].

The fewest flips can be determined in polynomial time when
the transposition graph is a complete graph, a complete bipartite
graph [38], a path [27], a cycle [23], a star [24], [30], [31], and
a broom [7], [25], [34]. For a general transposition graph, the
determination of the fewest flips is NP-hard [25], [29] while a
polynomial-time 4-approximation algorithm is known [29]. A lot
of study is devoted to the case where the transposition graph is
a tree. See [7] for the summary. It is an open problem whether
the fewest flips can be found in polynomial time for trees, while
several polynomial-time 2-approximation algorithms have been
known [7], [24], [29], [35], [38]. Also for the squares of paths,
a polynomial-time 2-approximation algorithm has been known
[20].

2. Preliminaries
In this paper, an array of n elements is indexed from 0 to n − 1

as a = (a[0], a[1], . . . , a[n − 1]). Indices are often called posi-
tions. For two indices i, j with 0 ≤ i < j ≤ n − 1, the subarray
(a[i], a[i + 1], . . . , a[j]) of a is denoted by a[i, j].

For an array a = (a[0], a[1], . . . , a[n − 1]), a set of contiguous
indices is called an interval. The interval i, i + 1, . . . , j is denoted
by [i, j] provided that i ≤ j. The flip of the interval [i, j] in the
array a transforms a into

(a[0], a[1], . . . , a[i − 1],

a[j], a[j − 1], . . . , a[i + 1], a[i], a[j + 1], . . . , a[n − 1]).

As we study sorting an array of numbers, we only consider an
array of distinct numbers.*3 From now on, we do not write “dis-
tinct” explicitly, but it is assumed implicitly.

In an array a of n numbers. the rank of an element a[i] is
|{ j | a[j] ≤ a[i]}|. Namely, the smallest element in a has rank 1,
and the largest element has rank n. The median of a is the element
of rank bn/2c.

*2 In the literature of molecular biology and bioinformatics, the operation
of a transposition means exchanging two consecutive substrings. Here,
we follow the terminology of mathematics (permutation groups).

*3 Indeed, they do not have to be numbers, but they only need to be taken
from a totally ordered set. We use numbers for convenience.

2ⓒ 2020 Information Processing Society of Japan

Vol.2020-AL-179 No.1
2020/9/1

IPSJ SIG Technical Report

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 9

I2

Ic′

Ic

Ia′

Ia

I2

Ic′

Ic

Ia′

Ia

Fig. 1 Five intervals for our algorithm. The small black triangles indicate
the center indices. (Left) The case where n is odd. (Right) The case
where n is even.

With this setup, our sorting problem can be described as fol-
lows. We first fix n, the number of elements to be sorted. Then,
we construct a set I of intervals over {0, 1, . . . , n − 1}. The aim is
to sort a given array of n numbers by successive applications of
flips of intervals in I.

We have two important goals. First, we want to use as few
intervals as possible. Second, we want to invoke as few flips as
possible. For each n and a set I of intervals, we denote by t(n,I)
the minimum number of flips of invervals in I that can sort any
array of n numbers.

A counting argument shows the trade-off between |I| and
t(n,I) as follows.
Proposition 1. For any natural number n and a set I of intervals,
it holds that

t(n,I) log |I| = Ω(n log n).

Proof. Consider a sorting algorithm A that uses at most t(n,I)
flips for any array of n numbers. With at most t flips, A can
distinguish O(|I|t) different arrays. On the other hand, there
are n! distinct arrays of n numbers. Therefore, n!≤ O(|I|t(n,I))
must hold. By taking the logarithm, we obtain t(n,I) log |I| =

Ω(n log n). �

From this proposition, we obtain a lower bound for t(n,I)
when some specific values are set to |I|. Consider the case where
|I| = O(n). From Proposition 1, we have t(n,I) = Ω(n). On the
other hand, the bound t(n,I) = O(n) is attained by pancake sort-
ing (see Introduction), and thus the bound is asymptotically tight.
Next, consider the case where |I| = O(1). From Proposition 1,
we have t(n,I) = Ω(n log n). In the next section, we provide the
upper bound of t(n,I) = O(n log n).

3. Main algorithmic result
The following is the main theorem.

Theorem 1. For every natural number n, there exists a set of
five intervals that can sort any array of n numbers with O(n log n)
flips.

This section is devoted to the proof of Theorem 1. Throughout
the proof, n is fixed and we want to sort an arbitrary array a of n
numbers.

For a subarray a[`, r] of a, we denote the center index of a[`, r]
by ctr-idx(a[`, r]) and define as d(r−`+1)/2e+`−1. When ` = 0
and r = n − 1, we have a[`, r] = a and ctr-idx(a) = dn/2e − 1 =

b(n − 1)/2c.
For our algorithm, we use the following set of five intervals

(see Figure 1):

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 9

01234567 8

78 60 51 42 3

98 07 16 5 234

9 80 71 62 53 4

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 9

5 6 7 8403 12

5 6 7 84 30 21

4 5 6 7 8 93 02 1

5 6 7 8 94 30 21

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 9

8 07 16 25 34

01234 85 76

012387 46 5

0 71 62 53 48

9 08 17 26 35 4

012345 96 87

01234958 67

0 81 72 63 54 9

RightShift

RightShiftFirst

RightShiftSecond

Fig. 2 Primitive shift procedures. We only show right shifts. Flips are ap-
plied from top to bottom. The left column shows the case where n is
odd, and the right column shows the case where n is even.

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 9

SwapCenter 8 7 6 5 4 3 2 1 0

84 75 6 3 2 1 0

5 4 876 3 2 1 0

8 7 6 4 5 3 2 1 0

0 1 2 3 5 4 6 7 8

09 18 27 36 45

1 92 83 4 5 6 7 0

5 4 3 2 1 6 7 8 9 0

4 5 3 2 1 6 7 8 9 0

6 7 8 9 01 42 53

09 18 27 36 54

0 91 82 73 65 4

Fig. 3 Primitive swap procedures. Flips are applied from top to bottom.
The left column shows the case where n is odd, and the right column
shows the case where n is even.

I = {I2 = [0, 1], Ic′ = [0, b(n − 1)/2c − 1], Ic = [0, b(n − 1)/2c],

Ia′ = [0, n − 2], Ia = [0, n − 1]}.

Using the flips of the intervals in I, we can construct the follow-
ing primitive procedures (see Figures 2 and 3).
• RightShift: Cyclically right-shift the whole array. This

can be done by flips of Ia′ and Ia.
• RightShiftFirst: Cyclically right-shift the subarray

a[0, b(n − 1)/2c]. This can be done by flips of Ic′ and Ic.
• LeftShiftFirst: Cyclically left-shift the subarray

a[0, b(n − 1)/2c]. This can be done by flips of Ic and Ic′ .
• RightShiftSecond: Cyclically right-shift the subarray

a[d(n − 1)/2e, n − 1]. This can be done by flips of Ia, Ic, Ic′

and Ia.
• LeftShiftSecond: Cyclically left-shift the subarray

a[d(n − 1)/2e, n − 1]. This can be done by flips of Ia, Ic′ , Ic

and Ia.
• SwapCenter: Swap the numbers at ctr-idx(a) and

ctr-idx(a) + 1. This can be done by flips of Ia, Ic, I2, Ic, Ia

when n is odd, and Ia, Ia′ , Ic, I2, Ic, Ia′ , Ia when n is even.
Note that b(n − 1)/2c , d(n − 1)/2e when n is even, but

b(n − 1)/2c = d(n − 1)/2e when n is odd. This suggests that we
will need case analysis.

3.1 Algorithm outline
First, we give the outline of our algorithm. The description is

given in Algorithm 1. A sample execution is depicted in Figure 4.
The algorithm mimics the behavior of Quick Sort, and pro-

ceeds in rounds. We start with Round 1 where we split the input
array a into two subarrays so that the first half contains the smaller
elements and the second half contains the larger elements. At
the beginning of Round d, we are given 2d−1 subarrays that hold
blocks (precise definitions are given later). In Round d, we split

3ⓒ 2020 Information Processing Society of Japan

Vol.2020-AL-179 No.1
2020/9/1

IPSJ SIG Technical Report

Algorithm 1: Sort(a = (a[0], a[1], . . . , a[n − 1]))
1 B1 = 〈A〉
2 for d = 1 to dlog ne /* d is the round counter */
3 do
4 Let Bd = 〈B0, B1, . . . , B2d−1−1〉 be the block sequence from the

previous iteration
5 for i = 0 to n − 1 do
6 if ctr-idx(a) = ctr-idx(B j) for some j then
7 Let a[`, r] be the subarray that holds B j

8 if n is odd then
9 a← Split-Odd(B j, `, r, a) /* Split B j into

two blocks */

10 else
11 a← Split-Even(B j, `, r, a) /* Split B j into

two blocks */

12 RightShift

13 Construct the block sequence Bd+1 for the next iteration

14 return a.

each of these 2d−1 subarrays into two subarrays. After dlog ne
rounds, we terminate and the sorted array is obtained.

For the input array a of n distinct numbers, let A = {a[i] |
i = 0, 1, . . . , n − 1} be the set of numbers that appear in a. Let
B ⊆ A. The median of B is denoted by med-elem(B). We de-
note B≤ = {b ∈ B | b ≤ med-elem(B)} and B> = {b ∈ B | b >
med-elem(B)}.

A block is a subset of A. A block B is held in the subarray
a[i, j] if each element in B appears in a[i, j] and |B| = j− i + 1. A
block sequence of length k is a sequence B = 〈B0, B1, . . . , Bk−1〉

of k blocks such that b < b′ for any b ∈ Bi and b′ ∈ B j with
0 ≤ i < j ≤ k − 1. The definition implies that the sets in a block
sequence are pairwise disjoint.

At the beginning of Round d, we are given a block sequence
Bd. Let B1 = 〈A〉. In the course of our algorithm, we maintain
the following invariants.
(1) Every element in A is contained in one of the sets in Bd.
(2) The block sequence Bd has 2d−1 sets.
(3) Each set in Bd has

⌊
|A|/2d−1

⌋
or d|A|/2d−1e elements.

By the definition and the invariant 1, each block in a block se-
quence is held by a subarray of a. By the invariants 1 and 2, after
many rounds, all sets in our block sequence will eventually have
size one and sorting will be completed. By the invariant 3, we
know that the algorithm terminates after dlog ne rounds.

To maintain the invariant 3, in the algorithm we split each set
in Bd into two almost equal-sized sets to form sets in Bd+1. More
formally, splitting a block B replaces B with B≤ and B> in this
order when |B|> 1, and does nothing when |B|= 1 (which only oc-
curs at the final round). Then, the resulting sequence Bd+1 again
satisfies the condition of a block sequence and the three invariants
for d < dlog ne.

Therefore, it suffices to devise a splitting procedure. Due to
our choice of five intervals, we can only split a block B when
the center index of a coincides with the center index of the sub-
array holding B. This means that to split B we need to shift the
whole array a. Shifts can destroy the structure of the block se-
quence, but we can still specify the center index of a block by
taking addition modulo n. Namely, we regard the array a as a

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 123 4 56 78 910 111213

3

3 7 138 11 129 10

10 32 4 5 6 98 7 10 1112 13

Round 1

Round 2

Round 3

Round 4

9128 7 1311 104206 51

6 5 4021

Fig. 4 A sample execution of Sort. Each rectangle shows a block. The al-
gorithm runs in rounds. Each round splits the blocks into two smaller
blocks of the almost same size. After dlog ne rounds, the algorithm
terminates, and the sorted array is obtained.

cyclic list and indices are computed modulo n as, for example,
a[n] = a[0]. With this convention, a subarray of a can go over
the index boundaries and, for example, a[n − 3, 3] is considered
as a “subarray” (a[n − 3], a[n − 2], a[n − 1], a[0], a[1], a[2], a[3])
of a. Then, we can still define the center index ctr-idx(a[`, r]) of
the subarray a[`, r] as d(r − ` + 1)/2e + ` − 1 (mod n) even when
` > r. For example, the center index of the subarray a[n − 3, 3] is
d(3 − (n − 3) + 1)/2e + (n − 3) − 1 = d7/2e + (n − 3) − 1 = n ≡ 0
(mod n).

When a block B is held by a subarray a[`, r], we use the phrase
“the center index of B” to mean the center index of a[`, r] and
denote it as ctr-idx(B). With this notation, after some number
of shifts, we perform splitting for a block B when ctr-idx(a) =

ctr-idx(B). After n shifts, all blocks in Bd get split, and we obtain
another block sequence Bd+1 for the next iteration.

3.2 Split when n is odd
The parity of n will affect the design of our split procedure.

First, we resolve the case where n is odd. The procedure Split-
Odd is described in Algorithm 2. As the precondition, we require
that the block B is held in the subarray a[`, r], and ctr-idx(a) =

ctr-idx(a[`, r]) = ctr-idx(B). A sample execution is depicted in
Figure 5.

The goal of Split-Odd is to obtain B≤ and B> from B. The
procedure Split-Odd consists of two phases. In the 1st phase,
we move all but one elements in B≤ to the left end of the array
a and all the elements in B> to the right end of a. In the 2nd
phase, we restore the moved elements into the positions `, . . . , r
so that the left half holds B≤ and the right half holds B>. More
precisely, the elements in B≤ will be restored into the positions
[`, ctr-idx(a)] and the elements in B> will be restored into the po-
sitions [ctr-idx(a) + 1, r].
3.2.1 First phase: split away

In the 1st phase, we look at the element at ctr-idx(a). If
a[ctr-idx(a)] ≤ med-elem(B), in other words a[ctr-idx(a)] ∈ B≤,
then we perform RightShiftFirst to move the element at
ctr-idx(a) to the position 0. Since the left half of B is shrunk, we
add 1 to `. This way, we keep track of the range of elements in B
that are not yet moved. If a[ctr-idx(a)] > med-elem(B), in other
words a[ctr-idx(a)] ∈ B>, then we perform LeftShiftSecond
to move the element at ctr-idx(a) to the position n − 1, and
subtract 1 from r. Here, it is crucial that when n is odd,

4ⓒ 2020 Information Processing Society of Japan

Vol.2020-AL-179 No.1
2020/9/1

IPSJ SIG Technical Report

Algorithm 2: Split-Odd(B, `, r, a)
1 /* The 1st phase: all the elements in B except one
are moved */

2 for i = 1 to |B| − 1 do
3 if a[ctr-idx(a)] ≤ med-elem(B) then
4 if ` < ctr-idx(a) then
5 RightShiftFirst /* a[ctr-idx(a)] moves to the

position 0 */
6 Increment `
7 else /* ` = ctr-idx(a) */
8 SwapCenter

9 LeftShiftSecond /* a[ctr-idx(a)] moves to the
position n − 1 */

10 Decrement r

11 else /* a[ctr-idx(a)] > med-elem(B) */
12 if r > ctr-idx(a) then
13 LeftShiftSecond /* a[ctr-idx(a)] moves to the

position n − 1 */
14 Decrement r
15 else /* r = ctr-idx(a) */
16 RightShiftFirst /* a[ctr-idx(a)] moves to the

position 0 */
17 Increment `

18 /* The 2nd phase: the elements in B are restored */
19 for i = 1 to d|B|/2e − 1 do /* The elements in B≤ are
restored first */

20 LeftShiftFirst

21 for i = 1 to b|B|/2c do /* Next, the elements in B> are
restored */

22 RightShiftSecond

23 SwapCenter

24 return a

ctr-idx(a) = b(n − 1)/2c = d(n − 1)/2e, and RightShiftFirst
and LeftShiftSecond both involve the center index.

This can be repeated as long as ` < ctr-idx(a) and ctr-idx(a) <
r. However, if ` = ctr-idx(a) or ctr-idx(a) = r, we need to know
something happens. When ` = ctr-idx(a), then we know that
we already moved all the elements in B≤ except one to the po-
sition 0, and the last element in B≤ lies at ctr-idx(a). Therefore,
we only need to move to the position n − 1 the elements in B>

that lie to the right of ctr-idx(a). To this end, we swap the ele-
ments at ctr-idx(a) and ctr-idx(a) + 1 by SwapCenter, and per-
form LeftShiftSecond. We remember to subtract 1 from r.

When r = ctr-idx(a), then we know that we already moved all
the elements in B> to the position n− 1, and an element in B≤ lies
at ctr-idx(a). Therefore, we only need to move to the position 0
the remaining elements of B≤ that lie to the left of ctr-idx(a). To
this end, we perform RightShiftFirst, and add 1 to `.

Consider the situation at the end of the 1st phase. We have
` = r = ctr-idx(a), a[ctr-idx(a)] ∈ B≤, the set B≤ \ {a[ctr-idx(a)]}
is held in the subarray a[0,

∣∣∣B≤∣∣∣ − 2] and the set B> is held in the
subarray a[n − |B>|, n − 1].
3.2.2 Second phase: restore

At the end of the 1st phase, we have a[ctr-idx(a)] ≤

med-elem(B), i.e., a[ctr-idx(a)] ∈ B≤. We first restore the el-
ements of B≤ \ {a[ctr-idx(a)]} by performing LeftShiftFirst
d|B|/2e − 1 times. After those shifts, it holds that a[ctr-idx(a)] ∈
B≤. Next, we restore the elements of B> by the b|B|/2c applica-

1 24 5 679

1 24 5 679

2 6 791 4 5

2 6 791 4 5

2 6 7914 5

6 75 9

6 75 9

675 9

2 14

2 14

2 14

675 92 14

52 1 4

5 21 4

5 2 14

67 9

67 9

67 9

1 7 96

1 6 7 9

1 6 79

1 9 6 7

1 9 67

1 7 9 6

5 24

5 24

5 24

5 24

5 24

5 24

1st Phase 2nd Phase

Fig. 5 A sample execution of Split-Odd. The small black triangles indicate
the center index, and the white triangles indicate the positions of `
and r. The right arrows represent cyclic right shifts, the left arrows
represent cyclic left shifts, and the arrows in both directions represent
swaps. Note that the median of {9, 4, 7, 1, 2, 5, 6} is 5.

.

1 24 5 679

1st Phase

1 24 5 679

1

2

4 5 679

1 49

2 1 94

5 67

5 67

5 6 72 1 94

6 75 92 14

6 7 952 14

6 7 952 14

2nd Phase

52 1 4

51 4 2

5 4 2 1

6 7 9

6 7 9

6 7 9

6 79

697

5 4 2 1

5 4 2 1

2

Fig. 6 A sample execution of Split-Even. We follow the convention in Fig-
ure 5.

.

tions of RightShiftSecond and SwapCenter.
After the 2nd phase, the subarray a[`, ctr-idx(a)] holds B≤ and

the subarray a[ctr-idx(a) + 1, r] holds B>. Thus, the split is suc-
cesfully completed.
3.2.3 The number of flips

We estimate the number of flips in one call of Split-Odd(B, `,
r, a). In the 1st phase, the number of performed primitive proce-
dures is O(|B|). In the 2nd phase, the number of performed prim-
itive procedures is O(|B|). Since each primitive procedure uses a
constant number of flips, the total number of flips in Split-Odd(B,
`, r, a) is O(|B|).

3.3 Split when n is even
Now, we turn to the case where n is even. Note that

b(n − 1)/2c , d(n − 1)/2e holds in this case.
The splitting procedure Split-Even is described in Algorithm 3.

Again, as the precondition, we require that the block B is held in
the subarray a[`, r], and ctr-idx(a) = ctr-idx(a[`, r]) = ctr-idx(B).
Remember that ctr-idx(a) = b(n − 1)/2c.

The goal of Split-Even is to obtain B≤ and B> from B. The
basic idea of Split-Even is similar to that of Split-Odd. The pro-
cedure Split-Even consists of two phases. In the 1st phase, we
move all but one elements in B≤ to the left end of the array a and
all but one elements in B> to the right end of a. In the 2nd phase,
we restore the elements in B≤ into the positions [`, ctr-idx(a)] and
the elements in B> into the positions [ctr-idx(a) + 1, r].

5ⓒ 2020 Information Processing Society of Japan

Vol.2020-AL-179 No.1
2020/9/1

IPSJ SIG Technical Report

3.3.1 First phase: split away
In the 1st phase, we repeat the following three steps.

(1) While a[ctr-idx(a)] ≤ med-elem(B) and ` < ctr-idx(a) hold,
we repeat the application of RightShiftFirst to move
a[ctr-idx(a)] to the position 0.

(2) While a[ctr-idx(a)+1] > med-elem(B) and r > ctr-idx(a)+1
hold, we repeat the application of LeftShiftSecond to
move a[ctr-idx(a) + 1] to the position n − 1.

(3) After Steps (1) and (2), if a[ctr-idx(a)] ≥ med-elem(B) and
a[ctr-idx(a) + 1] < med-elem(B) hold, then we perform
SwapCenter, and go back to Step (1).

These steps move all but two elements in B to either the position
0 or n− 1. An element b in B≤ is moved without swap in Step (3)
if b lies in a[`, ctr-idx(a)]. Otherwise, b is moved with a swap in
Step (3). Here, it can be observed that the number of elements
in B> lying in a[`, ctr-idx(a)] is equal to the number of elements
in B≤ lying in a[ctr-idx(a) + 1, r]. Hence, every element in B>

lying in [`, ctr-idx(a)] is swapped with an element in B≤ lying in
a[ctr-idx(a) + 1, r].

Consider the situation at the end of the 1st phase. We have
` = ctr-idx(a) and r = ctr-idx(a) + 1. The element a[ctr-idx(a)]
belongs to B≤ and the element a[ctr-idx(a)+1] belongs to B>. All
but one elements in B≤ are held in the subarray a[0,

∣∣∣B≤∣∣∣− 2], and

all but one elements in B> are held in the subarray a[n −
∣∣∣∣B>j ∣∣∣∣ +

1, n − 1].
3.3.2 Second phase: restore

The 2nd phase moves elements in B≤ from the position 0
to ctr-idx(a) by LeftShiftFirst

∣∣∣B≤∣∣∣ − 1 times, and moves
elements in B> from the position n − 1 to ctr-idx(a) + 1 by
RightShiftSecond

∣∣∣∣B>j ∣∣∣∣ − 1 times.
3.3.3 The number of flips

We estimate the number of flips in one call of Split-Even(B, `,
r, a). In the 1st phase, the number of performed primitive pro-
cedures is O(|B|). In the 2nd phase, the number of performed

Algorithm 3: Split-Even(B, `, r, a)
1 /* The 1st phase: all the elements in B except two
are moved to the position 0 or n − 1 */

2 repeat
3 while a[ctr-idx(a)] ≤ med-elem(B) and ` < ctr-idx(a) do
4 RightShiftFirst

5 Increment `

6 while a[ctr-idx(a) + 1] > med-elem(B) and r > ctr-idx(a) + 1 do
7 LeftShiftSecond

8 Decrement r

9 if a[ctr-idx(a)] > med-elem(B) and
a[ctr-idx(a) + 1] ≤ med-elem(B) then

10 SwapCenter

11 until ` = ctr-idx(a) and r = ctr-idx(a) + 1
12 /* The 2nd phase: the elements in B are restored */
13 for j = 1 to d|B|/2e − 1 do /* The elements in B≤ are
restored */

14 LeftShiftFirst

15 for j = 1 to b|B|/2c − 1 do /* The elements in B> are
restored */

16 RightShiftSecond

17 return a

primitive procedures is O(|B|). Since each primitive procedure
uses a constant number of flips, the total number of flips in Split-
Even(B, `, r, a) is O(|B|).

3.4 Total number of flips
Finally, we estimate the total number of flips. Let Bd =

〈B0, B1, . . . , B2d−1−1〉 be the block sequence at Round d. For each
B j with 0 ≤ j ≤ 2d−1 − 1, the main algorithm (Algorithm 1)
calls either Split-Odd(B j, `, r, a) or Split-Even(B j, `, r, a). In
each procedure call, the number of flips is bounded by O(

∣∣∣B j

∣∣∣).
Hence, the total number of flips in the two split procedures for all
the blocks in Bd is bounded by O(n). Moreover, the main algo-
rithm shifts the whole array n times in each round. The number of
rounds is O(log n). Therefore, the total number of flips is bounded
by O(n log n). This proves Theorem 1. �

4. Concluding remarks
We studied sorting by a restricted set of reversals, and gave an

algorithm to sort any array of n numbers by five intervals with
O(n log n) flips. The number of flips is asymptotically optimal,
and improves a result by Bass and Sudborough [5].

You may feel disappointed as we used five intervals while Bass
and Sudborough [5] used only three intervals. However, their re-
sult only dealt with the case where n is odd and n mod 8 , 1.
We also know that with two intervals we cannot devise a sorting
algorithm (we omit the proof in this paper).

Looking at the trade-off in Proposition 1, we wonder if the up-
per bound of t(n,I) log |I| = O(n log n) also holds. For example,
it is not clear if there exists a sorting algorithm by reversals of
O(log n) intervals with O(n(log n)/(log log n)) flips. This is left as
an open problem.

This paper focused on the sortability question. Another line
of research would be to study the shortest number of flips to sort
an input array for a fixed set of intervals. As we indicated in the
introduction, for some sets of intervals the problem can be solved
in polynomial time, and for other sets of intervals the problem
is NP-hard. It should be interesting to classify the sets of in-
tervals for which the shortest flips can be found in polynomial
time. When the problem is NP-hard, approximation and fixed-
parameter tractability would be next steps.

References
[1] László Babai, Gábor Hetyei, William M. Kantor, Alexander Lubotzky,

and Ákos Seress. On the diameter of finite groups. In 31st Annual
Symposium on Foundations of Computer Science, St. Louis, Missouri,
USA, October 22-24, 1990, Volume II, pages 857–865. IEEE Com-
puter Society, 1990.

[2] László Babai, William M. Kantor, and A. Lubotsky. Small-diameter
Cayley graphs for finite simple groups. Eur. J. Comb., 10(6):507–522,
1989.

[3] László Babai and Ákos Seress. On the diameter of Cayley graphs of
the symmetric group. J. Comb. Theory, Ser. A, 49(1):175–179, 1988.

[4] Vineet Bafna and Pavel A. Pevzner. Genome rearrangements and sort-
ing by reversals. SIAM J. Comput., 25(2):272–289, 1996.

[5] Douglas W. Bass and Ivan Hal Sudborough. Pancake problems with
restricted prefix reversals and some corresponding Cayley networks.
J. Parallel Distributed Comput., 63(3):327–336, 2003.

[6] Piotr Berman, Sridhar Hannenhalli, and Marek Karpinski. 1.375-
approximation algorithm for sorting by reversals. In Rolf H. Möhring
and Rajeev Raman, editors, Algorithms - ESA 2002, 10th Annual Eu-
ropean Symposium, Rome, Italy, September 17-21, 2002, Proceedings,

6ⓒ 2020 Information Processing Society of Japan

Vol.2020-AL-179 No.1
2020/9/1

IPSJ SIG Technical Report

volume 2461 of Lecture Notes in Computer Science, pages 200–210.
Springer, 2002.

[7] Ahmad Biniaz, Kshitij Jain, Anna Lubiw, Zuzana Masárová, Tillmann
Miltzow, Debajyoti Mondal, Anurag Murty Naredla, Josef Tkadlec,
and Alexi Turcotte. Token swapping on trees. CoRR, abs/1903.06981,
2019.

[8] J. Adrian Bondy and Uppaluri S. R. Murty. Graph Theory. Graduate
Texts in Mathematics. Springer, 2008.

[9] Laurent Bulteau, Guillaume Fertin, and Irena Rusu. Pancake flipping
is hard. J. Comput. Syst. Sci., 81(8):1556–1574, 2015.

[10] Alberto Caprara. Sorting by reversals is difficult. In Michael S. Water-
man, editor, Proceedings of the First Annual International Conference
on Research in Computational Molecular Biology, RECOMB 1997,
Santa Fe, NM, USA, January 20-23, 1997, pages 75–83. ACM, 1997.

[11] Bhadrachalam Chitturi, William Fahle, Z. Meng, Linda Morales,
C. O. Shields Jr., Ivan Hal Sudborough, and Walter Voit. An (18/11)n
upper bound for sorting by prefix reversals. Theor. Comput. Sci.,
410(36):3372–3390, 2009.

[12] James R. Driscoll and Merrick L. Furst. Computing short generator
sequences. Inf. Comput., 72(2):117–132, 1987.

[13] Harry Dweighter, Michael R. Garey, David S. Johnson, and Shen Lin.
E2569. The American Mathematical Monthly, 84(4):296–296, 1977.

[14] Shimon Even and Oded Goldreich. The minimum-length generator
sequence problem is NP-hard. J. Algorithms, 2(3):311–313, 1981.

[15] Xuerong Feng, Z. Meng, and Ivan Hal Sudborough. Improved upper
bound for sorting by short swaps. In 7th International Symposium
on Parallel Architectures, Algorithms, and Networks (I-SPAN 2004),
10-12 May 2004, Hong Kong, SAR, China, pages 98–103. IEEE Com-
puter Society, 2004.

[16] Xuerong Feng, Ivan Hal Sudborough, and E. Lu. A fast algorithm for
sorting by short swap. In 10th IASTED International Conference on
Computational and Systems Biology (CASB 2006), 13-14 November
2006, Dallas, TX, USA, pages 62–67. ACTA Press, 2006.

[17] Johannes Fischer and Simon W. Ginzinger. A 2-approximation algo-
rithm for sorting by prefix reversals. In Gerth Stølting Brodal and
Stefano Leonardi, editors, Algorithms - ESA 2005, 13th Annual Euro-
pean Symposium, Palma de Mallorca, Spain, October 3-6, 2005, Pro-
ceedings, volume 3669 of Lecture Notes in Computer Science, pages
415–425. Springer, 2005.

[18] Merrick L. Furst, John E. Hopcroft, and Eugene M. Luks. Polynomial-
time algorithms for permutation groups. In 21st Annual Symposium on
Foundations of Computer Science, Syracuse, New York, USA, 13-15
October 1980, pages 36–41. IEEE Computer Society, 1980.

[19] William H. Gates and Christos H. Papadimitriou. Bounds for sorting
by prefix reversal. Discret. Math., 27(1):47–57, 1979.

[20] Lenwood S. Heath and John Paul C. Vergara. Sorting by short swaps.
J. Comput. Biol., 10(5):775–789, 2003.

[21] Harald A. Helfgott and Ákos Seress. On the diameter of permutation
groups. Annals of Mathematics, 179(2):611–658, 2014.

[22] Mohammad Hossain Heydari and Ivan Hal Sudborough. On the diam-
eter of the pancake network. J. Algorithms, 25(1):67–94, 1997.

[23] Mark Jerrum. The complexity of finding minimum-length generator
sequences. Theor. Comput. Sci., 36:265–289, 1985.

[24] Sheldon B. Akers Jr. and Balakrishnan Krishnamurthy. A group-
theoretic model for symmetric interconnection networks. IEEE Trans.
Computers, 38(4):555–566, 1989.

[25] Jun Kawahara, Toshiki Saitoh, and Ryo Yoshinaka. The time com-
plexity of permutation routing via matching, token swapping and a
variant. J. Graph Algorithms Appl., 23(1):29–70, 2019.

[26] D. J. Kleitman, Edvard Kramer, J. H. Conway, Stroughton Bell, and
Harry Dweighter. Elementary problems: E2564–E2569. The Ameri-
can Mathematical Monthly, 82(10):1009–1010, 1975.

[27] Donald E. Knuth. The Art of Computer Programming: Sorting and
Searching, volume 3. Addison-Wesley Publishing Company, 2nd edi-
tion, 1998.

[28] Pierre McKenzie. Permutations of bounded degree generate groups of
polynomial diameter. Inf. Process. Lett., 19(5):253–254, 1984.

[29] Tillmann Miltzow, Lothar Narins, Yoshio Okamoto, Günter Rote, An-
tonis Thomas, and Takeaki Uno. Approximation and hardness of token
swapping. In Piotr Sankowski and Christos D. Zaroliagis, editors, 24th
Annual European Symposium on Algorithms, ESA 2016, August 22-
24, 2016, Aarhus, Denmark, volume 57 of LIPIcs, pages 66:1–66:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

[30] Igor Pak. Reduced decompositions of permutations in terms of star
transpositions, generalized Catalan numbers and k-ARY trees. Dis-
cret. Math., 204(1-3):329–335, 1999.

[31] Frederick J. Portier and Theresa P. Vaughan. Whitney numbers of the
second kind for the star poset. Eur. J. Comb., 11(3):277–288, 1990.

[32] Yan Shuo Tan. On the diameter of Cayley graphs of finite groups.
University of Chicago VIGRE REU 2011 Participant Paper, 2011.

[33] Anke van Zuylen, James Bieron, Frans Schalekamp, and Gexin Yu. A

tight upper bound on the number of cyclically adjacent transpositions
to sort a permutation. Inf. Process. Lett., 116(11):718–722, 2016.

[34] Theresa Vaughan. Factoring a permutation on a broom. Journal of
Combinatorial Mathematics and Combinatorial Computing, 30:129–
148, 1999.

[35] Theresa Vaughan and Frederick Portier. An algorithm for the factor-
ization of permutations on a tree. Journal of Combinatorial Mathe-
matics and Combinatorial Computing, 18:11–31, 1995.

[36] G.A. Watterson, W.J. Ewens, T.E. Hall, and A. Morgan. The chromo-
some inversion problem. Journal of Theoretical Biology, 99(1):1–7,
1982.

[37] Katsuhisa Yamanaka, Erik D. Demaine, Takehiro Ito, Jun Kawahara,
Masashi Kiyomi, Yoshio Okamoto, Toshiki Saitoh, Akira Suzuki, Kei
Uchizawa, and Takeaki Uno. Swapping labeled tokens on graphs.
Theor. Comput. Sci., 586:81–94, 2015.

[38] Hangwei Zhuang. A new upper bound for the diameter of the Cayley
graph of a symmetric group. Undergraduate Honors Thesis, College
of William & Mary, 2018.

7ⓒ 2020 Information Processing Society of Japan

Vol.2020-AL-179 No.1
2020/9/1

