Fe BN—R e VAT L T2-12
(1989. 7. 20)
AT MERTF—AN-RILHITB ATV 17 SEEEEE

Object Migration Mechanisms to Support Updates
in Object-Oriented Databases

ENAY RN Iy AT A EARIRE
Mohamed El-Sharkawi Yahiko Kambayashi
JUNRZETHEIEHR TSR
Dept. of Computer Sci. and Communication Eng.
Faculty of Engineering
Kyushu University
Fukuoka, Japan

HH5FEL

KHL TR, # 7V x2 MEAITF— ¥ R= A TOEHFIIOVTERSE, A7V =7 MEETF— ¥
EFLCHE, A7V 2 POBEHILL D FATTLALOA TV =7 VOBE(F TV 20 MELE)
REZRINELRS RV, A7V s MK LTSEEOERH ()M » A ¥ ¥ ARBOEN,
QA YR Y AEHOKRE, QA YRV AEROEOEE, 47V 22 POEFIZLNGEEI S
FTV 2y MERIE, A VA Y AEROER, FOERHMOERS S U LROEHOEFIZ L DRk
EBF L, F— VI R—ZARAF—TIIBVT, A7V xy MEkOBREIEITWTY 7 AERDIDIIHFTET
& 2 (DEY. (S BB, (3)ENEY,

RERLTE, A7 V27 MERZZELAEHOBBIZ oW TRRD, /2, A7 V=7 MEBT— ¥
N 2 BWTHEOTE MY, A7 720 FOEBL OEHET LMEIOVWTLRET S, 5
ATV N =T a DI FTARRETHLOOMET, POPEORVFRE LRT,

Abstract

In this paper, we study updates in object-oriented databases. Due to the richness of the object-oriented data
model, update to an object may affect the object's position in the class lattice. We consider three types of
updates on objects: (1) Adding instance variables, (2) Dropping instance variables, and (3) Modifying
instance variables. An update may cause object migration. That is, the updated object may change its
current class. Object migration depends on the definition of instance variables and their domains and type
of update. Classes in a database schema are classified into three types; static, partially dynamic, and
dynamic. This classification is based on the way in which an object in a class may migrate. Actions that
should be taken by the system to complete the update are presented. Importance of studying updates is
demonstrated by specifying complexity in adding the time dimension to object-oriented databases. We give
a simple, yet efficient, procedure to determine the class of an object version.

1- Introduction

Record oriented data models such as the relational
data model are not adequate to new applications of
database systems. CAD, OIS, and AI applications
require semantically rich data modefs. Object-
oriented data model is promising to be used in such
applications. It has the fgllowing important features:
(1) Rich semantics, provide a more natural way to
model the real-world. Entities in the real-world are
objects in the model. Objects are grouped into classes,
classes are organized in a hierarchy (lattice)
representing IS-A (specialization) relationship
between classes. A class inherits all properties of its
superclass(es).

(2) Dynamic aspects of entities can be stored in the
database through associating methods to classes.

(3) It supports a uniform language to write
applications as well as data definition and
manipulation statements. Programmers need not to
know two different languages with different
characteristics to write applications and to
manipulate and define data in the database.

(4) Another advantage of the object-oriented model
over the relational model is that, we can implement
some functions of the DBMS more easier. For
example, modification of a value of some instance
variable may cause updates on other values. For
example, changing total marks of a GRAD object may
cause migration to class GOOD-GRAD, where some of
its instance variables need to be modified. In the
relational model such modification requires a trigger
mechanism which is complicated and increases some
overheads. In the object-oriented model such a
modification can be done automatically be the update
component using the method presented in this paper.

These promising features of the model initiated a
lot of research efforts (see [1] for several researches).
Several prototype database management systems
based on the model have been built (e.g. GemStone
[5], ORIONI[2]). In these systems updates are not
discussed in deep. All updates are assumed to be not
causing object migration. Updates that may cause
object migration are done in two steps: fist, the object
is deleted, second a new object is created such that it
belongs to the required class. Our objective is to
support such object migration automatically.

In this paper, we study updates on objects in
object-oriented databases. Specifically, we study the
efflect of updating an object on its position in the class
lattice. An update may affect the object such that it is
no longer satisfies conditions of its current class. We
consider three types of updates on objects: (1) Adding
instance variables, (2) Dropping instance variables,
and (3) Modifying instance variables. An update may
cause object migration. That is, the updated object
may change its current class. As the new class may be
different from the class before the update, some
actions have to be taken. Our objective is to provide a
procedure to automatically perform the migration.

The idea is explained through an example.
Consider the schema shown in Fig. 1.1t models people
in a university. The schema is represented by a rooted
directed graph. Nodes represent classes in the
schema. An edge from class C; to class C; means that
C; IS-A C;. For instance, TECH (technician) IS-A
STAFF, TA IS-A STAFF, and TA IS-A STUDENT.
The root of the graph is a system defined class called
OBJECT. Suppose that instances of class GOOD-
GRAD students are defined to be graduate students
with total marks exceeding certain value. From this,
an update that modifies this value may cause an
object to migrate from class GRAD to class GOOD-
GRAD. Such object migration has some side effects
that should be handled by the system. If class GOOD-

OBJECT
PERSON
STUDENT STAFF
GRAD
UNDERGRAD O rror O
N TECH
GOOD-GRAD

ASS-PROF FULL-PROF
Fig.1 An example schema

GRAD has some instance variables not defined in
class GRAD, values of these instance variables have
to be provided by a user, or considered null (which
sometimes may not be possible).

We give classifications of classes in a database,
with respect to how an object may migrate. This
classification is useful for users to specify what kind
of migration an object can do. For instance, a static
class is a class in which all updates should not cause
any object migration.

Now, we can see that, as an update causes object
migration the system has to take some actions. With
respect to each update causing migration, we give a
group of actions should be taken by the system (or in
cooperation with a user).

Work in [3] concentrates on schema evolution
operations like adding and dropping a class, adding
and deleting an edge between two classes, adding and
dropping properties of a class, etc. In this paper, the
objective is to study modifications on objects.

Another important requirement necessary to
support new applications is adding the time
dimension into databases. A database should store
the real-worid history as well as its current status.
Extending the relational model with the time
dimension has received a lot of research efforts [4]. It
seems, however, that the issue is not studied
extensively in context of object-oriented data model.
Due to object migration, the situation in object-
oriented databases is more complicated. Versions of
an object’s history may be distributed among several
classes. That requires new mechanisms to answer
queries accessing objects’ histories. We give a simple
mechanism to answer temporal queries. It avoids
searching all objects in classes the queried object may
be an instance of.

The paper is organized as follows. In the next
section, basic concepts of the object-oriented data
model are reviewed. In Section 3, we discuss updates
in the model and define classes of database schema.
Section 4 demonstrates importance of studying
updates by discussing complexity and necessary
requirements to add the time dimension into object-
oriented databases. Section 5 concludes the paper.

90 —

2- Basic Concepts

2-1 Objects, Instance Variables, and Method

In object-oriented data model, entities in the real-
world are considered as objects. Properties of an object
are divided into two parts, its status and its behavior.
Status of the object is captured through its instance
variables. Object behavior is encapsulated in a set of
methods associated with the object. A method is a
code that manipulates the object's status. To
manipulate an object a message should be sent to the
object. Response to a message is done by executing a
method corresponding to the message. Objects
communicate via sending messages.

2-2 Classes

Objects having similar properties are grouped
together to constitute a class. All objects belong to a
class are its instances. All instances in the class have
same instance variables and respond to same set of
messages. To provide conceptual simplicity and
efficiency at implementation level, classes have
variables called class variables. Values of class
variables are shared by all instances in the class, and
called shared-value instance variables. For example,
instances of class STUDENTS share value of the class
variable UNIVERSITY.

The class may also contain some default values for
some instance variables. These variables are called
default-valued variables. Instances that have their
default-valued instance variables are not defined take
the values stated in the class. For example, if the SEX
of a STAFF instance is not defined it takes the default
value "Male".

2-3 Class Hierarchy and Inheritance

Classes in the system are organized in a class
hierarchy. An edge between two classes represents IS-
A relationship between the two classes. For example,
an edge from class GRADUATE-STUDENT to class
STUDENT means that GRADUATE-STUDENT IS-A
STUDENT. For two classes with IS-A relationship
the higher-level class in the hierarchy is a superclass
of the lower-level class. The lower-level class is a
subclass of the higher-level class. A class inherits all
properties of its immediate superclass. It may have
also its own properties. A class may have an instance
variable with a name similar to one of its inherited
instance variables, in this case the instance variable
defined within the class overrides the inherited one.

2-4 Class Lattice

For data modeling it is necessary to extend the
class hierarchy into a class lattice. A class may have
several immediate superclasses and it inherits all of
their properties. Name conflicts between superclasses
of a class are resolved by distinguishing one of the
superclasses as a first superclass. Then, a class
inherits properties with conflict names from its first
superclass. The class lattice, also the class hierarchy,
is rooted such that there is no dangling nodes. The
root node is a system defined class called OBJECT.

2-5 Domains of Instance Variables

An instance variable gets its possible values from
instances of a class in the system. The class domain is
either one of system defined basic classes or any other
user defined class. Basic classes include INTEGER,
REAL, CHAR, and BOOLEAN. An instance variable
that gets its value from one of the basic classes is

called a basic instance variable, otherwise it is called
a complex instance variable.

Some instance variables may take any value in its
domain, some others, however, have restricted range
in which the value should exist. For example,
instance variable SALARY of class MANAGER
should satisfy the following condition SALARY =
¥ 1000000. The range R; of instance variable IViis a
predicate which may be undefined, a simple
predicate, or simple predicates connected by logical
;‘}ND/OR, A simple predicate has one of the following
orms:

(HR; =1V (gperator) K,

(2) R; = Kj = IV; = K, where K, Kj, and K, are
elements of Dj (the domain of IVj), ané Operator is
oneoftheset{=,#*,<,=, >, =}

An object-oriented schema is represented by a
directed rooted graph. Nodes in the graph correspond
to classes in the schema. There is an edge from (node
corresponds to) class Cj to class Cj means that C; IS-A
C;. The root of the graph is a system defined class
called OBJECT.

3- Updates in Object-Oriented Databases

In this section, we study updates in object-oriented
databases. Semantic richness of the object-oriented
data model necessitates such study. Objects are
grouped into classes, updating instance variables of
an object may affect the position of the object in the
class lattice. We study effects of three types of updates
on objects' positions. These updates are done over
instance variables: Adding some instance variables,
Dropping some instance variables, and Modifying
some instance variables. Updates may affect the
object's position in the class lattice as follows:

(1) Adding instance variables: the object will migrate
to one of the subclasses of its current class.

(2) Dropping instance variables: the object will
migrate to an appropriate one of the superclasses of
its current class.

(3) Modifying instance variables: the object may
migrate to another class. .

The next subsection gives classification of classes
according to effects of updates on objects. Then, in the
last subsection, we give actions that should be carried
out automatically when an update causes object
migration, These actions depend on the update type,
we give also a procedure to do object migration.

3-1Classification of Classes in Object-Oriented
Schema

Classes in an object-oriented schema are classified
into three types. The classification is based on how
objects in the class may migrate with respect to an
update. These three types are static, partially-
dynamic, and dynamic. Definitions of these classes
are given in this subsection. Before that, we need the
following definitions.

Definition. A class C; is "Contiguous to” class G, if
there is an update that makes some objects in Cj
migrate to class Cj.

According to types of updates, "Contiguous to”
relationship is classified into
generalization/specialization contiguous to (written
"GS-Contiguous to”) and modification contiguous to
(written "M-Contiguous to”).

Definition. A class Cjis "G-Contiguous to” class C;, if
an object in class Cj, due to updating some of] its
instance variables, migrates into class Cj, class Cjis a
superclass of C;.

-—9] —

Definition. A class Cjis "S-Contiguous to” class C;, if
an object in class Cj, due to updating some instance
v?éxables, migrates into class Cj, class Cj is a subclass
of C;.

Definition. A class C;j is "M-Contiguous to” class C;,
if an object in class C;, due to modifying some of its
instance variables, migrates into class Cj, class Cj is
neither a super nor subclass of C;.

Note that:

1- When class C; is "M-Contiguous to” class Cj via a
set of instance variables, for each IVj,, h=a,...m,
there should be an instance variable IVjk, k=b,...,n,
in C; such that:

f— they have same semantics, 2- defined over same

domains, and 3- migrate compatible.

Migrate compatibility, is a condition to prevent
meaningless object migrations. For instance,
modifying a person’s name does not cause migration
from class PERSON to class COMPANY.

2- If class Ci is "G-Contiguous to” class Cj, class Cj is
”S-Contiguous to” class C;.

3- "M-Contiguous to” relationship is not necessarily
symmetric. That is, if class Cj is "M-Contiguous to"
class Cj, it may not be true that Cj is "M-Contiguous
to" Cj. For example, class AéS—PROF is "M-
Contiguous to" class PROF, however, in general,
PROF is not "M-Contiguous to" ASS-PROF.

It is the case that some instance variables don’t
change their values even when the object migrates.
For these instance variables, the system,
automatically, has to use their values in the new
class. For example, when an object of class ASS-PROF
migrates to class PROF, vaiue of its ADDRESS
instance variable does not change (unless it is
modified in the update). These instance variables are
called fixed instance variables and defined as follows:
Definition. An instance variable is called fixed if its
value does not change due to object migration.
Instance variables that are not fixed are called
unfixed instance variables.

Note that:

(1) Such values could be updated by users, but not
changed automatically due to migration.

(2) When an object migrates from class C; to C;, values
of its fixed instance variables don’t change. However,
the name of a fixed instance variable in class C; may
be different from its name in class Cj. Corresponds
between these names have to be defined at schema
design.

Another issue that characterizes classes is a
stabilization point of a class.

Definition. Class Cj is the stabilization point of class
Ci, if an object in C; migrates (via one or more
ugfdates) into class Cj and then any update does not
affect its position in C]

From this definition, the trivial G-stabilization point
of class Cj is the system defined class OBJECT, the
nontrivial G-stabilization point is a class C; such that
C;j is a superclass of C; and OBJECT is the only
superclass of C;.

The S-stabilization point of class Cj is a class Cj such
that C; is a subclass of C; and there is no class Ci such
that C}, is a subclass of G;.

Note that a class may have more than one
stabilization point. If classes in a schema constitute a
class hierarchy (not a lattice), any class has at most
one nontrivial G-stabilization point. It may, however,
have several S-stabilization points.

Now, classes are classified into three types, static,
partially-dynamic, and dynamic. Definitions of these
types are as follows.

Definition. A class C; is static if there is no class Cj
such that C;j is "Contiguous to” C;.

It means that, any update on a class instance does not
cause object migration.

Definition. A class Cj is partially-dynamic if there is
no class C; such that C; is "M-Contiguous to” C;.

That is, éhere is no update that causes an object
migration to a class which is neither a super nor
subclass of C;j.

Definition. A class Ci is dynamic if all three
”Contiguous to” relationships are defined.

That is, dynamic classes are the most general classes.
A class may be "GS-Contiguous to” or "M-Contiguous
to” some other classes.

These notions can be used in schema definition to
instruct the system about what types of updates are
applicable on classes. For example, an update on a
partially-dynamic class that causes migration to
another class and the last one is neither a super nor
subclass of the first class, should be rejected
automatically by the system. Object-oriented schema
may be classified with respect to its classes types.
That is, a schema is said to be static if all its classes
are static, partially-dynamic if it contains only static
and partially-dynamic classes. A dynamic schema
contains at least one dynamic class.

3-2 Object Migration Procedures

In this subsection, we state actions that should be
taken by the system as an update causes object
migration. These actions depend on the update type.
For each type of update, actions should be taken are
gci)\ﬁr)l, and then we give procedure object migrator
(.

1- Dropping instance variables:

(1-a) The system has to check that the dropped

instance variables of object O in class C; are:

all (not a subset of) unfixed non-inherited instance

variables.

For example, it is possible to drop instance
variables of an object in class FULL-PROF to migrate
into PROF, or all instance variables defined in class
FULL-PROF and those inherited from class PROF
and not from classes STAFF, PERSON, and OBJECT.
The object will migrate into class STAFF.

We have the following three cases:

case 1-1: The dropped instance variables are non-
irfl_l(ljerited and there is a unique immediate superclass
of C;.
(1-b) the object migrates into its immediate
superclass and if there is an instance variable IV;
defined for class Cj of which O is an instance and
IV overrides IV of the superclass of Cj; after the
migration the value of IVj should be replaced by
value of IVj (the original instance variable). Same
action is also necessary in case of overridden
methods.

(1-c) Non-inherited methods should be dropped.

case 1-2: The dropped instance variables are non-

inherited and the class has several immediate

superclasses
(1-d) In this case, system has to consult the user in
order to determine the new class. For example,
after dropping non-inherited instance variables of
an object in class TA, the system has to consult the
user in order to determine if the object, after the
update, belongs to class STAFF or GOOD-GRAD.
The new class can be determined automatically if
there is some integrity constraint that prevents
the updated object to migrate into a specific
superclass. For example, the TA object after the
update is no longer a STAFF.

—92 —

case 1-3: The dropped instance variables are non-
inherited and those inherited from C,, C, is an
immediate superclass of C;. The object will migrate to
class Cy, where C is the immediate superclass of Cp.
(1-e) Instance variables inherited from any class
Ch, Ch is a subclass of Cj, and a superclass of Cj,
have to be dropped.
(1-f) If C; has other immediate superclass which is
neither a super nor a subclass of Cp, instance
variables inherited from this class has to be
dropped when migrating to Ck. Values of instance
variables inherited in %k should be provided or
considered null.
The problem here, is that if C; has some fixed
instance variables inherited from a superclass
which is not in the path of Cj. The user has to be
informed with such case.

2- Adding instance variables:
(2-a) The system has to ensure that the added
instance variables are one of those defined in one
of the subclasses of the current class. Otherwise,
the update is not correct.

(2-b) Value of any instance variable or method
which will be overridden in the new class has to be
modified.

(2-¢) When instance variables are added to object
in class Cj and the new class is Cj such that Cj has
several superclasses, values of all instance
variables defined in this set (except those of Cj)
have to be provided or assumed to be null valued.

3- Modification of instance variables
There are the following four cases:
case 3-1: The object's class before modification (C;)
and the new one (C;) have same immediate
superclass. In this case tﬂxe following actions has to be
taken:
(3-1-a) Unfixed non-inherited properties in class
C; have to be dropped from the object.
(3-1-b) Non-inherited instance variables defined in
class Cj have to be added to the object after the
update and their values should be provided or
considered to be null valued.
(3-1-¢) All inherited properties that are overridden
in class C; (Cj) and not so in class Cj (C;) have to be
modified in tfle object after the update.
(3-1-d) If C; has superclasses different from those
of Cj, values of instance variables that are
inherited from these classes should be provided or
considered to be null valued.

case 3-2: The object's class before modification (Cj)
and the new one (Cj) have different immediate
superclass.
(3-2-a) All unfixed properties defined in class C;
will be dropped from the new object.
(3-2-b) All properties defined in class Cj become
properties of the new object.

case 3-3: New class Cj is a superclass of the original
class Ci. In this case, there are two possibilities, Ci
has only one immediate superclass C; and C; has
several immediate superclasses.
In the first case, there are two situations; 1-when C;
is the unique immediate superclass of Cj, the
following actions have to be done:
(3-3-a) Unfixed non-inherited properties have to
be dropped from the object after update.
(8-3-b) Overridden inherited properties defined in
class Ci have to be modified in the new object.

the second situation when: 2- C; is not the immediate
superclass of C;, actions (3-3-a) and (3-3-b) have to be
done in addition to the following actions:
(3-3-c) Properties inherited from any class Cy such
that Cy is a subclass (and superclass) of Cj (C;) has
to be dropped.
(8-3-d) pr 81 has immediate superclass Cx which is
not a subclass of Cj, properties inherited from this
class has to be dropped. Same problem of fixed
instance variables inherited from a superclass
which is not in the path of C; will arise.

" In the second case, when C; has several immediate

superclasses,:

(3-3-e) All unfixed non-inherited properties
defined in C; and overridden properties originally
defined by a superclass Cy (&(# Cj) have to be
dropped from the object after update.

(8-8-) Values of instance variables defined in class
Cjand overridden in class C; have to be modified in
the new object.

case 3-4: New class Cj is a subclass of the original

class C;. There are two situations:

case 3-4-1: there is no class Ci such that Ck is a

superclass of Cj, the following action will be taken:
(3-4-a) Properties defined in class C; are added to
the object and values of overriddjen inherited
properties should be modified.

case 3-4-2: Cj has superclasses other than C;.

(3-4-b) is similar to (3-4-a).

(3-4-c) Properties inherited will be defined and

values of inherited instance variables from these

classes should be provided or considered to be null
valued.

(3-4-d)All overridden inherited properties from
superclasses other than C; have to be defined in the
new object. .

Now, we give a procedure, called Object Migrator,
OM, to perform updates and their side effects on the
object’s position. We need to define a directed graph
called migration graph.

Definition: A migration graph (V, E, L) is a directed
labeled graph. V is the set of nodes. Each node
corresponds to a user defined class in the schema and
rooted with the system defined class OBJECT. E is
the set of edges in the graph. Each edge has a label,
and L is the set of labels. There is an edge from class
Ci to class Cj, if some update on object in C; will cause
object migration to class C;. The set E is union of three
sets, GE, SE, and ME. t}eneralization edge (GE)
corresponds to deletion of instance variables.
Specialization edge (SE) corresponds to addition of
instance variables. Modification edge (ME)
corresponds to modification of instance variables. A
GE (SE) edge from C; to C; is labeled with instance
variables to be deleted (add’ed) from an object in C; to
move into Cj. An ME edge from C; to Cjis labeled with
a. a consists of instance variables that cause the
migration. Each instance variable is accompanied
with the range predicate to be satisfied.
The migration graph of the example schema is shown
in Fig. 2 (for clarity labels are omitted).
Procedure OM is as follows:
PROCEDURE OM
fI‘NPUT: An update has one of the following three
orms:

ADD(O,IVy), DROP(O,IVy), MODIFY(O,IVy),

where, O is the object to be updated and IV are

updated instance variables.
METHOD:

Case update type:

if DROP(O,IVy)=

Compare labels of GE edges originating
from the class of object O with IVy;
ifIVq don’t match any label then send an
error message;
else determine the new class and do
actions (1-a) to (1-) ;
if ADD(O,IVy)=
Compare (iabels of SE edges originating
from the class of object O with IV;
ifIVq don’t match any label then send an
error message;
else determine the new class and do
actions (2-a) to (2-¢) ;
if MODIFY(O,IVy)=
Compare labeis of ME edges originating
from the class of object O with IV;
if IVq don’t match any label then send an

error message;
else determine the new class and do
actions:

(3-1-a) to (3-1-d) or

(3-2-a) and (3-2-b) or
(3-3-a) and (3-3-b) or
(3-3-a) to (3-3-d) or
(3-3-e) and (3-3-) or
(3-4-a)

(3-4-b) to (3-4-d);

O onmer
A

O PERSON
/l:‘\‘\
VA
/7 °.
/ -\.\
STUDENT F .

A
Q d STAFF
rd ,.1 A I

END OM;

7 ’ AI\\
<% ¥ Grap Z NN
e R
I EAN
UNDERGRAD 'A I :

[
1!
e
v,‘), i ,/:4}'\\\ TECH

N B .\
O LSO puLL
B

/-
GOOD-GRAD V- PROF

assProF (.. _,O

...... - GE =~====- SE —=.=.— ME
Fig. 2 Migration graph of the example schema

Notes:

In the previous discussions, we concentrate on
updates on the object, itself, that causes migration. It
is also the case that an update to an object may cause
another object to migrate. This is caused by updating
an object that corresponds to a complex instance
variable of another object.

— 94 -

Effects of schema evolution operations, discussed
in [3], on instances in the database may be considered
as objects migration and handled in this framework.

Other operations like SPLIT of an object into
several objects or MERGE of several objects to
constitute one big object can also be handled in this
framework.

We can use this framework to provide users with
helpirg instructions to supply values of some instance
variables in order to complete the update. Usually,
the user may not be aware of the side effects of the
update. It can, also, be used to check if an update
matches the class type.

Procedure OM is a generalization of some similar
problems. For instance, in a CAD system, the
database is divided into private, group, and public
databases. A design object may migrate from private
database into group database, and then to public
database. For example, if logic circuit simulation has
been completed the design object moves into group
database.

4- Temporal Object-Oriented Databases

Some applications require adding the time
dimension to databases in order to access the history,
not only the current status, of the real-world. Such
a&glications include medical information systems and
office information systems. Several research efforts
have been devoted to study addition of the time
dimension into relational databases ([4]). It seems
that adding the time dimension to object-oriented
databases have not been extensively studied. The
semantic richness of the object-oriented data model
makes it inappropriate to use techniques and methods
applied to create temporal relational databases in
creating temporal object-oriented databases. In
temporal databases, object’s history has to be stored,
users may access that history. Each version in the
object’s history has same object identity. Enhancing
the performance of query processing is an important
issue to implement temporal databases. As seen from
the previous section, updating an object may cause
object migration, thus, versions of the object’s history
may belong to different classes. This complicates
enhancement of system performance. In this section,
we give a simple, yet ef%cient, approach to improve
system response. The problem arises from the fact
that an object’s history is distributed among several
classesin the schema.

From the previous analysis, we notice that classes
of versions in an object’s history can be specified by
the set of classes between the class of the initial
version and all of its stabilization points. The very
intuitive approach to answer a user’s query is to
search the set of all objects in the initial version of the
queried object, if it is not found search one of the next
contiguous classes. This process continuous until the
required object is found, or cannot find it after visiting
all stabilization points of its class a message is sent to
the user that the object cannot be found. This
approach is very much time consuming. If the object
has been updated several times, it is necessary to
search instances of several classes, in some cases the
search is unnecessarily performed. In this section, we
present a simple procedure and a data structure used
to improve query response.

The data structure we use is a table called
UPDATES. It contains information about all updates
performed on the objects in the database. It has the
following attributes: Update#, OBJECT, OBJECT-
CLASS, TIME, and DEL-INDICATOR. Update# is a
unique identifier for each update. OBJECT is the

object that is updated, OBJECT-CLASS is its class
after the update. TIME is the time at which the
update has occurred. DEL-INDICATOR is used to
mark updates that are deletion of objects. All updates
over an object may be grouped together and sorted
chronologically.-This table can be implemented as a
meta-class and some methods can be defined to get
some information about the real-world evolution.

This table is used to answer queries. Given a user’s
query that accesses an object O at specific point of
time T. The table is consulted to determine the class
to which the version of the object, created at time less
than or equal to T, belongs. When the class is
recognized, only instances of this class should be
searched to find object O. The following procedure
process such a query.

PROCEDURE ANSWER-TEMPORAL-QUERIES
INPUT: A query has the form GET(O,T), where O is
an object and T is a specific point of time.
METHOD: 1- Check that there is an update over O in
UPDATES, if there is no such an update, O
belongs to its initial class C;. Search instances
of C; for O.
2- Check that object O has not been deleted
before time T. This is done by looking for a
tuple in the O’s set of tlgﬂes with DEL-
INDICATOR =1 and TIME = T.
3- Find the update ur performed on O such that
uf{TIME) = T or uf(TIME) < T and it is the
maximum among time of all updates performed
on O before time T.
4- The class of object O at time T is the value in
OBJECT-CLASS attribute of update uy.
5- Search instances of class uf{CLASS) for
object O updated at time ugTIME).
6- Return result.
7- END ANSWER-TEMPORAL-QUERIES

This procedure can, very easily, be extended to
answer ?ueries accessing the object’s history in some
period of time or accessing the whole object’s history.

In this method, we introduced the data structure
UPDATES into the system. We can handle the
problem without adding such a data structure,
keeping the system homogeneous. Since we know for
each class the set of its stabilization points, a set of
instance variables correspond to stabilization points
can be defined. These instance variables are not
inherited by any subclass of the class. They are
instance variables defined, only, for instances in this
class. The approach is as follows.

(1) Associate with each class a set n (n is the
number of classes in the path from this class to
each stabilization point) of system defined
instance variables called CLASS-HISTORY.

(2) Each CLASS-HISTORY is an ordered pair
(Class-Name, Start, End), where Class-Name is
name of a class in n, Start is the time at which a
version of the object created in this class, End is
time at which the version in Class-Name is
updated to create a version in another class in n.
(3) At the beginning an object has no values for
CLASS-HISTORY instance variables except for
the initial class. When an update that causes
migration occurs on an object, 1t modifies CLASS-
HISTORY in its initial class. This is done by
adding the new class name, and initiating its Start
to be the update time. End of the previous class is
set to be the update time.

(4) To answer a query Q(O,Ty), the initial class of
O is visited and valles of CLASS-HISTORY are

checked to find the period in which Ty lies. When
this period is found, the version’s class of O is
identified.

Note that:

(1) For some classes in the stabilization points of a
class, their may be more than one period. This due to
cycles in the migration graph.

(2) If we use this approach, initial class of an object
should be visited each time the object migrates. This
can be done as an action automatically carried out as

‘a result of object migration. Procedure OM can be

modified to implement this action.

Another problem which is specific to object-
oriented databases is that an update, which is not
applied on an object, may create a version of this
object. There are two cases of such type of updates.

(1) Updating a shared-value and/or a default-
valued instance variable in a class requires creating
new versions of all instances of the class, when
updating a shared-value instance variable and/or all
instances that consider the default value of a default-
valued instance variable. :

(2) Update to an object O’ may create two versions,
one of O’, and the other of object O that has O’ as one
of its (complex) instance variables.
These cases are handled as follows:

(1) It is not efficient to create versions of all objects

affected by updating shared-value and default-valued
instance variables. Instead, we associate with the
class an array that stores updates of these instance
variables and time of update. Versions of objects are
only created when a query is submitted that requires
this creation. Synchronization process is necessary to
determine temporally matching default or shared-
valued versions.
Example: Suppose that there is a shared-value
instance variable UNIVERSITY = ”Kyushu
Institute” is defined in'class STAFF. This value is
propagated to instances of all subclasses of STAFF.
Then the UNIVERSITY value is updated twice. At
time t; the value changed to be "Kyushu Imperial
University” and at time ty changed to be "Kyushu
University”. A query to get the UNIVERSITY value
of Prof. Yamada at time t; is submitted. The answer is
given by synchronizing t; with one of the periods 0-t1,
t1-t2, and t3-NOW to determine the appropriate value
of UNIVERSITY.

(2) Suppose that a query is submitted that accesses
version of object O at time Ty. O has object O’ as one of
its instance variables. This query is splitted into two
queries. One is accessing the version of object O at
time Tq and the other is accessing the version of object
O’ at the same time. If the query is accessing versions
of O at some period of time T, L to Tg, or the whole
history of O, time synchronization of ~versions of O
with versions of O’ is necessary. Note that, if O’ has
some complex instance variable the query has to be
splitted into three queries. In general, if this nesting
level is n the original query should be splitted into n
queries each accessing versions of one of the nested
objects. Synchronization between the n histories has
to be done.

Another issue we need to discuss is application of
methods on objects’ histories. As discussed in previous
section, a method which is applicable on an object,
may become no longer applicable after updating the
object. In temporal databases, if a method is applied
to an object’s version at a specific point of time, the
method may not be applicable and an error message is
sent to the user. If, however, the method is applied to
an object’s versions at some period of time, some
versions may execute the method and some others

—95—

may not accept it since it is not defined. Response to
the method may be different in two versions of an
object due to name overriding. The user has to be
acknowledged of such situations.

There are two more issues we need to point out.
First, the type of time (either transaction time or
valid time [7]) is immaterial in the above discussion.
Transaction time is the time at which information
was stored in the database. Valid time is the time at
which the real-world was changed. Another notion
pointed out in [7] is that some category of temporal
databases permits updating the past history. In
context of object-oriented data model, updating the
past of an object may have several side effects. For
example, it may be necessary to reexecute all changes
done after the modified update, which may cause
changes in the object’s current position in the class
lattice. Second issue we need to point out is that
schema modifications as discussed in [3] affect objects’
histories. For example, as a result of creating a new
class some objects in an existing class may migrate to
the new one, creating versions in their histories.
Effects of schema modifications on object migration
are left for future detailed work on temporal object-
oriented databases.

From the above discussions, it is observed that the
simple the schema type, the few and simple
requirements are necessary. For example, in static
schema all versions of an object’s history belong to
the initial object’s class.

5- Conclusion

The object-oriented data model has several
promising features that make it suitable for new and
nonstandard applications. Due to its semantic
richness, it need to be extensively studied. In this
paper, we studied updates in such data model. An
update may affect the position of an object in the class
lattice. These effects have been studied and classes in
an object-oriented schema are classified according to
object migration. Functions required from the DBMS
when an update occurs are studied in each class of
schema. Next, importance of our study is
demonstrated by studying addition of the time
dimension to object-oriented databases. We, also, give
a simple, yet efficient, procedure to answer queries in
TOODBs. For future research, we think that this
work is a first step to study several issues of object-
oriented databases. Schema design, TOODBs, and
concurrency control are among these issues. For
TOODBs, we need to consider schema evolution
operations as well as updates.

Acknowledgement

We would like to thank Mr. M. Arikawa and Mrs.
H. Xu for helpful disscussions.

References

[1] ACM Transactions on Office Information Systems,
Vol.5, No.1, Jan. 1987.

[2] Banerjee, J., et al. “Data Model Issues for Object-
Oriented Applications”, in [1], pp. 3-26.

[3] Banerjee, J., et al. “Semantics and
Implementation of Schema Evolution in Object-
Oriented Databases,” Proc. ACMSIGMOD, 1987,
pp 311-322.

[4] Mckenzi, E. “Bibliography: Temporal Databases,”
ACM SIGMOD Record, Vol. 15, No. 4, Dec. 1986,
pp. 40-52.

[6] Maier, D., et al. “Development of an Object-
Oriented DBMS”, Proc. OOPSLA, 1986, pp. 472-
482.

[6] Stefik, M.; Bobrow, D.G. “Object-Oriented
Programming: Themes and Variations,” Al
Magazine, Jan. 1986, pp. 40-62.

[71Snodgrass, R; Ahn, I. “A Taxonomy of Time in
Databases,” Proc. of ACMSIGMOD, 1985, pp.236-
246.

-—96 —

