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Abstract: This paper describes a method to optimize storage cache mechanisms using machine learning techniques. It is difficult 
for conventional algorithms to understand complicated parallel IO patterns. Recent research papers do not highlight the possibility 
for the use of machine learning techniques in the storage cache optimization very often. Our approach suggests applying LSTM 
networks for this purpose. We also apply different data manipulations and preprocessing techniques to understand how it is possible 
to use the result of IO classification and improve IO performance. This paper focuses on the method to detect changes of IO patterns 
to change the cache configurations optimally. Further investigation of the application of this paper results in the design of an 
effective caching algorithm for storage systems. 
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1. Introduction  

In the previous years there have been many different articles 

published regarding the use of LSTM networks in the different 

areas of science [1-9]. But there were very few attempts to use this 

technique for the cache related prediction. 00 In this work we show 

that this technique is not only possible to use, but also brings 

fruitful results. Cache simulation takes quite a long time and is not 

fast enough to be used in the runtime environment. While 

determining the best cache size ratio policy needs few such 

simulations with different configurations to be run together and 

evaluated in parallel. The method we propose creates the basis for 

the prediction of the change of the optimal cache policy. With this 

method system takes much less time to produce the decision 

regarding the best cache size percentage during the runtime 

operation. Given the circumstances, availability of the storage 

resources may be changed according to the optimal solution 

calculated with the help of LSTM network running in parallel to 

the system and determining the best cache policy accordingly. 

LSTM network usage allows the cache simulation to be speed up 

with minor accuracy change in the cache hit ratio. Especially on 

the large volumes of data.  

We thus focus on a generic problem to predict the points at which 

the optimal cache policy has changed and include only temporal, 

spatial and volume metrics of the traces for the prediction.  

In this paper, we address the following questions:  

What is the right cache size ratio for the optimal performance of 

the system at a each point of time? 

Can the machine learning and LSTM network in particular be 

faster in the decision making of determining the change of the 

optimal parameters in the runtime environment? 

We examine arc cache algorithm and four different cache size 

ratios with few different kinds of IO traces.  

For high load systems, we can apply the proposed approach to 

intelligent cache size management. 

Fig. 1 shows the overall flow of our approach. Our goal is to 

determine optimal cache size strategy and to propose a model that 

can later be used to predict the change of the optimal cache size 

ratio in the system faster than it is done by the simulation. In this 
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Fig. 1 Structure of the workflow 

 

paper, we run the simulation on IO traces with different settings,  

while measuring the simulation results at specific points of the 

trace. Afterwards we split the IO trace into chunks determined by 

the points of measurement and use these chunks in the training of 

LSTM model to determine the changing point. 

We can include this model in the system and use it in runtime for 

monitoring of the optimal use of cache resources.  

 

2. Related Work 

Many recent papers describe some different approaches for 

caching [8-11]. Few of them focus on the caching strategies in the 

network infrastructures [13-16]. Others tried to use machine 

learning techniques in prefetchers [20-21]. And few proposed 

approaches for use of LSTM networks in caching [12][14]. Also 

there are some papers in the IO workflow analysis.  

In this paper we analyse the workflow of a MSR Cambridge trace, 

and its hm0 (Hardware Monitoring) server in particular in terms of 

optimal caching ratio policy change. We have considered other 

approaches of workflow analysis, though. 

For example, the recent work on IO workflow analysis is focusing 

on the pattern identification of different traces. [17] In this work, 

first step is to calculate a set of 20 descriptive features of each of 

the trace parts of 8000 offset entries each. The resulting “feature” 

dataset is then evaluated by means of k-means algorithm and 
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modified version of backward elimination for determining the 

most descriptive features of the dataset. The dataset of features is 

repeatedly clustered while determining the silhouette value of each 

feature and so the contribution of this particular feature to the 

clustering process. The feature which contributes least is then 

eliminated from the dataset to repeat the process again until no 

other features left. This kind of backward elimination algorithm is 

repeated with different number of clusters. In this way, the set of 

features and number of clusters with best silhouette value is 

determined. Then the resulting feature dataset is evaluated by 

means of 9 other clustering algorithms to determine the best 

algorithm suitable for the task. The resulting subsets of features in 

each cluster gives an idea about the structure of IO patterns. After 

that the tree structure is constructed with the feature value as the 

determining point for the IO pattern definition. After this the tree 

is evaluated on the dataset to determine the speed of the tree 

execution in the IO pattern detection. And it gives much faster 

result than the Naïve Bayes, K-nearest neighbours, SVM or 

Logistic Regression, when used for the same purpose. 

Our approach also analyses IO trace pattern, but in terms of cache 

simulation, which in fact may be considered as a kind of feature of 

the trace. And base on this “feature” of the trace our method 

determines the change of the optimal point of the cache size ratio. 

Regarding the works in the field of LSTM applications for 

caching process, DEEPCACHE [12] shows the ability of LSTM 

based models to predict the popularity of content objects. They 

evaluated it using two synthetic datasets under multiple settings 

out of which one tries to emulate realistic workloads. This work is 

using the seq2seq modelling to predict the future object popularity. 

They implement it with the help of LSTM Encoder-Decoder model. 

The way how it works is that the DEEPCACHE algorithm first 

predicts the objects with the help of LSTM model, and then merges 

the fake requests for those objects with existing cache replacement 

algorithms such as LRU or k-LRU. [12] 

In our case we do not have the need for the Encoder-Decoder 

model as the possible outputs are only 0 and 1, optimal cache 

policy changed and optimal cache policy stayed the same, 

respectively.  

Another paper which considered LSTM applicable for making 

caching more effective [14] is considering the cacheability of the 

data as the prediction target in their research. They consider this 

under the conditions of using WHD (windows hit density) a 

modified version of LHD (least hit density) instead of LRU as their 

eviction policy. WHD uses total access times in a window to 

replace hit probability based on probability model and uses the 

length of window to replace the expected time in cache. The output 

of the LSTM layer is designed to be passed into a hidden layer with 

softmax function, which finally outputs the cacheability of each 

data in the [0, 1] interval. And the model is trained by minimizing 

the cross-entropy error between the output of the whole network 

and the true value. The LSTM then performs classification, and the 

K highest cacheability items are chosen to be cacheable.0  

In our case we use sigmoid function and the binary_crossentropy 

for training and prediction if the current cache size ratio policy is 

optimal or not.  

Few other studies discuss the application of LSTM networks in 

the hardware prefetchers. These papers focus on the determining 

the PC (program counter) of each entry in the trace together with 

the offset. In our case the entry to LSTM network is the trace of 

100 records in one row. Each record has the Timestamp, 

DiskNumber, Type, Offset, Size and ResponseTime properties in 

its raw state to determine the changing point of the optimal cache 

policy change. 

 

3. Solution Design 

  In this paper, we applied LSTM network to extract the feature 

from IO traces. The purpose of our method is to detect the point 

where the optimal cache policy and configuration changes. The 

target performance factor is cache hit ratio. For the data 

preparation, we used a cache simulator to calculate the cache hit 

ratio of the IO trace files with multiple cache configuration. In the 

next step, gathering the set of IO trace and the cache simulation 

result to detect the changing point. If the cache hit ratio decreases 

rapidly with a certain configuration while the hit ratio with the 

other configuration increase at the certain point, we can define the 

point as changing point. The proposed design applies this detecting 

mechanism to multiple IO traces to generate multiple training 

datasets. The training model takes IO traces as the input and the 

binary value (changing point or not) as the output. Using the 

prediction model, the method can detect the changing point in the 

given IO trace file. During the normal operation of storage systems, 

when the prediction model finds a changing point, the system can 

start to find the process to select a different cache configuration. 

Our prediction model is faster than running the cache simulation 

so that we can accelerate the process to daily routine of the 

performance tuning of storage systems.  

3.1 Using LSTM to detect changing points in IO traces 

As there are only two options in the inference process: changing 

point or not, this problem can be treated as a binary classification 

which is simpler than the multiclassification in low-level cache 

system. In this paper we analyze some statistical properties of 

accessing data including response time, read-write ratio and the 

size of data. The input of LSTM prediction model we proposed are 

based on these statistical properties. 

3.2 Stateful vs stateless LSTM 

In our research we applied both stateful and stateless LSTM 

versions to determine which one would give better results on our 

dataset.  

The main difference between stateful and stateless LSTM is that 

stateless LSTM puts zeros to all inputs after one batch is processed. 

Stateful LSTM in its turn saves the output of the states of the 

previous batch to be fed into the next batch. So generally the 

stateful LSTM is the LSTM which tries to take into account whole 

sequence of the training dataset, while stateless one only takes into 

account the sequence inside one batch. 

3.3 Software 

We use the Keras on TensorFlow for the LSTM model training 

and prediction, as well as Numpy, Sklearn, Pandas libraries for the 

dataset preprocessing. 
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For the cache simulation purposes we have modified the 

following open-source project. [22] This simulator is capable of 

simulating the cache by the arc strategy. The output of cache 

simulation contains following fields: Level of the cache, Total 

References, Total Reads, Total Writes, Page Read Hit, Page Read 

Miss, Block Read Hit, Block Read Miss, Page Write Hit, Page 

Write Miss, Block Evict, Cold2Cold, Cold2Hot, DirtyPage, 

SeqEviction, LessSeqEviction, Total Seq Evicted Dirty Pages, 

Total Non Seq Evicted Dirty Pages, Total Evicted Clean Pages, 

Real Total Evicted pages, Page Read Cache Hit Ratio, Page Write 

Cache Hit Ratio, Total Cache Hit Ratio. Our modification was to 

make the simulator output these statistics after some specified 

number of lines pointed in the trace, and not only after all trace was 

processed. 

 

4. Details of implementation 

We use MSR Cambridge dataset for analysis. The dataset 

contains following properties of each trace entry: Timestamp, 

Hostname, DiskNumber, Type, Offset, Size, ResponseTime. 

For analysis we do not normalize the data, do not apply any 

clusterization technique or any other preprocessing, except 

excluding the Hostname from the analysis and converting the 

“Write” or “Read” Type column into 0 or 1 respectively to prevent 

the need for language processing on this matter.  

According to the obtained results given that the LSTM-based 

model is to be implemented as part of an IO system eventually, we 

should not ignore the computational overhead of splitting and pre-

processing the parts of the IO trace. Second issue is that LSTM 

network itself does not accept arbitrary number of columns for 

processing. To the best of our knowledge it breaks at 

approximately 3000 columns representing a part of the trace. To 

address this problem, we split the trace into small chunks of the 

size 100 which we transpose and feed into the network. With this 

method,  the network still gives quite good results while the 

number of the measurements is still sufficiently low. 

The cache percent size is determined from the minimum and 

maximum number of the offset, which is considered the overall 

size of the volume. From that we calculate the 1, 2, 4 and 8 percent 

size of the cache, and generate configuration file for the simulator 

with the obtained values as the size of the cache. Using each of 

these configurations we run cache simulations. After that we 

determine the maximum local cache hit ratio, at each point of 

measurement. The point of measurement can be variable, but we 

stopped at the number 100, due to difficulties in processing bigger 

chunks of data using LSTM network. 

As the Cache Hit Ratio in the output of the simulator is calculated 

based on the whole simulation done before, to calculate the value 

of Local Cache Hit Ratio we use the outputs of the simulator in the 

neighbouring steps of measurement (in our case 100 lines of the 

trace). 

The formula for the definition of the local cache hit ratio is as 

follows: 

LCHR =
((PWH1 − PWH0) + (PRH1 − PRH0))

((TW1 − TW0) + (TR1 − TR0))
, where  

Table 1 LCHR explanation of symbols in formula 

LCHR  local cache hit ratio (at the point of measurement) 

PWH  page write hit 

PRH  page read hit 

TR  total reads 

TW  total writes 

…1  of current measurement point 

…0  of previous measurement point 

So, if 1% cache size ratio policy gives best cache hit ratio in the 

first 100 records, but in the next 100 records the best cache hit 

ratio will be obtained by applying the cache size ratio policy of 

2%, then the latter row of 100 records will be marked as changing 

point. And so on. Like it is shown in Table 2. 

 

 

Table 2 Cache size ratio optimal policy changing point definition 
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100 12 18 24 40 8 0 

200 12 18 24 40 8 1 

300 12 12 12 12 1 0 

400 12 15 16 16 4 0 

500 3 14 14 14 2 0 

600 3 14 14 14 2 1 

 

4.1 Details of LSTM network implementation.  

We evaluated different types of LSTM network with different 

parameters in use in our approach. First, we tried to configure the 

network with the categories in mind, and so the classification issue 

was the initial point. But, in the end the binary crossentropy and 

binary accuracy were chosen as the training parameters. As for the 

batch size we keep it at the rate of 1, as it gives better accuracy and 

also is easier to find a multiplicator for the higher degree in case of 

stateful LSTM network. For now, stateless and stateful LSTM 

networks give comparable results with maximum accuracy value 

of 61,3%.   

 

Fig. 2 Prediction process 

 

As expected, the proposed method requires the smallest amount 

of time to complete the task of determining if the system still works 

with the optimum cache strategy in mind. The advantage in 

running time obviously comes from the features of LSTM network. 
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When executed in the real system, the proposed approach would 

make the performance estimations of the cache policy without 

actually running the cache simulation itself.  

Just for notice, the cache simulation program takes hours to run 

in the best case scenario, taking a lot of system resources, with the 

trained LSTM network optimal cache size ratio changing point is 

calculated in few minutes maximum. 

The network structure is still in the process of tuning so we 

suppose that such accuracy is not the limit of this approach.  

5. Evaluation 

 

This section describes the result of the experiment with our 

proposed model. The input dataset includes the 600 columns (100 

results in one row, each having 6 fields: Timestamp, DiskNumber, 

Type, Offset, Size, ResponseTime.) and the label defining if cache 

size policy is optimal at the time of processing these 100 trace lines 

or not. 

For the configurations, the following settings were used: one 

layer of LSTM nodes with the number of hidden units of 100, and 

the Dense layer of 1 node (as there are only 0s and 1s in label). The 

LSTM layer has the tanh activation function, The Dense layer has 

sigmoid activation function. Loss function for the model 

compilation is binary_crossentropy. We used Adam optimizer for 

network training. Batch size is determined by the type of the model 

in question. If the model is stateful then the batch_input_shape is 

a tuple (1, size_of_one_row,1). If the model is stateless, then the 

batch_size is 1. The split to test and train data is performed using 

the train_text_split function of the sklearn.model.selection module. 

Test size is 0.2. 

For the stateful model we used ResetStatesCallback to reset the 

states after each sequence of 600 fields processed (number of 

columns) and send it to next batch.0 

We have run the model on two datasets. For now results are as it 

is shown on Fig. 3. The hm0, 1 part contains 2000 rows 600 fields 

each. The training accuracy for the stateful and stateless models 

are approximately the same level - 0.808. As a baseline we took 

the mean value to be sure that the model does not always output 

the same number. Mean for this case is 0.7795. For the case with 

the bigger chunk of data (hm0 39934 rows, 600 columns) the 

accuracy is approximately 0.613, while having mean of 0.6177. 

We suppose that the model training could go better if the size of 

the LSTM layer was bigger compared to the number of the fields 

in one row. But trials on the network with a higher number of 

hidden nodes, for example, 876, have not succeeded for the 

stateless model on the dataset of hm0. Notice: 

 

Fig. 3 Experimental results 

 

stateless model needs less resources to train, so if Python kernel 

fails at stateless model than running the model with stateful 

settings is pointless. Possible solutions for this trouble would be to 

output the results of a simulation more often than each 100 line of 

the trace, and so to split the data and train the LSTM network on 

the dataset with fewer columns. 

Table 3 Software and hardware specifications 

Python  3.7.7 

Tensorflow 2.1.0  

tensorflow-gpu 2.1.0  

cuda toolkit 10.1.243_h74a9793_0  

CUDA version  10.2  

 

5.1 Discussion 

As for the effectiveness of this approach, the current structure of 

the network and the data chunk size may be changed according to 

the needs of the system. There is a possibility that adding different 

datasets into the network would diversify the applicability of this 

method. It is necessary to train the model with various types of 

training data sets and we are currently working on extra training 

cases.  

Possible improvements would include trials to build the network 

with different cell structure like GRU or RUM [23] and applying 

the error and outlier detection technologies for the rarely 

happening changing points in the cache size ratio policy. [25-26] 

 

6. Conclusion and Future Work 

In this paper we have proposed the optimal caching size ratio 

change problem. We showed that the changing point of the optimal 

cache size ratio of the system can be successfully determined by 

means of LSTM network algorithm. The result shows that the 

proposed method takes at least 2 times less time than the cache 

simulation itself. The future work is applying the proposed method 

to real storage systems to know the actual advantages on real 

workloads.  
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