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スペクトル領域上の雑音摂動法における雑音抑圧手法

黄　緒平1,a) 川島　龍太2,b)

概要：近年，ウェアラブル IoT機器に多様なセンサーが内蔵され，安価でかつ高精度に生体計測できるよ

うになった．一方，脈拍等センシティブな生体情報の悪用が社会問題となっている．特に，生体情報から

持病の推定や心拍数情報を用いたユビキタス IoTデバイスの生体認証システムへの攻撃等が挙げられる．

時系列データへの差分プライバシーにおける雑音摂動が有効であるが，複数のプロバイダーによるデータ

収集において雑音が大きくなり，誤差を引き起こす問題がある．本研究は，生体情報の時系列データを対

象に，整数離散コサイン変換を用いたスペクトル領域上の雑音摂動メカニズムによって雑音を生成する手

法を提案する．評価手法として，スペクトル領域 Gaussianノイズ及び Laplaceノイズを時間領域にて生

成し，雑音摂動後の脈拍データを用いてストレス推定を行い，生データによる計算結果と比較する．

キーワード：雑音摂動, 雑音抑制, スペクトル領域, IoT生体情報

1. Introduction

1.1 Background

Numerous companies collect personal information for

medical treatment or data analysis in hospitals or re-

search institutes, including personal sensitive information

and bio-information. Even though in most of situations,

these data are maintained, restored, and shared among

instituted, with benefit as a significant medical reference,

are valuable and publicly available for research purpose.

Nevertheless, since most of these data are sensitive per-

sonal data, malicious users may abuse these data without

the permission of the patients, or sell these consumer in-

formation to the third party. Thus, policies or technology

solutions are required to preserve the privacy of individ-

uals who contributed these data from being specified by

hack or statistical methods.

Meanwhile, with the highly developed IoT devices and

data transmitting technology, personal bio-information is

available ubiquitously and conveniently, and shared by

wearable IoT devices easily, e.g. smart watch, IoT band,

portable devices with sensors for bio-information for the
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purposes of fit, health care, daily management, etc. Some

of these devices collect bio-information precisely with vari-

able bio-sensors. Thus, these IoT devices has been an al-

ternative solution to provide an indications of health as

a reference. These data include GPS, heart rate, sleep

stages, δ oxy-Hb (a.u) underneath the skin, breath, blood

pressure, etc. Because the convenience to get data au-

tomatically within a certain time interval, and it is free

burden for measure, this devices are widely used.

However, with the development of IoT authentication,

the dynamic heart rate collected by Nymi band can be

used for authentication to unlock ubiquitous IoT de-

vices [1]. the authentication is convenient, since the bio-

information the specific individuals can be used as the key

or password. However, there is a risk of abuse and endan-

ger the authentication system that in work [1], a simula-

tion for attack successes by representing heat beat from

ECG monitor for impersonation, which means the system

is not reliable, and solutions are required to protect the

data from abuse.

There are also other conditions indicate the risk to dis-

close the daily personal information to the third party. For

example, daily lifelog is available by analyzing the electric

power [2], and chronic disease can be estimated by heart

rate variability (HRV) [1], which should be protected since

remote on-line clinic has becoming popular.

From the reasons of above, it is risky to supply of raw
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data, and there are requirements to preserve the confiden-

tiality and the privacy utility of bio-information, as well

as ensuring the usability of the original data.

1.2 Conventional works and motivation

There are three main solutions to preserve the privacy

of sensitive data:

I. Secure computation Encrypted statistics for dis-

tributed data are proposed [3], [4], [5], which is also

called privacy-preserving data mining (PPDM), e.g.

logistic regression, linear regression by homonmor-

phic encryption. The advantage is that the security is

guaranteed and it is useful for calculation and analysis

with data in distributed institutes. However, the dis-

advantages are (1) data sharing protocol is required

for secure multi-parties computation; and (2) high

computing performance is necessary, since homomor-

phic encryption may enlarge a 1 bit data into 1MB.

II. Data anonymization This solution mainly focus

on removing personally identifiable information by

suppression or generalization using

k-anonymity, l-diversity, t-closeness [6]. There is

a trade-off between confidential and data usability,

since the irreversible data loss for anonymization pro-

cess. Another point is that it depends on the back-

ground knowledge of an adversay that the attackers

have for assumptions and inferences to specify a in-

dividual.

III. Differential privacy This alternative solution

guarantee the confidentiality by adding noise with

sensibility, which is corresponding to queries or oper-

ations [7], [8], [10], [11], [12], ?. Noise is generated by

a particular mechanism considering both of security

utility and usability. Security is guaranteed by utility

ε.

In work [2], Gaussian noise was added to the electric

power. We mainly focus on noise perturbation consider-

ing the concept of local differential privacy in this paper.

In case of protecting the security of distributed data, by

perturbing noises to every time series data collected from

multiple providers, deterioration of the accumulated data

becomes large, which may influence the analysis results.

Thus, algorithm to generate a noise with low distortion

with high usability, and high utility are necessary.

Differential privacy solutions in the frequency have been

proposed [11], [12], using FFT and Haar wavelet trans-

form, however the distortion, and the uncomputable to

sparse and negative data are still challenging.

1.3 Our contribution

In this work, we propose a noise generation mechanism

based on spectral differential privacy using integer DCT to

transform data from the time domain into the frequency

domain, and perturb the noise into bio-metric domain, in-

cluding voice and heart rate, in order to ensure both of

the privacy utility and usability. Laplace noise in terms

of the proposed mechanism are generated and perturbed

in the frequency domain. Distortion has been evaluated

and a comparison between Gaussian noise is also given to

verify the effectiveness of the distortion suppression.

This paper is organized as follows. The approaches

taken here and those of previous studies are discussed in

Section 1. Sections 2 discusses spectral analysis for stress

estimation and health care using IoT data. Section 3 de-

scribes the proposed method and implementation in de-

tail. Section 4 describes experimental evaluation results.

We conclude the paper in Section 5.

2. Spectral analysis for stress estimation

2.1 Dataset

Heart rate x(t) (x, t ∈ R, [bpm]) in time sequence is

collected by Fitbit Charge 2 during 7/3-7/12, 7/28-7/30,

2018 with 5 participants ages around 20’s (female and

male), 30’s (female) and 50’s (male). Time t is with an

interval of 1 minute. RRI (RR Interval) is calculated by
60
x(t) ∗ 1000 (ms).

2.2 Heart rate variables for healthcare

HRV is a reference for healthcare, including improving

the sleep quality, and for advices for daily fitness and abil-

ity. Figure 1 plots an example of HRV corresponding to

daily activities. The data was collected by Fitbit Charge

2 on 29, June 2018, by the 50’s male participant. Heart

beat gets faster during drinking, and then decrease to be

stable after 10 mins. Two peak HRV around the 100 and

150 mins after drinking may involved to walking home and

daily activities before sleep.

Besides analysis in the time-series, spectral analysis is

also focused on as an stress estimation index.

2.3 Stress index

Power spectral density (PSD, [ms2/Hz]) analysis of

heart rate has been used as the stress index to calculate

the ratio between low frequency (LF) and high frequency

(HF) components as: P (ω)LF =
∫ 0.15

0.04
S(ω) ∗ ∆ω

2 dω,

P (ω)HF =
∫ 0.4

0.15
S(ω) ∗ ∆ω

2 dω ,where ω = 2π
T and ∆ω =

c⃝ 2020 Information Processing Society of Japan 2

Vol.2020-CSEC-90 No.15
Vol.2020-SPT-38 No.15

2020/7/20



情報処理学会研究報告
IPSJ SIG Technical Report

1
length(ω) . Stress index is estimated by ratio = P (ω)LF

P (ω)HF

Here, power spectral S(ω) can be obtained by process-

ing FFT to autocorrelation function C(τ) as: S(ω) =

limT→∞
2π|X(ω)|2

T . In case that most of PSD values con-

centrated in higher frequency domain and peak value is

detected in higher value, it indicated parasympathetic

dominance (relaxing). Oppositely, if the peak value of

PSD located among LF domain, it indicated sympathetic

dominance (stressful). The lower the ratio is, the more re-

laxing it indicated. Stress is estimated from result of ratio

as defined in work [14] that (1) ratio ∈[0, 0.8]: relaxing,

(2) ratio ∈[0.8, 2]: normal; and (3) ratio >2: stressful.

Figure 13 plots an example of spectral analysis result for

stress estimation in different window lengths, using the

data of 30’s participant (female) on 30, July 2018. The

results indicate a relaxing statues of the participant by

low LF/HF value.

3. Mechanism of noise perturbation in

spectral domain

3.1 Details of integer DCT IV (intDCT)

Let

x = {(x1), (x2), . . . (xn)}T (1)

X = {(X1), (X2), . . . (Xn)}T (2)

be a time-domain signal at an N -point frame and its DCT

coefficients, respectively. In a continuous case, we can ob-

tain DCT coefficients X from a time-domain signal x by

DCT matrix as

X = CDCT−IV
N x (3)
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図 1 An example of heart rate variability (HRV) corresponding

to daily activity (drinking)
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図 2 Periodgram in different window lengths

where the (i, t)-th (1 ≤ i ≤ N , 1 ≤ t ≤ N) elements of

the DCT matrix. CDCT−IV are represented as

CDCT−IV
N (i, t) =

√
2

N

[
cos

(
(t+ 1

2 )(i+
1
2 )π

N

)]
. (4)

For lossless audio coding, intDCT has been proposed in

[13]. In this process, the integer signal in the time domain

is transformed into integer DCT coefficients in a reversible

way. This DCT matrix can be factorized into the product

of block triangular matrices with block identity diagonals.

Multiplying a triangular matrix followed by a rounding

operation can be reversible even if elements of the tri-

angular matrix are not integers. This also holds true in

the block matrix case. Therefore, iteratively multiplying

triangular matrices in order and applying the rounding

operation can be completely reversible. Even though Ex-

pectation Maximization (EM) algorithm can be used to

de-noise, reversibility makes it convenient and possibility

for further re-identification.

There is a feature of intDCT IV for the data trans-

form that when the frequency domain increases, the value

of DCT coefficients decreases generally. Figures 3,4,5,6,

show an example of RRI plotted in the time domain

and in the frequency domain as DCT coefficients. Fig-

ure 3 plots an example of heart rate variability in RRI
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[ms] on 30th, July 2018, including 1536 samples, with a

RRI ± σ = 784 ± 3.65. Figure 4 is the DCT coefficients

corresponding to the RRI value. In the low frequency do-

main, the DCT coefficients have values indicating higher

amplitude. Figure 5 plots a subset of DCT coefficients in

the low frequency domain with DCT index ranges [1:200],

where the maximum DCT coefficients as 28556, and the

minimum absolute value is 0. Meanwhile, most of the

DCT coefficients have small values in the DCT coefficients

index [200:1536], which covers values as 31±26, where the

mode value is 19, and the middle value is 24. The DCT

coefficients have more smaller values than that in the time

domain. Since the noise is perturbed to the original data,

thus the distortion of noise may be suppressed by noise

perturbation in the frequency domain rather than in the

time domain theoretically.

However, the logic for noise generation is important,

and it is depended on the signal processing of data trans-

form algorithm from the time domain to the frequency do-

main. Work [13] indicates the algorithm requires the pro-

cess of intDCT-IV as 2.5n logn2 −n for each n-sized frame.

3.2 Noise assignment in Laplace distribution for

L1-sensibility

Given the original heart rate data in time series are

D = {x1, x2, . . . , xn}, and the attacker has the data series

as D′′ = {x′′
1 , x

′′
2 , . . . , x

′′
n}, if and only if dataset D and D′′

differ in one element. This is called L1-sensitivity.
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図 3 Time-series RRI (ms): 1536 samples on 30, July
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図 4 DCT coefficients of RRI: 1536 samples on 30, July

The L1-sensitivity ∆1,q = maxD∼D′′ ||q(D) − q(D′′)||1
indicates the situation that when error between q(D) and

q(D′′) is maximal. Then the mechanism for perturbation
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図 5 subset of [0,200]-th coefficients in the low frequency do-
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図 7 Flow chat of noise perturbation in the frequency domain

for stress estimation for distributed data

図 8 Illustration for noise perturbation to DCT coefficients
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λ = ∆1,q/ε. Here, the smaller the privacy utility ε is, the

stronger the privacy is guaranteed. Meanwhile, the dis-

tortion should be controlled to be as small as possible to

achieve the higher usability of the data.

According to the calculation requirement of intDCT,

2.5n logn2 −n is necessary for the process. Suppose the

probability of each sample out of n-point to be dis-

closed is 1
n , then the noise mechanism corresponds to

(2.5n logn2 −n)× 1
n , then λ = (logn2 )/ϵ.

3.3 Algorithm of noise perturbation based on int-

DCT

In the scenario to collect data and apply noise perturba-

tion to the time-series domain towards distributed data,

the accumulated noise is getting larger. Figure 7 illus-

trates this use case. In order to suppress the degradation

of noise perturbed, a noise mechanism based on intDCT

calculation and correspond to Laplace distribution is gen-

erated according to the algorithm as follows:

The algorithm to calculate stress index with noise per-

turbation in the frequency domain based on intDCT is

listed as follows:

Input: Di = {x1, x2, . . . , xn}, (1 ≤ i ≤ n)

Output: D′
i = {x′

1, x
′
2, . . . , x

′
n} in the time domain.

step 1 Transform Di to generate dct(Di) to get

X1, X2, . . . , Xn in the frequency domain using int-

DCT.

step 2 Specify privacy utility ϵ (e.g. ϵ = 0.1,0.15,0.2. . . )

to generate Laplace noise mechanism λ = ∆1,q/ε to

generate the noise according to Laplace distribution

as ri =
1
2λe

−|x|
λ , here ∆1,q is the mechanism which is

related to integer DCT transform that ∆1,q = logn2 ,

here n is the length of data; and then specify δ=0.05.

step 3 Perturbation: D̃i = Xi + ri

step 4 Perform invise DCT idct(D̃i) to get

{x′
1, x

′
2, . . . , x

′
n}.

Then spectral analysis is applied to {x′
i to calculate the

stress index in a (ϵ, δ)−differential privacy preserved way.

Please refer to our previous work [15] for the details of

proof of (ε)-differential privacy for assigned noise in the

frequency domain.

Figure 8 illustrates the algorithm of noise perturbation

to DCT coefficients.

4. Experimental Results

4.1 Evaluation criteria

In these paper, two criteria are used to evaluate the

precise and effectiveness of noise perturbation: (1) stress
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図 9 Laplace noise with different ε corresponding to DCT co-

efficients in the frequency domain
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perturbed in the frequency domain

0 500 1000 1500

-500

0

500

Coefficients Index #

N
o

is
e 

L
ev

el
 C

o
rr

es
p

o
n
d

in
g
 t

o
 R

R
I 

(m
s) Gaussian Noise added in DCT coefficients with different SNR

 

 

SNR=10

SNR=20)

SNR=30

図 11 Gaussian noise corresponding to DCT coefficients with

different SNR in the frequency domain

index results are calculated comparing to the values calcu-

lated using raw data, and (2) Mean Squared Error (MSE).

In the conventional works, MSE is also used as a evalua-

tion criteria [12] that when MSE decreases, the usability

increases. In this paper, MSE is calculated by:

1

n
Σn

i=1(D̃i −Di)
2 (5)

4.2 Perturbation by Laplace noise with different

privacy utility ε

Noise generated by the mechanism λ = (logn2 )/ε, ac-

cording to Laplace distribution is ri = 1
2λe

−|x|
λ . Figure

9 plots the Laplace noise with different ϵ. It is obvious

that when the privacy utility is stronger (ε is smaller),
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図 12 Inversed RRI from DCT coefficients after Gaussian noise

perturbed in the frequency domain

the noise is larger and may affect the statistics analyz-

ing result for knowledge mining, which is a tradeoff by

noise perturbation. Figure 10 plots the inversed RRI in

the time domain, transformed from the frequency domain

after Laplace noise perturbation with spectral differential

privacy. Accordingly, smaller ε has larger noise values

perturbed.

4.3 Perturbation by Gaussian noise with different

Signal-to-Noise (SNR)

Comparing to Laplace noise generated by the proposed

spectral differential privacy mechanism, Gaussian noise

perturbed to the signal in the spectral domain is also im-

plemented. Figure 11 plot the Gaussian noise added in

DCT coefficients with different SNR values. It is obvi-

ous that higher SNR ensures lower distortion and smaller

noise. By comparing the value in y-axis to that in Figure

9, the noise generated by Laplace distribution is smaller

than that generated by Gaussian noise in the frequency

domain. Figure 12 plots the inversed RRI in the time do-

main, transformed from the frequency domain after Gaus-

sian noise perturbation. Accordingly, the values of RRI

with noise perturbed in Figure 10 (Laplace noise with

spectral DP) are smaller than that in Figure 12 (Gaus-

sian noise with spectral DP).

4.4 MSE and stress index results of noise values

In order to compare the effectiveness of noise suppres-

sion by spectral differential privacy mechanism (Laplace),

MSE and stress index for analyzing heart rate data on

Jun 18, 2018 are used for the comparison. The result is

listed in Table 1.

According to the result in Table 1, MSE after Laplace

noise perturbation generated by spectral differential pri-

vacy has smaller noise than that of Gaussian noise, which

means the proposed method is effective for noise suppres-

sion. Stress index results show that the proposed method

has closer results to original data, even with the highest

表 1 MSE and MSE and stress index results by Laplace and

Gaussian noise generated by spectral differential privacy

Data noise level Stress index MSE

original data null 0.405 null

Gaussian SNR=10dB 0.168 8.6125e+04

noise SNR=20dB 0.423 2.9694e+04

perturbed SNR=30dB 0.405 1.7320e+04

Laplace ε=0.5 0.443 7.5340e-04

noise ε=0.75 0.443 4.3965e-04

perturbed ε=1 0.443 2.4687e-04

ε=1.25 0.443 1.3341e-04

図 13 Stress index result after noise perturbation by the pro-

posed method

security utility level when ε=0.5.

Figure 13 plots the stress index result after noise pertur-

bation by the proposed method and the Gaussian noise.

The stress estimation has a similar results after noise per-

turbation generated by the proposed mechanism based on

spectral privacy preserving.

5. Conclusion

This paper proposed a new noise suppression method

based on spectral differential privacy for data privacy pre-

serving. This method can be applied to data analysis

on spectral domain, such as stress estimation, and dis-

ease prediction by autoregressive in the frequency domain.

This supplies an alternative data analyzing methods be-

sides the linear and logistic regression. The Laplace noise

generated according to the mechanism of spectral differ-

ential privacy promises a smaller noise than the Gaussian

noise, while the security utility ε is guaranteed, as well

as the stress estimation results be similar to the original

data without noise perturbation approximately. The fu-
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ture work is to apply this method to a big amount of data

to check the effectiveness and to improve the noise genera-

tion mechanism for more data analysis models. Exploring

to various regression algorithms to solve different social

problems is listed as another future task.
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