Fe A N—R VAT A T8—16
(1990. 7. 20

BB A7 V27 MEAT— 4 X— xS
Juan OEE

tHHE —IE
(Bf) B = v € 2 — 2 HBRASCISE

BRR7T— 2 R—2F7 V=7 ' RABEXEPRAVKEFEE - 7 7V = 7 VERT — & _—
Z (DOOD) D7 HDEEE Juan OBIE %R~ 25, REBSFEOMMT, A7V =2 bOF— 41
BEFEHEENERINT VS, A7 V=7 VBHIFRANEGHA T V27 b okiEX 7 V=2 b
TeOICRRECRE I, 20OR—LBRLLTHL - FREXAVWTVwE, A7 V=7
BHEAGEIEBROZBRICEL T3, r—ADERCEAWIBHEAAY v FE LTHWbH, %
NAYEECERING, F— 2 R—2CET 2 —AEINBAINTEY ., BoERES 2 —
AED Ay =Y e Ry o v 7 CEFEND, KFETR. Juan OREEE POBICTEET 2,

Outline of a Deductive and Object-Oriented
Language Juan

Kazumasa Yokota
Institute for New Generation Computer Technology (ICOT)
21F., Mita-Kokusai Bldg., 1-4-28, Mita, Minato-ku, Tokyo 108, JAPAN
e-mail: kyokota@icot.or.jp ‘

We explain the outline of Juan, which is a deductive and object-oriented database language
under design, along the line of extensions of deductive databases with object-orientation con-
cepts. In Juan, data and procedures are expressed in the framework of logic programming.
Object identifiers are in the form of extended terms for intentionally defined or persistent ob-
jects, unification of which is formulated in record algebra. Properties of objects are appropriate
for partial information. All attributes in a head of a rule is also in the form of extended terms
to play a role of methods. Modular concepts are introduced in Juan and a query is processed

by message passing between modules. In this paper, we describe mainly the features of Juan.

—149—

1 Overview

There are many approaches,which have been proposed
as extensions to relational databases for supporting more
application domains, frequently referred as ‘new’ ones.
Among such extensions, deductive and object-oriented
databases (DOODs) are expected as a powerful candidate
for next generation database systems [14]. Briefly speak-
ing, DOODs are intended to be integrated databases
with both advantages of deductive databases (DDBs) and
object-oriented databases (OODBs). For such intentions,
there are several approaches from some viewpoints: which
is regarded more important, DDBs or OODBs?; what are
characteristics of OODBs? (2, 4); what kinds of incom-
plete (and partial) information should be focused on?

We take an approach for DOODs as extensions of
DDBs, by embedding object-orientation concepts into the
formal framework of DDBs. Extensions of DDBs are clas-
sified from three viewpoints: logical, data modeling (en-
capsula.ry),‘and computational (paradigmatic) extensions
[14]. Especially, from viewpoint of the data modeling
ones, there are many works in three aspects: introduc-
tion of complex data structure, encapsulation of data and
procedures, and introduction of object identity.

In this paper, we describe rather informally an out-
line of a DOOD language called Juan, which focuses
on ‘object-oriented (database)’ extensions in the above
framework: mainly data modeling and computational ex-
tensions.- Not to mention, we do not exclude other exten-
sions, but we would rather embed also logical ones into

next version of Juan.

Juan has many distinguished features from other re-
lated works such as F-logic [5, 6] and DOT [10], espe-
cially in object identity, methods, modules, and inheri-
tance. We discuss how to embed object-orientation fea-
tures into DDBs in Section 2: object identity, properties,
hierarchy, inheritance, and methods, where we do not
necessarily intend to cover all its features. After then, we
discuss the unification in Section 3 and explain the out-
line of Juan in Section 4, and then describe some points

" to be further discussed in Section 5.

2 Embeddihg Object-Orientation Fea-

tures

2.1 Object Identity

Object identity is a property, which identifies an object

from others, and an object identifier (oid) is representa-
tion for object identity. There are some criteria for gen-
erating and maintaining oids, especially from a viewpoint
of DOODs as extensions of DDBs:

(1) Rules define objects intentionally, each of which also
should has an oid. That is, rules should support a
mechanism for dynamically generating the oid of such
an object. This feature has not been considered suffi-
ciently in other OODB:s.

(2) Object sharing needs a ‘global’ oid referred from the
related objects, especially in a distributed environ-
ment.

(3) A persistent object also needs an oid, which should
be possible to be recalled when the object is activated

in memory again.

(4) An oid should be given even when we have only par-
tial information about some object, because we can-
not expect an object has a fixed number of attributes

and fixed structure as the identification information.

Under such considerations, we define oids as extended
term representation based on attribute-value pairs, and
the corresponding naming mechanism in the form of

rules.

For example, consider a graph consisting of nodes and
arcs, where paths are defined in Prolog as follows:

path(X,Y) < arc(X,Y).
path(X,Y) < arc(X, Z), path(Z,Y).

What kind of an oid should be given to such an inten-

_tionally defined path? Each path can be identified by the

corresponding route from the initial node to the terminal
one, where an oid might contain cyclic routes (infinite

structure) in a path.

Now such route information can be embedded as a

parameter of the predicate path in a Hilog style [3]:

path([X,Y))/(X,Y) « arc(X,Y).
path(IX|R))/(X,Y) < are(X, Z), path(R)/(Z,Y).

In this case, path(R) before */’ plays a role of the oid of
a path ! | which is generated by the rules, and arc(X,Y)
is an oid in itself. As such an oid is logically generated,

INote that attributes in oids (shortly, id-atiridutes) can be also embed-
ded into a list of properties as follows:

path(X,Y.[X.Y]) « are(X,Y).
path(X,Y,[X|R]) < are(X, Z),path(Z,Y, R).

—150—

differently from pointers or numbers, it can be used over
multiple name spaces, especially for sharing objects or

activating persistent objects.

Another critical point is to represent partiality of an
object. Even if we have not a complete list of proper-
ties, we want to identify some object from others. Con-
sider the following example in the form of attribute-value

pairs:

person[name = john]/[a list of attributes]
person[name = paul,age = 24]/[a list of attributes]
person[name = paul,age = 30]/[a list of attributes]

where the first person is identified only by a name, while
the second and the third persons are discriminated by
both names and ages. When we want to distinguish mul-
tiple johns, we can add any number of attributes into

oids.

For coming up to the above four criteria, we represent
an oid in the form of extended terms, called an object
term. Assume a set O of basic objects and a set V of
object variables. An object term is recursively defined on
OUYV as follows:

(1) A basic object is an object term,
(2) An object variable is an object term, and

(3) O[ly = o1,-++,l, = o0,) is an object term, where
O,h,--+,l, are a basic object or an object variable,
and oy,-+-,0, are object terms. I; = o; is called an
id-attribute

2.2 Properties

Each object can have any numbers of properties (or at-
tributes), which are different from id-attributes. In Juan,
a separator ‘/’ is used for separating id-attributes from
the succeeding attributes. Such an object is called an

attribute term defined as follows:

(1) An object term is an attribute term, and

(2) O/[Fibn ALy, 5100 {An, -, An},-+1] is an at-
tribute term, where O, F;, S; are object terms, A;, A;;
are attribute terms (i,7 > 0), 6y is called an opera-

tor: —, «~, or =,

F; and S; play a role of labels, F; is called a function
label which takes a function value, S; is called a set label
which takes a set value. Assume that any label is typed
such that it takes either a function value or a set value.

For example, consider the following example:
john/[age=30, hobby — {music, sport}, parent — {mary}]

where john, age, 30, hobby, music, sport, parent, and
mary are basic objects, john plays a role of an oid of the
object, ‘/’ is a separator, and there are three attributes
in ‘[’ and ‘]'. 30, musie, sport, mary also might play
oids in other attribute terms, that is, complex objects are
represented in a nest of oids (although we don’t mention
it in this paper). A label age takes a function value, while
hobby and parent take set values. There are three kinds

of operators:

(1) age=30 — john's age is exactly 30 years old.

(2) hobby — {music, sport} — john's hobby is subsumed
by music or sport, that is, an operator ‘—’ represents
some possibility of the attribute.

(3) parent « {mary} — one of john's parents is mary,
that is, an operator ‘' represent partial information
of the attribute.

Not to mention, operators ‘—’ and ‘~’ may take a func-

tion value and ‘=" may take a set value.

Already mentioned in 2.1, an oid has also id-attributes

like the following:
john[last_name = lennon]/|[- -]

Such an id-attribute is also treated as one of properties.
In another word, a list of id-attributes plays a role of a
primary key in all properties of an object.

What are differences between id-attributes and attrib-
utes? Ullman discussed about value-oriented systems
versus object-oriented systems [11]. In his word, id-
attributes (or an oid) is value-oriented, while attributes
succeeding an oid are object-oriented, because the former
is decided by combination of basic objects and cannot be
dissolved, while the latter can be dissolved into conjunc-
tion of simpler attribute terms with the same oid. In the
sense, Juan can be said to integrate two approaches.

2.3 Method and the implemantation

Labels (attribute names) are conventionally formulated as
functions from a set of oids to a set of attribute values.
The formulation can be read from an object-orientation
point of view as follows:

o An oid is a receiver object,

o A label is a message identifier,

—151—

o Arguments (if there are) of the label are messages

themselves,

o An attribute value (,which might be a variable) is a

return value, and

o The implementation is written in the body of the

rule.

That is, each attribute can be read as a method. In F-
logic [5], labels are extended to a first order term called
an id-term, that is, a message with arguments, and in
new F-logic [6], the notation is revised like ‘natural’

methods with any numbers of arguments:

person(legal_names:: P,Y —» {N}]
+—— person : P[last.name :: Y — N

And the semantics is changed for such variable numbers
of variables. However, it is a kind of overloading and the
argument positions are left to be fixed because id-terms
used as labels are essentially a predicate-based notation.

We extend labels (methods) in the form of extended
terms, the syntax of which are same as one of oids.
Each attribute consists of a message identifier and the
message itself. As a message, there can be any numbers
of arguments in the form of an attribute-value pair. Even
if all messages are not given to an object, the evaluation

is proceeded.

A rule consists of an attribute term (a head) and a
set of attribute terms (a body), denoted as Head <«
B,,:--,B,. Any argument used as an attribute in a head
can be a method to the object (the oid), and the imple-
mentation is written in the body. A method is defined
as a set of rules with same oid, and each rule can has

different implementation in each body.
Consider the following example:

person|name = john]/[tel[location = X| — Y]
<= implementation part,

where assume that object variables X and Y are bound
in the implementation part. If a message tel[location =
office] or telllocation = home] is sent to an object
" person[name = john], it is evaluated in the body, and the
corresponding phone number is returned as an instance
of Y. If a message tel without an argument is sent to
the object, instances of a pair of X and Y are returned.
Further, a phone number might be changed according to
time such as daytime and night. Representation in such
an extended term is adaptablé for such changes.

Even if labels are extended in the form of object terms,

the semantics remains to be basically same, that is, the

labels are interpreted as functions, the domain of which is
a set of oids and the range of which is also a set of oids
or the power set 2.

2.4 Lattice on a Set of Object Terms

In this subsection, we introduce subsumption relation be-
tween ground object terms (oids), and discuss about the
related inheritance of properties between objects (attrib-

ute terms).

2.4.1 Ordering between Objects

Assume that a set O of basic objects has lattice structure
(with a join A and a meet V operations) based on the
subsumption ordering < between basic objects. By the
definition of an object term in 2.1, a ground object term
is also defined as a pair (T, f) of a set T of trees con-
structed on O 2 and a function f from T to O. Let T be

a set of ground object terms.
Consider the following example:

person[name = john,
phone = number(office = 11, home = 12]]

It is represented as the following pair (T, f):

T={T, T.name, T .phone, T.phone.office, T.phone.home}
f={(T,person), (T .name, john),(T.phone, number),
(T.phone.office,11),(T.phone.home, 12)}

As an example of path in 2.1, an object term may have
infinite structure.

The subsumption ordering of basic objects is extended

to 7 as follows:

(TN E(Ta. f2) &= TCTh A YoeO". fi(o) = f2(o0).

By using the ordering, we can write properties as follows:
of/[l = 01,1 +— 03).

where 0; C 0,. It means a range of the attribute value of
o.l.
We introduce an equivalence relation = on T. If two

object terms o, and o0, have same structure except a

2 Already mentioned, an attribute value can be separated as combination
of the corresponding oid (or a set of oids) as the attribute value and (a set
of) the attribute term(s) with the same o0id(s).

3First, consider a unitary semigroup O°, which is constructed by O and
a concatenation operator ‘.'. Then a tree t is defined as a subset of O*:

Ya,b€O’. ab€EtDact.

—152—

number of cycles or concatenation of part of the cycle,
we define 0, & o, (see the details in [13]). This relation
corresponds also to an example of Krebs cycle in [9]. T is
extended by & as follows:

012 0;D(01 E0y A0 C0y).

The relation C is partial ordering on 7/ . -

2.4.2 Lattice on a Set of Objects

Given two object terms (T3, f1) and (T3, f2), a new func-
tion f; A f, is defined as a minimal set satisfying the
following conditions:

(1) 3(p,n1) € f1,3(py12) € fo. (PM1AN) E fiAf

2) 3(p,m) € fi,~IHp,nz) € fo () ENLA L2

(3) 3(p,n2) € fo~I(p,m) € fi. (B2) EHAS:

(4) If I(p1, L) € f1 A fa, then ~3(pa,n) € fi A fa, where
p1 is a prefiz of p,.

Note that fi A f is defined even if there are n; and n;
such that n; Any = L and there is no prefix which takes
1.

Similarly, fi V f; is defined as follows:
a(pynl) € fha(pvnl) € f2' (brnl Vﬂz) € fl v f2

As intersection and union of two trees are also trees, a
meet U and a join M operations are defined for given two
object terms (T4, f1) and (T3, f2), as follows:

(1) (T, MHU(T2 f2) = (MiNT5, iV fi)
2) (T, A)N(T3, f2) = (11U T, fi f\fz)

Clearly T/ 2 constitutes a complete lattice.

2.4.3 Inheritance and Exception

Attributes are inherited along the lattice on a set of
object terms. When there are multiple attributes with
same oid as the result of inheritance, their values are

joined or merged according to the operator:

(1) if of[l = t1,1 = t], then of[l — t; M13],

(2) if of[l « t1,1 + t5], then of[l «— ¢, U t,}.

Note that lattice operations is defined between object
terms, while they are not defined between attribute
terms. Then, as the result, the lower structure of ¢, or
t; might be lost by this process.

Recall that id-attributes are treated also as part of
properties. Assume that some label [appears in an id-
attribute of an object 0, and in.an attribute of another

object 02, and o0y C o3:

/(16 8y
o : {oa}l =ta]/[+]

where oy : {0} means 0, C o0;. In this case, o, does
not inherit the attribute with ! from o3, that is, an id-
attribute with ! suppresses to inherit attributes with the
same label [, that is, it causes an exception. ‘

Consider the following example in Juan:

bird/[flying = yes]
penguin|flying = no] : bird
super_penguin : {penguin}.

An object penguin[flying = no] does not inherit a
property flying = yes, while super_penguin inherits
flying=yes.

As a label has an argument, another expression can be

written by using a label with arguments:

bird/(flyinglwho = bird] = yes]
penguin : bird/[flying[who = penguin] = no|
super_penguin : penguin/

[flying[who = super_penguin] = yes]

If the inheritance relation is saturated, we have the fol-

lowings:

bird/[flying|who = bird] = yes]|
penguin : bird/[flyinglwho = bird] = yes,
flyinglwho = penguin] = no]
super_penguin : penguin/|
.ﬂying[who = bird] = yes,
flyinglwho = penguin] = no,
flying[who = super_penguin] = yes]

It does not cause any inconsistency, because each label is

different from others.

3 Identifiability

An object is discriminated from another by comparing
their oids, which might have infinite structure. Then,
oids cannot be compared simply under unique name as-
sumption, because there is a hierarchy between basic ob-
jects, and an intentional object has an oid with object
variables. For such identification, unification between oids

is introduced.

—1563—

3.1 Object Identifier as Record Algebra

An object identifier (o0id) corresponds to a so-called
record structure. For a theory for such data structure,
especially as a foundation of unification of partially spec-
ified terms (PSTs) in CIL, record algebra is proposed [7].
Here we formulate oids as record algebra and the unifica-
tion theory on it. (Refer the details in [7}.)

There are two differences between oids and PSTs in

record algebra:

(1) There are basic objects or object variables in all
nodes of a tree in an oid, while there are tags or
parameters only in leaves of a tree in a PST (in
record algebra).

(2) There is a glb between basic objects because they
constitute a complete lattice, while there is only iden-

tity relation between tags in record algebra.

These differences make a concept of conflict for oids to

be unnecessary.

In terms of record algebra, O° is an access semigroup
which constitutes a tree, and O is a merge system, an
element of which is attached to nodes of the tree. Let
R be complete O*-record algebra generated by O and V
be a set of object variables. Then, R[V] is record algebra
which adds V to R. Note that, in (7], PST's are restricted
in the tagged position, while the formulation of record
algebra does not have the restriction essentially, that is,
oids are formulated as R[V].

3.2 Unification between Object Identifiers

An oid is a subset of R[V] and a pair oy ™M o0, of two
oids is called a basic constraint, where M is mergeable (or
informally unifiable). Before the definition of unification,
we must define o' - 0, where o',0 € R[V]. Let [and o
be hy. - din and ({li, -+, 1.+ lin}, F), respectively,
where F = {(h1,01),+,(h1. -+ i, 010)} (I is called a
branch of F). And let

o= ({la,", lam}, {(1;110121)7' o x(1'2kvolzﬁ)})~
Then o' - 0 is defined as

({1'1213 tre vI'I2M}: Fu {(I'I;Ivogl)’) (I'I;kroizk)})'

Clearly o’ - o is also an element of R[V]. Note that the
definition is different from (7], because all nodes take
basic objects or object variables. In record algebra, there
are seven constraint azioms in order to solve a set of

constraints:

reflective law oMo

symmetric law 0y Moy = 0, Moy

restricted transitive law z M o;,z M 0; = 0; M 0,

where z is an object variable.

base law 0y - 01 M 0} - 05,
where either branches of o} or o} is not a prefix of

another.

merge law (1) (01,02) M 03 = 0y M 03

merge law (2) (01,03) M o3 => 0y M 0y

cancellation law o' -0y M0 -0, =0y Mo,

where (01,0;) is a pair of two elements in a set and
L = R means that if L exists, then R also must exist.
In these axioms, we do not need the base law, because an
otd has basic objects or object variables in all nodes.

It is easy to understand that these axioms correspond
to unification process. For example, the cancellation az-

tom generates new basic constraints between subterms.

Unification algorithm is simply given as follows [7):

(1) An input is a set C = {c1,---,c,} of basic con-

straints.

(2) Saturate C by applying the above axioms. This step
stops at finite steps, and results in C.

(3) C is the required output.

In a case of oids, this algorithm always succeeds where C
contains a set of substitutions. However, further compu-

tation is needed:

(1) As a glb of two basic objects is not computed during
the process, we must compute C by lattice operations

of O.

(2) As L is normally computed during the process, we

should cut down some cases.

Note that unification between oids can be formulated
in another way. That is, as an oid can be translated into
a y-term [1], we can consider the unification as the join
operation (and the generalization as the meet operation).

4 Outline of Juan

In the previous sections, we explain various features of
Juan. In this section, we sketch the syntax and the se-
mantics, the details of which will be explained in [13].

—154—

4.1 Syntax

There are four kinds of symbols: a set O of basic objects,
a set V of object variables, a set W of world identifiers,
and a set R of rule identifiers. We show the syntax briefly
in the BNF style in Table 1..

In the above syntax, we have not explained some fea-

tures yet:

o Introducing a dotted object 0.05. - - - .0, which is use-
ful for indirect representation of an object. For exam-

ple, john/[affiliation — paul.affiliation).

¢ Introducing a world concept and modularizing a data-
base. See the details in [12, 8].

We have some additional restrictions to the syntax:

e When basic objects and object terms are used as
labels, they are typed for deciding to take a function

valu€ or a set value.

e For avoiding A-unification, object variables in a dot-

ted object are restricted in unification.

o Object variables cannot appear in a set value, for
‘avoiding AC I-unification.

The overall structure of Juan, defined above, consists
of six-level entities as Table 2. And the ordering be-
tween object terms and between words are defined as

o:{o1,-++,0,} and w: {wy, -, Wy} respectively.

4.2 Semantics

There can be some approaches for the semantics of Juan.
If object terms and attribute terms can be interpreted
as a set of constraints, just like as a set of semantic
expressions in [10}, 'we can consider Juan as a constraint
logic programming language CLP(X). However, in the

case, there is a problem on treating rules:

¢ If a rule is written as a triple of a head, a body, and
a set of constraints, whére a head and an element of
a body are based on predicate-based notation, it is
easy to consider Juan as one of CLP(X). However, it
might be ambiguous why extended term representa-
tion is introduced.

A rule itself can be considered as a Boolean con-

straint. However it is questionable whether the cor-
responding constraint solver works efficiently or not,
because implication in a rule might disappear.

4'a list' means ‘a {“"a}".

So, we consider the semantic domain U as a set of ground
object terms, that is, a mapping M interprets o € T as
an element o € U 5. In the sense, we abuse T instead of
U and also other symbols.

In this subsection, we sketch the semantics of ob-
ject terms and attribute terms. As for a modularized
database, refer [8]. (The details of the semantics of the
whole language will be explained in [13].)

4.2.1 Object Terms

The interpretation is different depending on whether an
object term is used as an oid or a label. Because of the
macro level domain, we consider only a case of a label.
A label is interpreted as a function from T to T or 27,

according to the type of the label.

For example, interpretations of person[name = john]
and person/[name = john] are different:

M(person[name = john]]

= M[person][M[name] = M[john]] € U,
M|person/[name = john]}

= M[name}(M/[person]) = M[jokn] € U,

where in the latter name is interpreted as a function
from U to U. That is, interpretation of an object term is
changed according to what role it plays.

Consider another example:

person[name = john)/[tel{location = home] = 11,
tel[location = office] = 12)

The interpretation constitutes a kind of hyper-graph:

M|person[name = johnl]]
Mltel[location = home [tel[location = office]}
M) M12)

where

M|tel[location = homel}

(Mlperson[name = john]]) = M[11] and
M(telflocation = office]}

(M([person[name = john]]) = M[12].

3The . interpre-
tation M of an oid (T,f)= ({li.---dn.++-} {(l1.+-dn,0),---}) is given as
follows:

MUT,)}= (MIT) D '
= ({Mlh).- - Mltad, - 1 {(MER). - ML MED) D)

That is, it is also a tree in the domain U.

—155—

Table 1: Syntax of the Language

<object term> u= <basic object>[“["<id-attribute> list *“]]
| <object variable>
| <object term>*“.” <object term>
<id-attribute> 1= <basic object> “=" <object term>

<attribute term>

i

<object term> [“:” “{" <object term> list“}"]

[“/"“[" <attribute> list“]”]
<attribute> 1= <object term><operator><attribute term>
| <object term><operator> “{” <attribute term> list“}”

<operator> n= YT | Y | 4=
<database> = “{“<world rule> list“}”
<world rule> u= [<world label>“==%"] <rule>
| <world relation>
<world label> i= “("<world identifier>[,”<rule identifier>]“)”
= | <world label>*/* <world label>
<rule> = <attribute term> [“<="<attribute term> list}

<world relation> = <world identifier>*:" *{” <world identifier> list“}”

Table 2: Language Structure

Entities Definitions

world = module in a modularized database

database = set of rules

rule = (attribute term, {attribute term, - -,attribute term})

attribute term

(object term, {attribute,: - -,attribute})

object term = (basic object, id-attribute) | (object variable, id-attribute)

basic object, object variable

4.2.2 Attribute Terms

First, complex attribute term is dissolved into conjunc-
tion of simple attribute terms. Let n be a function such

that n(o: {---}/[--*]) = 0. Then

Moy : {on," ";oln}/[flolvh"'a3102{ullv"'vv2m}]] =
Moy : {on}] A -+ AM[o; : {o1n}IA
Moy /[i81n(v)]] A M) A --- A
Moy /15102 {n(vnr), -, 7(vam) }]
Mlva] Ao AMJvgm) AL

Next, ordering and operators are interpreted as follows:
(1) Mlor : {02}] = M[a1] Ev Mlo2]
(2) Mloy/[f = 02]} = MLfi}(Mlo1]) Cv Mlos]

(3) Mlor/[s1 = {va1,- s vam }]
= Ve| € Mlsll(M‘Ox]), 362 € Mlvz.']. e; Cy e,
That is, in the case of a set value, the operator is

interpreted as Hoare’s ordering.

(4) ‘<’ is interpreted in the opposite direction and ‘=" is
’

interpreted as ‘—’A‘e—
As an attribute term is dissolved into a set of non-
nested attribute terms, each of which has only one at-

tribute, we consider only the simple case.

5 Concluding Remarks

We describe the outline of a DOOD language Juan under
design. Juan has capability of various features of object-
orientation concepts, which are embedded into DDBs.
The key point in such extensions is extended term rep-
resentation, and we use it to represent not only data
structure but also object identity and methods. Another
important aspect of an object orientation paradigm is the
computational model, which is mapped into query pro-

cessing in a modularized database.

—156—

In this paper, we have not explained the following

points:

¢ Discrimination of function values and set values,
where the question is syntactical differences [6] or
explicit typing.

Treatment of dotted objects, which would closely re-
late to the depths of the language: lattice construc-
tion, unification, semantics, and termination of query

processing.

o Dynamically generated ordering or inference about a
hierarchy itself, where reconstruction of a lattice of

object terms might be fallen into inconsistency.

o Semantics of rules, databases, and worlds, which are
under consideration, as well as procedural and fix-

point semantics.

As there have been very few works on DOOD languages
and the systems, there remain many problems to be dis-
cussed. In the tentative syntax of Juan, we are making
some experiments on molecular biological databases such
as [9] and case bases for legal reasoning, through which

we are making requirements clear.

Acknowledgments

The author would like to thank Hideki Yasukawa, Yuki-
hiro Morita, members of Quizote meeting, and members
of ETR-SWG for valuable and stimulating comments and
suggestions. ’

References

{1] H. Ait-Kaci, “An Algebraic Semantics Approach to
the Effective Resolution of Type Equations”, TCS,
vol.45, pp.293-351, 1986.

{2] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich,
D. Maier, and S. Zdonik, “The Object-Oriented
Database System Manifesto”, DOODS9.

[3] W. Chen, M. Kifer, and D.S. Warren, “Hilog as a
Platform for Database Languages (or why predicate
calculus is not enough)”, DBPL’89.

[4] The Committee for Rational Thinking, “The Object-
Oriented Counter Manifesto”, a manuscript distrib-
uted at SIGMOD’90.

[5) M. Kifer and G. Lausen, “F-Logic: A Higher-Order
Languages for Reasoning about Objects, Inheritance,
and Scheme”, SIGMOD’89.

{6] M. Kifer, G. Lausen, and J. Wu, “Logical Foun-
dations for Object-Oriented and Frame-Based Lan-
guages”, draft, 1990.

[7] K. Mukai, “Merge Structure with Semi-Group Op-
eration and its Unification Theory”, Computer Soft-

ware, vol.7, no.2, 1990 (in Japanese).

{8] C. Takahashi, “A Deductive Database with Hierar-
chical Structure”, Proc. of SIGDBS, IPSJ, Sapporo,
July, 1990 (in Japanese).

[9] H. Tanaka, “Metabolic Reaction Database”, Proc. of
SIGDBS, IPSJ, Sapporo, July, 1990 (in Japanese).

[10} M. Tsukamoto, S. Nishio, and T. Hasegawa, “DOT:
Term Representation for Logic Databases with
Object-Oriented Concepts”, Advanced Database Sys-
tem Symposium, Kyoto, Dec. 7-8, 1990 (in Japanese).

[11} J.D. Ullman, “Database Theory: Past and Future”,
PODS’87.

[12] K. Yokota, “Deductive Databases with Hierarchi-
cal Structure”, ICOT Internal memo., pre-session of
DOO-WG, June 29, 1989. (in Japanese)

[13] K. Yokota, “A Deductive and Object-Oriented Data-

base Language Juan”, in preparation, 1990.

[14] K. Yokota and S. Nishio,
tion of Deductive Databases and Object-Oriented
Databases: A Limited Survey”, Advanced Database
System Symposium, Kyoto, Dec. 7-8, 1989.

“Towards Integra-

—157—

