A T9-5
Su sz 3 v I72EE 26—5
(1990. 9. 7T

EHETITARNST I a EA[REICT BHEFNF T2 7 bD2DHD
—BETINOBECLTT

EBEREX AHHF PTREHE
BRERBKF

HERDF—IR—AVATFAETOATFII VIV AT LA LI EHBEV AT L
BESTD-DIC, 7UTFIVIDODEFIVIER, FETOYATFLATHESINTS
7-K4 EEOBES2ERTE, FALEZEHETEZIERRTETRETRLR VW, &
DHBXIE. AFTENEL) BHMTREENTELV AT LI, MEFFREORMEN &
WHEBAL L., HIFHAOEREL S XD, ORI, T FHELEAF TV PIC
EoW, FOLILEHEO VAT AL BET LD, FELERBEICED(—
B e FIVERRT 5,

Towards Constructing A General Model For Persistent Objects
Enabling Flexible Abstraction

Tatsuo Minohara Kohei Honda Mario Tokoro
Keio University
3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223 JAPAN

For constructing a polymorphous system which integrates the conventional database
systems and the programming systems, the model for programming should be
flexible so that it enables to describe various sorts of abstraction developed in the
conventional systems and enables to manage them. This paper gives some criteria
on such polymorphous systems which have been proposed, from the view point of
the relationship between type and persistency. This paper also presents another
general model founded on entities and associations for constructmg such
polymorphous systems based on persistent objects.

<1>

1. Introduction

Application programs which deal with persistent information face various problems because of imped-
ance mismatches of semantics between the persistent information systems, i.e. the database manage-
ment systems and the programming systems. The persistent information remains after the session of the
execution of an application program. In such situations, the persistent information is shared by multiple
applications concurrently or intermittently during a long period. We call the systems which integrate
the conventional database management systems (or the information systems) with the programming
languages systems “persistent programming systems”. The problems described bellow should be solved,
when one wishes to achieve the integrated persistent programming systems. Particularly, for achieving
the open-ended persistent programming systems, the systems should accept the applications which are
programmed by using the conventional programming language systems. The following problems are
inevitable in such open-ended systems.

Semantics Mismatches:

The applications described in different programming languages access a shared persistent information
described in another different schema definition language. The semantics of types of the persistent
programming systems, thus should be unified in the first place. However, the persistent information in
a persistent programming system may be also accessed by applications written in the conventional
programming languages. Consequently, the semantics of types of the persistent programming system
should comprehend the semantics of types of various sorts of semantics of ordinary programming
languages including type-less programming languages. In other words, the systems should be flexible
enough to accept various sorts of abstraction. Interfaces which absorb the differences of the semantics of
types between the applications and the persistent programming system are also required in the
persistent programming system.

Evolutions:

The persistent information in persistent programming systems may be changed during their life time.
The modifications may be applied on not only the value of persistent information, but also their
schemes. The alterations of their schemes have to be announced to the applications which accesses the
persistent information. Therefore, for enabling the alterations of the schemes of persistent information,
the dynamic type mechanisms are indispensable. There are however the applications statically compiled
by a compiler for some programming language system. These applications cannot be adaptive to the
alteration. Although these applications should be recompiled basically, if the persistent programming
system has the facilities of polymorphic types which let types have some latitude, the re-compilations
may not be needed in some cases that the alterations of the schemes remain within the range of the
latitude of the types. Although the versioning are also strong mechanisms for avoiding the re-
compilations, the mechanisms cannot avoid the re-compilation in the cases that the propagations of the
alterations of the persistent information to the applications are required. Furthermore, the
methodologies of versioning for alterations of schemes have not been researched yet precisely. When
the applications are recompiled, if the programs of these applications are written in a conventional
programming language the source texts of the programs may have to be modified or have to be
designed again in the worst cases. For minimizing such worst cases, the broad latitude of the types is
required in the side of the persistent programming systems. Although dynamic typing mechanisms
reduce such worst cases, the information of types of the persistent information could not be given to the
programmers of applications who use the compiler which statically checks types of the programs, if the
persistent programming systems adopt only dynamic typing mechanisms.

This paper focuses on persistent programming systems from the view point of type mechanisms and
proposes a new model based on persistent objects for the systems. The type mechanisms are essential
facilities for resolving the problems of the persistent programming systems argued above. Although the
versioning mechanisms and the interface mechanisms are also indispensable mechanisms for achieving
the persistent programming systems, we do not refer to the problems directly in this paper because of
the limitation of the space. Particularly, assuming that the versioning mechanisms are prepared as basic
facilities like the concurrency control or the recovery control mechanisms in the ordinary persistent

<2>

programming systems, we discuss the type mechanisms in the systems.

We try to describe the persistent programming systems that have been proposed in the field of the re-
searches of the object-oriented database systems from the view point of the type mechanisms in Section
2. We dlassify these systems based on the criteria of the properties of persistency of objects and on the
criteria of the binding mechanisms of types of persistent objects. We also discuss what functionalities are
need to the persistent programming systems in addition to the facilities of the object-oriented database
systems. We proposes a new persistent object model on the basis of the analyses of these object-oriented
database systems in section 3. We conclude this paper with indicating the remaining problems and the
future directions of our researches in section 4.

2. Types and Persistency

We try to give some interpretations on persistent programming systems, particularly on the object-
oriented database systems [Atkinson 89]. In the object-oriented database systems, persistent information is
stored in whole set of the “persistent objects” . Since an object is regarded as a primary component in the
object-orientations, it is possible to design a unified persistent programming system by giving objects
various sorts of characteristics. Namely, the design of the scheme of an object exerts an influence on
whole schemes of the persistent programming system. Consequently, we also found on the object-
orientations in order to achieve a unified system. The constructions of objects however are left more
room to choice various sorts of design than the characteristics of an object. In the course of composing a
persistent programming system, the designer must choice several important policies for the
constructions of objects which dominate on whole design of the system. In the following subsections, we
reviews these construction policies from the view point of the relations between types and persistency.

2.1. Types on Persistent Information

The persistent objects should be specified by some mechanism in the language of a persistent
programming system. We describe how the persistent objects are specified in the language. For the
specification of the persistent objects, three policies are classified as follows in our perspective:

Sets Based Persistency:

Set is one of primary constructors in information systems. The reason is considered as that information
retrieval is equal to the extraction of appropriate elements from a set. The qualification of the extraction
is given as a unified form of predicate which represents an intentional set corresponding to the
extraction. All retrievals and information are integrated into the operations upon sets by adopting these
predicates. In the conventional database systems, persistent information has been stored as the form of
sets. For example, the relational database systems give persistency to the relations, which are sets that
consists of tuples of values [Date 86] [Ullman 88].

Several persistent programming systems therefore throw the spotlight on sets as a type for persistency
{Atkinson 87]. In these systems, the set is explicitly specified. GemStone [Maier 8¢], an object-oriented
database systems based on Smalltalk-80 [Goldberg 83], adopts this policy. According to the descriptions of
OPAL {Servio 89], the language of GemStone, the persistent information must be declared as a set type
explicitly. The “cluster” corresponding to a persistent type should be specified in O++, the language of
ODE (Object Database and Environment), for enabling to apply set operations on the objects which
belong to the type [Agrawal 89]. In the languages of Oz (e.g. CO;, LispO:) [Bancilhon 8], the “with extension”
syntax can be used to a persistent type for indicating the objects of the type constructs a set as an
extension of the type [Lecluse 89].

Types Based Persistency:
Although this policy is almost same as the previous policy, the set corresponding to a persistent type is
implicitly specified. It is therefore possible to apply some set operations on the objects that belong to a

persistent type automatically. In the conventional database systems, the relational model comes under
this policy, since the description of a relation supposes the set of tuples in which the type of each tuple

<3>

follows the description. Daplex, one of earlier persistent programming languages for functional data
models, assumes a set corresponding to each persistent type [Atkinson 87]. PS-Algol has been adopting the
same approach [Atkinson 87). ORION ([Banerjee 87a] assumes the implicit set type corresponding to each
type, and the implicit set types are automatically attached to the “set” type of the system as the subtypes
of the “set” type.

Obijects Based Persistency:

Each object can have the property of persistency individually in this policy. In previous two policies, the
persistent objects are managed in accordance with the persistent types. In this policy, however, the type
is attached to the persistent objects. The persistent objects are ordinarily managed by using their names.
Although it is necessary to discuss the relationship among naming, scoping, and persistency, we will
discuss this problem in another future paper because of the limitation of the space and time. The
persistent objects are accessed by referring their names explicitly. If one may consider the environment
of Smalltalk-80 as a persistent programming system, the global variables, which include the class
definitions, in Smalltalk-80 are persistent objects [Goldberg 83]. O; has the named objects for persistency
besides the extensions of the persistent types. The policy of the objects based persistency is similar to the
ordinary global variables in the programming languages [Lecluse 89]. In the life time of the program, the
global variables exist individually. Lisp systems may be considered to have lists based persistency
because the global variables usually consist of lists.

We also refer to the cases in that persistency is granted to the several limited types, before proceeding to
discuss the requirements for the relation between types and persistency. Since the relation cannot have
the pointer as a type for its attribute in the relational database, the schemata are designed to duplicate
the values in a column over the different relations. Although this limitation in attribute types is essential
to the relational model which is based on the calculus of set, it heavy imposes limitations on
constructing a flexible abstraction in the course of the schema design. Semantic data models [Hull 87)
[Peckham 88] proposed for the database management systems remove this limitation for represents
semantic networks among information directly. Persistency should be orthogonal to types and be
designed as an option of type in the persistent programming systems.

As shown in the previous two of the three policies, the constructors of persistent objects and types are
strongly associated with each other in many systems. In the persistent programming systems, set is-a
primitive for persistency, however, the constructors are not limited to only set. The constructors may be
not only based on unordered sets but also based on ordered set like Lisp systems. There are various
sorts of constructors potentially, e.g. sets, ordered sets, lists, arrays, trees, directed acyclic graphs,
graphs, etc. These constructors are described by defining the data structure of the elements of the
constructions as the types in the programming languages and are coupled with operations for each
constructor into abstracted data types. We propose however these constructors should not depend on
the types or the class of objects defined at their creation, but depend on the properties of the some
collections of the existent objects as discussed in the subsequent discussions.

If the constructors are separated from the types, it is possible to give persistency to the constructions. In
this policy, the sorts of constructors may be limited since constructors cannot be newly defined by using
types besides the system defined constructors, although the sorts of constructors may be adequate to
ordinary applications. If the constructors are not separated from the types, persistency should be given
objects as the third policy, and the types should be defined on any collection of persistent objects,
because the constructions of information should be variant dynamically corresponding to the view
points. Since an information retrieval makes a new construction of information dynamically, it is
required that the construction can be registered as a persistent construction. Consequently, the types
which include the construction mechanisms should be based on the existent objects like views. The view
(i.e. sub-schema) based constructions of the persistent objects were partially realized on types (i.e.
conceptual schema) as options in the systems adopting types based persistency (e.g. relational database
systems) {Ullman 88]. The view however is a primitive mechanism for construction based on types in
order to describe the dynamic flexible abstraction and to enable person-oriented classifications
{Danforth 88].

<4>

2.2. Type Mechanisms

The type mechanisms of the open-ended persistent programming systems may become complicated,
since the mechanisms should support the applications compiled statically, and also support the
dynamic view mechanisms as described in the previous subsection. For realizing both of these
requirements opposing to each other, we look back the various sorts of type mechanisms that have been
proposed in the research fields of types in programming languages in this subsection. We also construct
a direction of type mechanism for satisfying these requirements.

Class based type mechanism:

Since classes are usable for defining the scheme of persistent information, many persistent
programming systems adopt this mechanism.- Here we should refer to the relation between types and
classes. If the types of objects is statically defined, the classes are equal to the types. We however regard
types as variant properties of objects corresponding to the view point as explained in the previous
subsection. The classes are associated with each other by using the relationship of “is-a” (i.e.
inheritances). This mechanism is useful to give some width to a defined type. The class mechanisms
however prescribe the scheme of each object to be equal to the definition of the class after creation of ob-
ject. Consequently, the differentiations of some objects in the same class in the course of evolution
[Licberman 86] or the dynamic views of objects cannot be realized by using the class mechanisms.
Although the methodologies of evolution based on the class mechanisms are proposed in several
persistent programming systems or database systems [Banerjee 87b] [Penny 87], the rules of evolution seem
to be complicated and limited, because the evolutions of objects require dynamic reconstruction of
classes in the result.

Ideals model for types:

The ideals model regards a type as a set of values [Cardelli 85. The meaning of that a value has a type is
interpreted as that the value is a member of an appropriate set. Consequently, an object can belong to
multiple types because the sets may overlap. This model explains the characteristics of the polymorphic
types naturally, although the model has some high-order operator, called a type operator, out of the
model. The relations among types can be replaced by the relations of sets in this model. The assertion
“T1 is a subtype of T2” is replaced by the mathematical condition “T2 o T1”. The orders of types,
namely inheritance mechanisms, are thus represented as the orders of sets.

O: adopts the ideals model as an explanation of the semantics of subtypes. FUN, a virtual language
prepared for discussing polymorphism by Cardelli [Cardeli 85], has some strong operators on types for
enabling the static type checking. This model is thus used for enabling types to have some width in
static type checking. This model may also be strong enough to represent the dynamic view mechanisms,
since the type as a view can be interpreted as a set in general.

The ideals model founds on the basic types such as Integer, Boolean, or Real. The type of each value is
described as an expression consisting of the basic types and type constructors such as function spaces
(-), Cartesian products (), record types (i.e. labeled Cartesian products), and variant types (i.e. labeled
disjoint sums) [Cardelli 85]. The type checking of functions, when they are applied on some values
received as their real parameters, uses some type inference rules based on the methodologies of
structural equivalence. The equivalence is satisfied by the type of a real parameter is included as a
subset in the set, i.e. the type defined for the parameter of the function. In the descriptions of the precise
polymorphic types of the functions, the following three qualifiers are usable: the universal qualifiers for
expressing the parametric types, the existential qualifiers for representing the abstract data types, and
the bounded qualifiers for describing the order between types. It is also possible to combine these
qualifiers. The types of the real parameters are replaced with the expressions of the basic types and the
type constructors in the result, and are compared with the type of functions. However, the types based
on view are not always constructed from the basic types. For example, it is possible to construct the
view in that the objects which have same values in their attributes are collected. The view thus can form
the type which is defined by some predicates partially, and is not always described directly by the
construction of basic types. The type checking in that cases cannot be realized by using only the ideals
model.

<5>

Type mechanism in Poly:

As an interesting type mechanism which is not based on the basic types, we focus on the type
mechanism in Poly [Matthews 85] [Matthews 88]. Poly is one of the languages based on the polymorphic
types, and is one of the descendants of CLU [Liskov 77]. In the model of the type mechanism, a type is
regarded as a set of operations. The values exist as fundamental entities, and the types are some
interpretations for collecting them according to the common operations in these values. This model thus
can explain all types including the basic types as abstract data types in which a types is defined with the
set of the operations. It is possible to describe the views which are defined according to some
operational properties, if the type mechanism of a persistent programming system is constructed on the
basis of this model. Although Poly does not have the facilities of evolution, it is implemented as a
persistent programming system. This type mechanism does not cope with the relationships among
types. The type checking mechanism of Poly therefore bases on the methodologies of name equivalence.

Requirements:

For realizing both of the statically checked types and the dynamically created types, it is necessary to
combine the set based type mechanisms such as the ideals model with the type mechanisms based on
the properties on the existent objects into a unified type mechanism. The types in such a mechanism
may be described as intentional collections consisting of predicates for qualification, or extensional
collections enumerating the elements of each set directly. Each type is associated with some operations
for describing the properties of the constructions of the collections, such as sets, lists, or arrays. If all
elements of a collection belong to a type, the collection can be handled as a subtype of the type, and it is
regarded to have the same operations of the type. In order to check types consisting of some collection
and a set of operations, the methodologies of structural equivalence should be combined with the
methodologies of name equivalence as a result. We present a model adopting this approach of type
mechanism in section 3.

It is also required to separate the specifications of types from their implementations for describing more
flexible abstraction. Particularly, this separation is necessary for the static type checking. In the static
type checking, the partial information about the type is used, where the information of the
implementations is not included in the partial information. In the open-ended persistent programming
systems, the specifications of the existent types are only used for the type checking as discussed in the
next subsection.

2.3. Binding Persistent Information to Ephemeral Applications

There are two policies for the configurations of the persistent programming systems. The configurations
are defined by the management of a persistent space where all objects have properties of persistency.

Unified persistent space:

All objects have basically properties of persistency in this policy. The deletions of volatile objects are
executed implicitly by system. The techniques of garbage collection are required in the management of
persistent storage, as same as Smalltalk-80, or Lisp. This policy is strong enough to construct closed
persistent programming systems. Smalltalk-80 has been adopted this policy basically in its environment.
Since ORION constructs a unified environment, it adopts this policy. O, which supports multiple
languages, also adopts this policy, nevertheless the programs written in the languages are statically
compiled.

Separated persistent space:
The persistent space is separated from the application space where the objects of applicaﬁon programs
exist. Consequently, some mapping mechanisms are required for projecting the proxies of persistent

objects into the application space. This configuration is also inevitable in order to achieve an open-ended
persistent programming system, since the applications which are written in the conventional

<6>

programming languages form the separate application spaces besides the persistent space. Because ODE
manages persistent objects separately by using clusters, it is considered to adopt this policy. GemStone
also adopts this policy in the interfaces with the conventional programming languages such as C, and
Smalltalk-80.

There are also two policies for defining the properties of persistency to objects, besides these
configuration policy. These policies concern with the compiler based persistent programming systems in
which the programs of the systems are statically compiled, and concern with the systems which adopt
the policy of separated persistent space.

Static persistent properties:

The property of persistency of an object is statically defined in the compile time in this policy. Types
which are persistent should be declared explicitly in O++ and the pointers which are defined as
attributes of persistent objects in the type should also be declared explicitly, if the pointers point the
volatile objects.

Dynamic persistent properties:

Any object can have the property of persistency dynamically in this policy. A persistent space which
adopts this policy is also called a persistent pool. In the case that a system adopts the policy of types
based persistency, the name of type is not always equal to the name of a group of persistent objects.
Consequently, the persistent objects are referred by another name besides the type name. Although the
O++ limits the abilities of persistency of types statically, the objects of the types is managed by using
clusters in fact. The clusters are dynamically opened at the run-time of programs. Each cluster then is
bounded a particular persistent type. O++ also has the facility for grouping several objects of an
identical persistent type by the sub-cluster mechanism. In O;, an object can become persistent by naming
in the course of execution of a program individually, while a unnamed object will be deleted implicitly
unless the object is referred from a persistent object.

Cardelli classified the binding policy into three models according to the mechanisms of intern and
extern: Fetch-Store model, Load-Dump model, and Commit-Rollback model [Cardelli 88]. In the fetch-
store model, a persistent storage is used just as a back-up of objects. It is similar to the combination of
the policy of separated persistent space with the policy of dynamic persistent properties. The
environment of Smalltalk-80 is equal to Load-Dump model, because this model assumes the single user -
environment. An object is automatically dumped and loaded by demands. The commit-rollback model
is used for sharing persistent objects by multiple applications. It is an extension of the load-dump
model. It is similar to the policy of unified persistent space. For discussing more flexible persistency, we
refer to some binding mechanisms concerned with persistency

Dynamic binding like Dynamic SQL:

In several advanced cases of dynamic SQL [1SO89] [1S09%0], an application program receives the
information about the scheme of persistent tuples fetched by the application. The application program
can deal with the fetched tuples dynamically according to the information. The basic types in persistent
information are converted into the types in parent languages, to which some SQL commands are
embedded, by the libraries of dynamic SQL. In the open-ended persistent programming system based
on a dynamic view as a type, such a dynamic binding mechanism will be required for an interface with
the conventional programming languages.

Binding by name:

The persistent objects are accessed by referring to their names. The name of type is equal to the name of
type of persistent objects in the type based persistent programming system as shown. In the compile
based persistent programming system, the binding will be static. -

We summarize the requirements for binding mechanisms. The policy of separated persistent space is
indispensable in the open-ended persistent programming systems, however within each system, a uni-

<7>

fied persistent space should be achieved for realizing the binding mechanism by name. The policy of
dynamic persistent properties is more flexible than the static one. The dynamic binding mechanism like
dynamic SQL will be useful when persistent information is accessed by the programs written in
conventional programming languages.

We refer to a problem which the designer of object-oriented database will mistake in the last of this
section. In the several object-oriented database, on account of supporting the interfaces to the
conventional programming languages, the activities of computation is principally executed in the side of
ephemeral applications written in these languages. This usage means that the class mechanisms in
object-orientations are used for mere schemes of semantic data modeling. The purpose of persistent
programming resides in the unified persistent space, and not in the facilities for open-ended. In the
unified persistent space, the computation of application should proceed.

3. Our model

We proposed the model for enabling flexible abstraction in [Minohara 9. The foundation of the model
succeeds to the model proposed for persistent programming languages [Minohara 89]. Although there is
another concept, Meta (i.e. Machine), in this model besides two concepts as described bellow, we do not
discuss the concept directly in this paper. We try to represent how our model satisfies the requirements
for persistent programming systems in this section.

3.1. Decomposing the Persistent Objects

We decomposed the concept of an object into two concepts: entity and association. The entity of an
object represents its existence, and the associations of the object represent its functionalities. Note that
we do not decompose an object into two parts merely. We consider the concept of entity and the concept
of association as view points of the concept of object. An single object is considered as an entity in the
view point of entity, and it is also considered as a group of associations in the other view point. Here
we however adopt the following expression for abbreviation.

an object = an entity + associations

In our model, all objects exist in a unified persistent space. In the persistent programming, the entity
expresses the existence of object in the space. Since we adopt the policy of unified persistent space, an
object will be removed implicitly unless the entity of the object is named. The naming is the primary
mechanism for persistency in our model. The unnamed objects are also not removed, when these belong
to the persistent object as its attributes. An association can also have the properties of persistent
individually, since it is an entity as noted above. An association persistently defined has a name as well
as an ordinary entity.

Associations are used for all sorts of relationship among entities. An entity may be represented as a
node in a graph, and an association may be expressed as a directed arc of the graph. Our model may
seem to be same as the semantic networks or the semantic data models, particularly functional data
model. However, an association is defined as an entity with computation mechanisms. In the functional
data model, a function representing the relationship among values is used only for navigating
information constructed from these values semantically. It is also possible to use each association for
navigating information in our model, since it is one of our total aims to realize an environment where all
objects including associations can be managed as operands of an operation. However, we can construct
not only information but also computation by using associations.

3.2. Associations

Since the functionalities of an object are expressed by its associations, we discuss the facilities of
associations principally in this subsection. Associations are used for describing flexible abstraction. An
association is considered as a mapping function from source entities to destination entities, where these
entities can be also associations. We call the functionality of an association “association morphism”

<8>

generally. An association is conceptually constructed from the description of association morphlsm and
the entities of individual associations. The description of association morphism forms “total associa-
tion”, which any entity coming under the source of association is mapped to some destination, since it is
regarded as a surjection. A group of individual associations forms “partial association”, which some
entity that is not defined in the sources of the association group cannot be mapped to any destination.

An object is formed by attaching individual association to the object. The basic sorts of association mor-
phism defined in the system include the following sorts of association morphism:

entity-of attribute-of name-of reference-of constraint-of method-of
source-of destination-of association-of meta-of version-of type-of

Several sorts of association morphism are used for constructing the association mechanism itself.
Conceptually, an association morphism is not shared by the individual associations of the association
morphism. It is copied to each individual association. Although ORION adopts similar approach to our
approach, the sorts of association morphism are fixed, and it is not possible to create a new association
morphism which has another computation mechanism [Woelk 86]. Note that unnamed objects which are
associated with a persistent object through individual associations of “attribute-of” association mor-
phism, are not removed. This sort of association is used for constructing composite objects{Kim 87).

In an object of the conventional object model, the methods which have operations are distinguished
from the attributes. In this model, it is possible to regard them as a identical sort of properties since they
are linked through individual associations, and is also possible to distinguish according to the sorts of
association morphism. The reason why we call association “association”, is that the destination entity of
an individual association can be accessed only by referring to the name of the association in the point of
the source of the association. An association can associate an entity with multiple entities. Such an
association is called a “set association”. The type mechanism is realized by using set associations as
shown in the next subsection.

3.3. Towards constructing type

We enumerate the requirements for the type mechanism in an integrated persistent programming
system here: the ability of describing flexible abstraction, the dynamic viewing mechanism, the static
description of type by using specifications, and the support evolution based on the alteration of each
object. We define a simple language based on our model for explain the construction of type. The
language is partially defined only for explain, and has not any strong syntax sugar. We then explain our
construction of type by using example of the language.

The syntax of this language is partially.defined as follows:

<construction> ::= <definition> | <associating> | <evaluation> | <construction> <constructlon>opuon
<definition> ::= <name> = <associating> | <name> = <evaluation>

<associating> ::= individual <name> <parameters>option <specification>option (<construction>)option
<evaluation> ::= <name>(<construction>)

<specification> ::= [<source>option >>> <destination>option |

<parameters > ::= [<name definition> |

<name definition> ::= ‘<name> | <name definition> ,<name definition>option

The option means that the symbol can be omitted. In the <specification>, both of the <source> and the
<destination> can be omitted. If they are omitted, the set of whole values in the persistent space is
assumed. The <associating> is prepared for creating a new individual association which associates the
<source> with the <destination>, while the <evaluation> is prepared for applying an association on the
operands (i.e. real parameters) of the association. Since the <definition> can be substituted by the
following expression, it is a kind of <associating>:

<9>

individual name-off <name> >>> <associating>], or individual name-off <name> >>> <evaluation>]

We try to describe an object by using this simple language. We then describe Tokyo tower, the tower
like Eiffel tower for television, because the beautiful illumination of the tower can be seen from our
university at night and Eiffel tower is used for example in O.. We describe the information of Tokyo-
tower by following several attributes: the name, the address, and the height. The address is composed
from the following two attributes: the city and the section. We express Tokyo-tower as follows:

Tokyo-tower = individual entity-of [>>> (name:,address:(city.,section:),height:) J(
name = individual attribute-off Tokyo-tower >>> *Tokyo Tower”],
address = individual attribute-of] Tokyo-tower >>> individual entity-of(
city = individual attribute-off address >>> "Tokyo"],
section = individual attribute-off address >>> "Minato”])],
height = individual attribute-of] Tokyo-tower >>> meter(333)])

We express Tokyo-tower as an entity which has three named individual associations in this description.
The entity, which is the destination of the association “address”, also has two named individual
associations. In this description, some unknown notations appear. The <destination> of the individual
association “entity-of” is we describe the tuple which means one entity of a Cartesian product by the
notation with parentheses and commas. For example, the tuple consisting of two entity is described as
“()”. The entity of Tokyo-tower is constructed the tuple “((,),)". It is possible to refer to the names of
fields in a tuple by using the notation “<name>:". The tuple is considered as an entity of labeled
Cartesian products. These labels are visible to the outside of the entity of Tokyo-tower. Consequently,
these attributes can be accessed from the outside by using the following expression, for example:

Tokyo-tower.name

In our model, thus, each entity can basically be constructed individually by using individual
associations. Consequently, any class system is not required. The specification of an entity is described
in the <destination> of an individual association “entity-of” as shown in the previous example. Whether
an operation is applicable on the entity or not can be judged by referring the <destination>. In the
specification in the <destination>, it is possible to make describe the specification with partial
information. The full description of the specification is inferred by system, by referring to the entity
bound to the attribute.

In order to make Tokyo-tower a computable entity, we add some method, which displays the color
boxes, indicating the illumination of Tokyo-tower, on the screen. We describe the addition of the
method as follows:

adad-visible(Tokyo-tower,
illumination = individual method-off Tokyo-tower >>> —» J(
individual association-off >>> J(
displayColorbox(red, height / 2),
displayColorbox(white, height/2))))

The association “add-visible” adds an entity as a visible attribute to another entity. The expression “—”
in the destination of the specification of the “method-of” indicates the destination is an association. This
method is described as a total association. Both of the source and the destination in the specification of
the association are blank, since this method requires no parameter and returns no entity. The
specification of Tokyo-tower will be updated corresponding to this alteration. This method can be used
by expressing as follows:

<10>

Tokyo-tower.illumination
3.4. Constructions of types based on associations

The facilities of the type mechanism is decomposed three principal functionalities: the creation of a new
entity which belongs to a type, the collection of existing entities by using some category, and type
checking. Each facility is realized in our model. The creation is executed by using templates. The
collection is executed by using view. The type checking is executed by referring to the specification.
Although we do not describe precisely the facilities of type checking in this paper because of limitation
of the space, the specification mechanisms are used by the interface with the conventional language and
are also used when applying some operations on an entity. Consequently, the type is expressed as
follows in our model: '

Type = Template + View + Specification
Creation by using Template:

Template is a total association for creating objects. While in the class mechanisms, the created object is
constrained by a class which has been referred at creation because the class is shared by the created
objects, a template referred at creation does not constrain the created object. Consequently, a template is
considered as mere a script for creating an object. Muse operating system has been adopting the similar
approach [Yokote 89]. The following expression is a template for creating the information of a monument
such as Tokyo-tower.

createMonument = individual association-of [(String,String, String,integer)
>>> (name:,address:(city:, section:), height:) |
['aName, ‘aCity, ‘aSection, ‘aHeight] (T(
name = individual attribute-off Tokyo-tower >>> aName],
address = individual attribute-of] Tokyo-tower >>>
individual entity-of(city = individual attribute-off address >>> aCity],
section = individual attribute-off address >>> aSection])],

height = individual attribute-of] Tokyo-tower >>> meter(‘aHeight)]))

The names of parameters for the association are described in the brackets. The created object will be
return by the notation of “T”. Note that “meter” is another template for creating objects of meter types.
Although this example has no description on constraints of created persistent object, various sorts of
constraints can be attached to the created persistent object. Consequently, the class mechanisms such as
one of Smalltalk-80 can be achieved in our model. The following expression describe an example of the
usage of this template. The created object becomes persistent because it is named.

Marine-tower = createMonument("Marine Tower", "Yokohama", "Motomachi”, 101)
Viewing existing objects:

For implementing a view as a type, the following descriptions are required: the description of a set for
extraction by qualifications, the description of a construction for forming the type by properties, and the
description of attachments to objects in the view if necessary. The qualifications are described in the
sources of the specifications of views, and the type information of the views are described in the
destinations. The construction of properties of a view is described in the <construction> of the
association for the view. It is also possible to describe the attachments in the <construction>. We
describe a view which collects several monuments which height is higher than 100 meter.

<11>

HigherMonument = individual entity-off
[x J{ x in {(name., address:(,), height)} and x.height > meter(100) } >>> {(name:, height:)}]
individual association-of] {(name:, height)} >>> HigherMonument] (
sorted-print = individual association-of)

The view named “HigherMonument” collects objects which express the information of monuments, and
qualifies them by some predicate. A new method named “sorted-print”, which prints all objects
corresponding to the qualification in the ascendant order is defined for the construction of the view.
Although the borrowing of methods is not described in this example, some borrowing mechanisms are
available. Note that the specification in the view has the expression of the collection of entities as its
destination, as shown in the previous example, while the specification of the definition of an entity has
the expression of an entity in its destination.

4. Conclusion

We discuss the requirements for persistent programming systems in the course of surveying various
sorts of proposed systems. Types are described by combining the qualification written by intentional
collections and extentional collections with the construction written by facilities of operations. The
specification can also be inferred when constructing an open-ended persistent programming system. In
a unified persistent space, all objects can be accessed by referring to the name, or by navigating. The
type mechanism based on view satisfies these requirements. We presented our model for persistent
objects, which based on the concept of entity and the concept of association. By combining various sorts
of associations, it is possible to construct not only information of persistent objects but also their
computation.

The many problems are left in our researches. We should construct the precise type checking
mechanisms based on this model. The evolution mechanism based on each persistent object should be
formalized precisely, where the relationship between constraint mechanisms and evolution mechanisms
is expressed by a unified rules. These will be realized with the techniques of versioning. The scope
mechanism is also an important problem for persistent programming systems. We are designing the
prototype system as a persistent programming language which is expressive enough to describe the
ordinary programming. In the language, other mechanisms such as meta mechanisms are combined
with these mechanism. After the implementation of the language, we will review the experiment of a
unified persistent programming system from the practical view point. We may describe another version
of this model, on which the reviews will be reflected.

Acknowledgements

The primary author of this paper, Tatsuo Minohara, thanks the members of ICOT database
programming languages sub-working group, particularly Mr. Katsumi Tanaka. The discussions of
object-oriented database systems in section 2 base on the papers which are surveyed in the sub-working

group.

References

Agrawal 89 R. Agrawal and N.H. Gehani, “ODE (Object Database and Environment): The
Language and the Data Model,” Proc. of ACM SIGMOD, 1989.

Atkinson 87 M.P. Atkinson and O.P. Buneman, “Types and Persistence in Database Programming
Languages,” ACM Computing Surveys, Vol. 19(2), 1987.

Atkinson 89 M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, and S. Zdonik, “The

Object-Oriented Database System Manifesto,” Proc. of DOOD, 1989.

Bancilhon 88 F. Bancilhon, and et al., “The Design and Implementation of Oz, an Object-Oriented
Database Language,” 2nd International Workshop on Obejct-Oriented Database
Systems, (LNCS, Vol. 334), 1988.

<12>

Banerjee 87a
Banerjee 87b
Cardelli 85
Cardelli 88
Danforth 88
Date 86
Goldberg 83
Hull 87

1SO 89
1SO 90
Kim 87

Lecluse 89
Lieberman 86

Liskov 77
Maier 86

Matthews 85
Matthews 88

Minohara 89
Minohara 90
Peckham 88

Penny 87

Servio 89
Ullman 88

Woelk 86

Yokote 89

J. Banerjee, et. al., “Data Model Issues for Object-Oriented Applications,” ACM TOIS,
Vol. 5, No.1, 1987.

J. Banerjee, W. Kim, and et al, “Semantics and Implementation of Schema Evolution
in Object-Oriented Databases,” Proc. of ACM SIGMOD, 1987.

L. Cardelli and P. Wegner, “On understanding types, data abstraction, and polymor-
phism,” ACM Computing Surveys, Vol. 17(4), 1985.

L. Cardelli and D. MacQueen, “Persistentce and Data Abstraction,” Data Types and
Persistence, Springer-Verlag, 1988.

S. Danforth and C. Tomlinson, “Type Theories and Object-Oriented Programming,”,
ACM Computing Surveys, Vol. 20(1), 1988.

C.). Date, “An Introduction to Database Systems 4th Edition Vol.1, Vol.2,” Addison-
Wesley, 1986.

A. Goldberg and D. Robson, “Smalltalk-80: The language and Its Implementation,”
Addison-Wesley, 1983.

R. Hull and R. King, “Semantic Database Modeling: Survey, Applications, and
Research Issues,” ACM Computing Surveys, Vol. 19(3), 1987.

“Database Language SQL,” ISO 9075, 1989.
“Database Language SQL2,” ISO/IEC JTC1/SC21/WG3 DBL-SEL 3b, 1990.

W. Kim and et al., “Composite Object Support in an Object-Oriented Database
Systems,” Proc. of ACM OOPSLA, 1987.

C. Lecluse and P. Richard, “The O: Database Programming Language,” Proc. of
VLDB, 1989.

H. Lieberman, “Using Protypical Objects to Implement Shared Behavior in Object
Oriented Systems,” Proc. of ACM OOPSLA, 1986.

B. Liskov, et al., “Abstraction mechanisms in CLU,” CACM, Vol. 20(8), 1977.

D. Maier and et al., “Development of an Object-Oriented DBMS,” Proc. of ACM
OOPSLA, 1986.

D.C.J. Matthews, “Poly Manual,” SIGPLAN Notices, Vol. 20, No. 9, 1985.

D.C.J. Matthews, “An Overview of the Poly Programming Language,” Data Types
and Persistence, Springer-Verlag, 1988.

T. Minohara and M. Tokoro, “An Object Oriented Database Programming Language
Model,” Proc. of IPS] Advanced Database System Symposium, 1989.

T. Minohara and M. Tokoro, “MyAO: A Model for Expressing Persistent Objects,”
WOOC, 1990.

J. Peckham and F. Maryanski, “Semantic Data Models,” ACM Computing Surveys,
Vol. 2((3), 1988.

DJ. Penny and J. Stein, “Class Modification in the GemStone Object-Oriented
DBMS,” Proc. ACM OOPSLA, 1987.

Servio Logic Development Corporation, “Programming in OPAL,” 1989.

J.D. Ullman, “Principles of Database and Knowledge Base Systems Vol.1,”
Computer Science Press, 1988.

D. Woelk, W. Kim, and W. Luther, “An Object-Oriented Approach to Multimedia
Data-bases,” Proc. of ACM SIGMOD, 1986.

Y. Yokote, F. Teraoka, and M. Tokoro, “A Reflective Architecture for the Object-
Oriented Distributed Operating System,” Proc. of ECOOP-89, 1989.

<13>

