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Classification of Nested Relations under Deeply Nested Algebra

Hiroyuki KITAGAWA*, Tosiyasu L. KUNII** and Nobuo OHBO*
* Institute of Information Sciences and Electronics, University of Tsukuba
** Department of Information Science, Faculty of Science, The University of Tokyo

Nested relational algebras are classified into the shallowly nested algebra and the deeply nested
algebra. The former restricts application of operations to the outermost level of nested relations,
while the latter allows direct manipulation of internal table structures. Several interesting
subclasses of nested relations were identified under the shallowly nested NEST and FLAT
operations. In this paper, we study classification of nested relations under the deeply nested
NEST/FLAT, and prove that each subclass defined under the deeply nested NEST/FLAT is equal
to its counterpart defined under the shallowly nested NEST/FLAT.



LIntroduction !

A considerable amount of research effort has
been devoted to the study of nested relations
since the late 1970's. The first study on the
design of nested relations was done by
Makinouchi in 1977 [17]. The authors proposed
the nested table data model (NTD) as an
underlying construct for office form handling
in 1979 [10] and later in [11, 12, 13, 14]. In
addition to extensions of the standard
relational algebra operations, two algebraic
operations, NEST and FLAT, were defined
and their basic properties were studied in 1980
[11]. Jaeschke and Schek presented a similar
study on relations which include set values in
1982 [8]. Fischer and Thomas formally
defined a full set of operations for nested
relational algebra in 1983 [5]. Later, various
formulations of nested relational algebra
have been proposed by several researchers [1,
2,3,4,17,9, 18, 19, 20]. Some of them restrict
application of operations to the outermost level
of nested relations [5, 7, 8, 19], while others
allow direct application of operations to
internal table structures (1, 3, 4, 9, 11, 14, 20112,
In this paper, we generically refer to an
algebra with the former property as a
shallowly nested algebra, and one with the
latter property as a deeply nested algebra.

The nested relational algebra by Fischer and
Thomas [5] is a well known instance of the
shallowly nested algebra. Most theoretical
studies on nested relations have been based on
the shallowly nested algebra because of its
logical simplicity. However, under the shal-
lowly nested algebra, sequences of NEST and
FLAT (also referred to as UNNEST) are re-
quired to manipulate internal table structures.
Moreover, because of irreversibility of FLAT
[8, 11], technique such as "tagging" is some-
times mandatory to prevent information loss.
Under the deeply nested algebra, ma-
nipulation of nested relations can be expressed
more succinctly, since algebraic operations
are directly applicable to internal table struc-
tures without sequences of NEST and FLAT.
To name some examples, algebra of the nested
table data model (NTD) [14, 15], Jaeschke's
nonrecursive algebra [9], algebra of

+t1 This paper is a revised edition of [16].

T2 In some nested relational algebras,
internal tables can be manipulated in a
very restricted way.

Deshpande and Larson [4], and Colby's recur-
sive algebra [3] are instances of the deeply
nested algebra.

In this paper, we study subclasses of nested re-
lations defined under the deeply nested NEST
and FLAT, which can directly create and re-
move internal table structures, respectively.
Van Gucht and Fischer identified a number of
interesting subclasses of nested relations un-
der the shallowly nested NEST and FLAT,
which can only manipulate the outermost sub-
table structures [6, 21]. They include the
"Normalization Lossless Structures,” the
"Nested Relxau:ions,"Jr3 the "Permutable
Nested Relations,” and the "Hierarchical
Structures.” A nested relation T is a
Normalization Lossless Structure, iff T =
0*(u*(T)) for some sequence u* of flat opera-
tions such that u*(T) is a flat relation and for
some sequence 0* of nest and flat operations.
Here, "flat" and "nest" stand for the shal-
lowly nested FLAT and NEST, respectively.
When we replace o* with some sequence v* of
nest operations, we get the definition of Nested
Relations. Furthermore, T is a Permutable
Nested Relation, iff T = v*(u*(T)) for some
sequence pu* of flat operations and any se-
quence v* of nest operations such that T and
v¥(u*(T)) have an identical schema.

We introduce several subclasses of nested re-
lations in analogy with the above subclasses
but under the deeply nested NEST/FLAT. We
then show that each of these subclasses is equal
to its counterpart defined under the shallowly
nested NEST/FLAT. The former definition
based on the deeply nested NEST/FLAT is
more intuitively understandable, while the
latter that is based on the shallowly nested
NEST/FLAT lends itself better to theoretical
analysis. Our study is based on the deeply
nested NEST and FLAT, provided by the
nested table data model (NTD) [14, 15]. The
study in this paper also clarifies some inter-
esting properties of the deeply nested NEST
and FLAT operations.

The remaining part of the paper is organized

T8 The term "nested relation” was used to
refer to instances of a specific subclass of
nested relations in the definition by Van
Gucht and Fischer. To avoid the
confusion, we use the capitalized initial
letters.



as follows. Section 2 introduces the deeply
nested NEST and FLAT, and clarifies their
basic properties. Section 3 discusses se-
quences of NEST and FLAT. In Section 4, we
define three subclasses of nested relations, in
analogy with the Normalization Lossless
Structures, the Nested Relations, and the
Permutable Nested Relations, under the
deeply nested NEST/FLAT. Then, we show
that each subclass is equal to its counterpart
originally defined under the shallowly nested
NEST/FLAT. In Section 5, we introduce hier-
archical nest operation, HNEST, to study an-
other subclass: the Hierarchical Structures.
Section 6 is the conclusion.

2. Deeply Nested NEST and FLAT
2. 1. Basic Definiti

As we previously mentioned, we use the nested
table data model (NTD) as a basis of our
study. In NTD, nested relations are referred
to as nested tables (NTs). NTD provides
nested table operations (NT operations) for
algebraic manipulation of NTs. NT opera-
tions form a typical instance of the deeply
nested algebra. Here, we give definitions of
NTs and NEST and FLAT operations.

A nested table (NT) T is defined as the follow-
ing triple:

T = (NN, NS, NO),

where NN is an NT name, NS isan NT
schema, and NO is an NT occurrence. An
NT schema NS is a set of group schemas
which meet the tree condition given later. A
group schema GS; in NS is an expression of
the following form:
Gi<Cy,.. ., C“i> (n; 2 1),

where Gj is a name designating the group, and
Cj (1 <j< nj)is a name designating a compo-
nent of Gj. Here, group names Gj are differ-
ent from each other within an NT schema NS,
and so are Cy, .. ., Cni within a group schema
GS;. If a group Gy appears as a component of
Gi, Gy is called a child of G, and G; is called
a parent of Gx. The sets of descendants and
ancestors of Gj are also defined in an obvious
way and denoted by dg(G;) and ag(G;), respec-
tively. The set of child groups of G; is denoted

by ¢g(Gj). The other components of G; are

called fields and denoted by cflG;). The set of

components of G;, namely cfiG;) U cg(G;), is

denoted by cc(Gj), and the sets dg(G;) U {G;)

and ag(Gj) v {G;} are denoted by dg+(G;) and

ag+(G;), respectively. Group schemas in NS

must satisfy the following tree condition :

(a) There exists one group called the root,
which has no parent.

(b) Every group other than the root has just one
parent and is a descendant of the root.

Figure 1 shows a sample NT. The NT schema

of this NT consists of the following group
schemas:

G1<Fy1, Fo, Go>, Gg<Fg, Fy>.

The functions cg, cf, dg, and ag are defined as
follows:

cg(G1) = (Gg), cg(Go) = ¢,
ef(Gy) = (F1, Fgl, cf(Gg) = (F3, FyJ,
dg(Gy) = (Ggl, dg(Go) = ¢,
ag(Gp) = ¢, ag(Gg) = (G1).
Gy
G,
Fof B2 F 2F
3] %4
X{Y|x|x
X|Y
Y|y
X[Y]Y[X
zl Y] Y[X

Figure 1. Nested Table

Every field and group has a domain of data

occurrences.

(a) The domain of a field F, denoted by
dom(F), is defined as a set of atomic data
items.

(b) The domain of a group with group schema
Gi<Cy, -y Cn;>, denoted by dom(Gy), is

defined as follows:

dom(G;) = gdom(Cyp) x ... X dom(Cni).

Here, we denote with 2A the powerset of a set A
and with Aj x ... x A, the Cartesian product of



sets Ay, ..., A,. Elements in dom(Cq) x ... x
dom(Cni) are called clusters. The clusters are

called G; clusters to explicitly specify that they
can appear in occurrences of Gj.

An NT occurrence NO is an occurrence of the
root group GR. If an NT schema is composed
of only one group schema, the NT is called a
flat NT. Flat NTs are obviously equivalent to
relations in the relational model. Given a
group Gi<Cjy, .., Cni> and a Gj cluster t, the
data occurrence for component Cj in t is denote
by t[Cj]. This notation is also used for a subset

of components C S (Cy, .., Cni].

Primitive NT operations consist of NEST,
FLAT, PROJECTION, SELECTION,
PRODUCT, UNION, and DIFFERENCE.
Definitions of NEST and FLAT are given be-
low. The others are natural extensions of
primitive operations of the standard relational
algebra. Their formal definitions are given
in [14].

Definition 1 : Given a group G; and X &
cc(Gj) X # ¢), the NEST operation NIG;j,
Gj<X>] creates as a child of G; a new group Gj
consisting of components X. Here, Gj<X> isa

new group schema. Every occurrence O of
group G; is replaced by the following O":

0' = ((tlee(Gy) - X1, FN(t) | t e 0),
where

FN(t) = lX] | ue OA ulec(Gy) - X
= tlee(Gy) - X1).

In case G;j is the root, the NEST is referred to as
anouter NEST. o

Note that G; can be any group in the NT

schema in the deeply nested NEST. An exam-
ple of the NEST operation is given in Figure 2.
The shallowly nested algebra only allows
outer NEST operations.

Definition 2: Given a group G;j other than the
root, the FLAT operation F[G;] removes group
Gj, and components cc(G;) are converted into
components of the parent of Gj. Let Gj be the
parent of G; with group schema Gj<X>. Then,

every occurrence O of group Gj is replaced by
the following O':

0'={tX-G;l,uw) | te Oaue tG;).

In case Gj is the root (in other words, Gj is a
child of the root), the FLAT is referred to as an
outer FLAT. (=]

Figure 2 includes an example of the FLAT op-
eration. The shallowly nested algebra only
allows outer FLAT operations.

G,
G G
F|F, 2 F3
By 1 Fs|Fs) 6| B
x|yl x|y |x x|y
x|z |y
z x|y
Ylz x|z |y ]|Y |z
zlx |z |z |x
zly |x
N[G2,G4<F4,F5>] * ? FIG4]
G,
G, G,
F1F2F3 Gy, |Fe|
F o Fs
x|y[x[y[x[x][Yy
z |y
Z X |Y
Y|z | Xz |Y|Y |2
Zz1Xx 1z |z |x
Y |x

Figure 2. NEST and FLAT

22.R ibility and C tativity of
NEST and FLAT

Reversibility and commutativity of NEST and
FLAT are essential for the discussion in the
remaining part of the paper. Reversibility
and commutativity of outer NEST and outer
FLAT was studied by some other researchers.
Here, we consider properties of NEST and



FLAT in the deeply nested algebra. Some of
the following propositions and their proofs are
given in our previous work [14, 15].

Proposition 1 (Reversibility of NEST) : For
NEST NIG;, Gj<Cj>] applicable to an NT T,
let¢ T' = NIGj, Gj<Cj>XD. Then, T =

FIGIT). o

Definition 3: Let Gbe agroupofan NTT, X

C ce(@), and Y & cc(G). Given an occurrence
O of G, X functionally determines Y in O, if
t[X] = ulX] implies t[Y] = u[Y] for every pair of G
clusters t € O and u € O. If X functionally de-
termines Y in every occurrence of G, func-

tional dependency X — Y holds in T. o

Proposition 2 (Reversibility of FLAT) : For
FLAT F[G;] applicable to an NT T, let Gj be the
parent of Gj, Cj = cc(Gy) Cj = cc(Gj), and T =
F[G;IT). If and only if functional
dependency C;j-Gj —» Gjholdsin T, T = NIG;,

G;<Cp>I(T). =)

Proposition 3 (Commutativity of FLATs) : Let
G; and G; be distinct groups other than the root
in an NT T. Then, F[Gj] FIG;(T) =

FIG;IFIG(T)T4. o

Proposition 3 assures that two FLAT opera-
tions are always commutative, whatever hier-
archical levels they are applied at. On the
contrary, NEST does not have this property.
To discuss commutativity of NEST operations,
we introduce the concept of weak multivalued
dependency originally identified by Jaeschke
and Schek in [8]. Let G be a group, and O be an

occurrence of G. The projection of O over X G
ce(G), (tIX] | t e 0}, is denoted by O[X]. The
projection of O over Y € cc(G) with an X-value
x, {tIY] | t € O A t[X] = x}, is denoted by O4[Y].
Similarly, the projection of O over Y with an

X-value x and a Z-value z (Z € cc(@®)) is de-
noted by Ox,[Y].

Definition4: LetGbeagroupofan NTT,X €

ce(@, Y € cc(@), and Z = cc(G) - X - Y. Given
an occurrence O of G, X weakly multideter-

4 FIG;IFIG{T) means FIG;I(FIG;I(T)).

mines Y in O, if Ogz[Y] N Oy [Y] # ¢ implies
Oy z[Y] = Ogy'[Y] for every X-value x and Z-

values z and z'. If X weakly multidetermines
Y in every occurrence of G, weak multivalued

dependency X—(w)—>— Y holds in T. o

Proposition 4 (Commutativity of NESTs) : Let
Gy and Gy, be groups of an NT T, X; ce(Gy),
Xj S ce(Gm), Xj#¢,X#0, and

(G'x, X, G'm, X
(Gk, X -Xp v Gy, Gi, Xy
(f Gk = Gy and Xj € X;)
= (Gj, X, Gk, Xj-Xp v Gy))
(f G = Gy and X € Xj)
(Gx, Xj, Gm, X;)
(otherwise).

Then, NIG'p, Gj<X';>IN[G, Gj<X;>IT) =
NIG'k, Gi<X';>] N[Gp, Gj<Xj>](T), iff

(a) Gk = G, Xj N Xj = ¢, and weak multi-
valued dependency cclGkl - X - X
—(w)->—>X;holdsin T,

(b) Gk =GpandX; € X
(¢) G =Gpand X; < X;, or
(d) G#Gp . =

Proposition 4 assures that two NEST opera-
tions are commutative, if the new groups do not
share the parent. Otherwise, a certain weak
multivalued dependency is required to hold.

NEST and FLAT do not generally commute.
An example is shown in Figure 3. In this case,
F[GgIN[G1, G3<F3, F>KT) # NI[Gq, G3<Fg,
F4>1F[Ggl(T). The following proposition

gives a sufficient condition for commutativity
of NEST and FLAT.

Proposition 5 (Commutativity of NEST and
FLAT) : Let Gy and Gy be distinct groups of
an NT T, Gy, be other than the root, X <

cc(Gy), X#6¢,Gp e v dg+(G), and
Gecg{Gr-x
X-AGpD) v ce(Gm) (fGpeX)

X =

X (otherwise).



Then, F[Gp IN[Gg, Gij<X>KT) = NIGy,

G;<X'>TFIGy, I(T). (=]
Gl
G
2
F F,| F
1 3] 4
1:‘2
X1X|X| Z
Y
XYY X
Z

NGy ,Gg<F3F oI FG,l

v G2 G3 F1 F2 F3 F4
1
FIFI|F X|X| X}z
21 31 4 x|v| x|z
X1 X|X|2 x|yl vlx
Y x|lz|vl|x
X|y|yY[x
z |
NIG 1 G3 <F3,F 4>]
G, G,
F.|F G3 FIlF G3
2% TF U 2R TF
3174 3] 74
x[x[x]z x| x| x]z
X1 Y| X]| 2z X| Y| x|z
X Yl Y[X v| x
X|z|Y[X X|z]|Y[x

Figure 3. Incommutativity of NEST and FLAT

3, Nesti 1 Flatteni

Sequences of two NEST and/or FLAT opera-
tions were discussed in Section 2. In this sec-
tion, we consider more general sequences of
NEST and/or FLAT to derive a complicated
NT from a flat NT and vice versa.

Definition 5 : Given an NT T with n+1
groups, we define, as a flattening for T
(denoted by F*), a sequence of n FLATs which
transforms T into a flat NT. A flattening
consisting only of outer FLATS is called an

outer flattening and denoted by p*. s ]

From Proposition 3, we obtain ‘the following
corollary.

Corollary 1 : Given an NT T, FT = FXT) is
same for any flattening F* for T. un]

Given two NT schemas NS; and NSg, if NS;
and NSg are obtainable from each other with
some sequences of NEST and/or FLAT, NS;
and NSg are said to be NF-translatable.

Definition 6 : Given a flat NT FT and an NF-
translatable NT schema NS with n+1 groups,
we define, as a nesting for FT (denoted by
N*), a sequence of n NESTs which transforms
FT into an NT with the NT schema NS. A
nesting consisting only of outer NESTs is
called an outer nesting and denoted by v*.

=

From Proposition 4, we obtain for following
corollary.

Corollary 2 : Given a flat NT FT and an NF-
translatable NT schema NS, N1*(FT) =

No*(FT) does not always hold for different
nestings N1* and No* for FT. o

As stated in Corollary 2, we cannot arbitrarily
change the order of NESTs in a nesting.
However, any nesting has an equivalent outer
nesting. We get the following proposition
from Proposition 4.

Proposition 6 : Given a nesting N* for a flat
NT FT, there exists an outer nesting v* such
that N¥(FT) = v*(FT). =

We can use a mixed sequence of NEST and
FLAT as well as a nesting to derive a compli-
cated NT from a flat NT.

Definition 7: Given a flat NT FT and an NF-
translatable NT schema NS, we define, as a
general nesting for FT (denoted by N*), a
mixed sequence of NESTs and FLATs which
transforms FT into NT with the NT schema
NS. A general nesting consisting only of
outer NESTs and outer FLATSs is called an

outer general nesting and denoted by w*. =



A general nesting does not always have an
equivalent nesting. For example, the NT
shown in Figure 1 can be derived with the gen-
eral nesting FIGINIG1, Gg<F3, F4>IN[G,,
G<F1, Fg>] from the flat NT shown in Figure
4. However, it cannot be obtained with the only
applicable nesting N[Gj, Go<F3, F4>]l. Asin
the case of nesting, any general nesting has
an equivalent outer general nesting.

G

'z

SIS
IR N
e T [
M e |

Figure 4. Flat Nested Table

Proposition 7: Given a general nesting N*
for a flat NT FT, there exists an outer general

nesting o* such that N*(FT) = o*(FT). o

This proposition can be derived from
Propositions 1, 2, 3, 4, 5.

4 Classification of Nested Tahl

Van Gucht and Fischer identified a number of
interesting subclasses of nested relations un-
der the shallowly nested NEST and FLAT [21].
Here, we consider similar classification un-
der the deeply nested NEST and FLAT.
Definitions of some of the subclasses dis-
cussed in the remaining part of the paper were
given in our previous work [14, 15). In this
section, we discuss the Normalization
Lossless Structure, the Nested Relation, and
the Permutable Nested Relation. In Section 5,
we consider the Hierarchical Structure.

Definition 8 : An NT T is a Normalization
Lossless Nested Table (NLNT), ifT =
N*(FXT)) for some flattening F* and gen-

eral nesting N* [15]. o

As we previously mentioned, the NT shown in
Figure 1 is an example of an NLNT. If we re-
strict F* and N* to outer flattening p* and
outer general nesting ©* in Definition 8, we

get the definition of Normalization Lossless
Structures given in [21]. Any Normalization
Lossless Structure is an NLNT by the
definition. By Corollary 1, any flattening has
an equivalent outer flattening. By Proposition
7, any general nesting has an equivalent outer
general nesting. Therefore, any NLNT is a
Normalization Lossless Structure.

Proposition 8 : The class of Normalization
Lossless Nested Tables (NLNTSs) is equal to

that of Normalization Lossless Structures. &

Definition 9: An NT T is a Canonical Nested
Table (CNT), if T = N*(F*T)) for some flat-

tening F* and nesting N* [14, 15]. o]

By the definition, a CNT is always an NLNT.
However, the converse does not hold, as exem-
plified by the NT shown in Figure 1. If we re-
strict F* and N* to outer flattening p* and
outer nesting v* in Definition 9, we get the def-
inition of Nested Relations.

Proposition 9: The class of Canonical Nested
Tables (CNTs) is equal to that of Nested

Relations. o

Van Gucht and Fischer proposed an efficient
algorithm to determine a given nested rela-
tion is a Nested Relation [21]. Proposition 9
assures that the same algorithm can be used to
identify CNTs.

Definition 10 : An NT T is a Permutable
Nested Table (PNT), if T = N*(F*(T)) for
some flattening F* and any nesting N* such
that T and N*(F*(T)) have an identical NT

schema. =

By the definition, a PNT is always a CNT.
However, the converse does not hold because
NEST operations do not necessarily commute
as discussed in Proposition 4. If we restrict F*
and N* to outer flattening p* and outer nesting
v* in Definition 10, we get the definition of
Permutable Nested Relations. Any PNT is a
Permutable Nested Relation by the definition
and Corollary 1. The converse is proved from
Corollary 1 and Proposition 7.

Proposition 10 : The class of Permutable
Nested Tables (PNTs) is equal to that of

Permutable Nested Relations. (= ]



Van Gucht and Fischer also indicated an al-
gorithm to identify Permutable Nested
Relations [21]. Proposition 10 assures its ap-
plicability to PNTs.

5. Hi hical Struct

In addition to the subclasses of nested rela-
tions mentioned above, Hierarchical
Structures were discussed based on the
"hierarchical nest" operation in [21]. Some
nested relational models consider only
Hierarchical Structures as data structures [1,
19]. To discuss Hierarchical Structures under
the deeply nested algebra, we have to extend the
definition of the hierarchical nest operation in
[21].

Definition 11 : Given a group G;, F € cf(Gi),

and X € cc(G;) X # ¢, F n X = ¢), the HNEST
operation H[Gj<F>, Gj<X>] creates as a child
of G a new group Gj consisting of components
X. Here, Gj<X> is a new group schema. By

the HNEST operation, every occurrence O of
G; is replaced by the following O':

0' = {(tlee(Gy) - X1, FH(Y) | te 0},

where

FH(t) = (ulX] | ue O A ulF] = t[FI).

In case Gj is the root, the HNEST is referred to
as an outer HNEST. o

The outer HNEST is equivalent to the hierar-
chical nest operation introduced in [21].
Figure 5 shows an example of the HNEST op-
eration. We consider sequences of HNESTs to
derive a complicated NT from a flat NT.

Definition 12 : Given a flat NT FT and an

NF-translatable NT schema NS, we define, as

a hierarchical nesting for FT (denoted by H*),

a sequence of HNESTs

(1) which transforms FT into an NT T with
the NT schema NS, and

(2) each HNEST of which has the form
HI[G;<K>, Gj<X>] such that

K = (eflGy) | Gy € (dg(G;) U (G5)
A Gk € ag(Gy)),

where functions cf, dg, and ag (defined in
Section 2) are evaluated in the context of NS. A
hierarchical nesting consisting only of outer
HNESTs is called an outer hierarchical

nesting and denoted by A*. o

G,
F | F, Ge G
Bl K 5
XY X]Y |IX|X}]Y
X1Z |Y
Z|X|Y
Y| Z{X|Z |Y|Y1{Z
Z|X1|Z]|Z}X
Z1lY |X
H[G2<F3>,G4<F4>]
G,
G2 G3
F |F G
1 4
2 F3 - F5 F6 F7
4
X1Y|X|Y|IX]|X]|Y
Z
X1Y|Y
Z
ZI1X1Y
Y| Z|X|Z|Y}Y|Z
Z|X1]|Z]|Z|X
Y
Zj|X|X
Y

Figure 5. HNEST

Definition 13 : An NT T is a Hierarchical
Nested Table (HNT), if T = H*(FT) for some

hierarchical nesting H* for a flat NT FT15.
o

If we restrict H* to outer hierarchical nesting

5 HNTs are referred to as Well-classified
Nested Tables (WNTs) in [21].



A* in Definition 13, we get the definition of
Hierarchical Structures. Figure 6 shows an
example of a hierarchical nesting and the ob-
tained HNT. To decide whether the class of
HNTs is also equal to that of Hierarchical
Structures, we consider commutativity of
HNESTSs.

G, Gy
FilBIE[H| 5 Co
x|ylx|y]x FIF G| Fy| By
x|ylylz]Y 2[F
xlzlx|lzly 3
Y|lz|Y|Xx]|zZ X|Y|X]|Y|X

Y
Zz|X
x[Y[x[z1y
H[Gl <Ii‘1 >, G2<F 2 F3>] Y
Z| X
J Y[z Y[x |z

H[G'2 <F2 >, G3 <F3 >] I

/ __ HIG, <F;>G,<F ,F ]

G,
F1G2FF G,
21 3 Gy | Gy
x|yl x|y|x F, G,
Y|Y F2FF4F5
zZ|x 3
x|ylx|z|y x|y|x|y[x
Y|Y Y|z |Y
zZ|x Z|x
Ylz|Y[x]|z Ylz[yYl|x |z

Figure 6. Hierarchical Nesting

Proposition 11: Let Gy be a group of an NT T,
F < of(Gy), Xj @ cc(Gy), Xj# ¢, F N X; =9, X
< cc((}k),Xj¢¢,Fan=¢, andean=¢.
Then,
H[Gk<F>, Gj<X;>]H[Gk<F>, Gj<X;>I(T)
= HIGk<F>, Gi<X;>]HIGk<F>, Gj<X;>I(T)

o]

Proposition 12: Let Gy be a group of an NT T,
Fj  oflGy), Xj S cc(G), X # ¢, Fin X = ¢, Fj

< fiGK), Fj & X;, Xj € X;, Xj#0, and FjnX;=
¢. Then,

HIG;<Fj>, Gj<X;>IHIGk<F;>, Gi<X;>)(T)
= H[Gk<F;>, Gi<X;>]H[Gk <F;F;>,
Gj<X;>I(T) s}

Proposition 13 : Let Gk and Gy, be distinct
groups of an NT T, F; & c¢flGy), Xj € cc(Gy),
X;jz¢, FinX;j=9, FJ S f(Gp), Xj S cc(Gp),
Xj #¢, and Fj N Xj =¢. Then,

HIGn <Fj>, Gj<X;>IHIGk<F;>, Gj<X;>)T)

= HIGk<F;>, Gi<Xi>]H[Gm<Fj>,
Gj<Xj>](T) o

Proposition 14: Given a hierarchical nesting
H* for a flat NT FT, there exists an outer hier-
archical nesting A* such that H*(FT) =

A*(FT). =

This proposition is derived from Propositions
12 and 13, in a similar way to Proposition 6.
Any Hierarchical Structure is an HNT by the
definition. The converse is proved from
Proposition 14.

Proposition 15 : The class of Hierarchical
Nested Tables (HNTSs) is equal to the class of

Hierarchical Structures. o

NLNT

CNT
PNT

(@

Figure 7. Subclasses of Nested Relations

It was proved in [21] that the class of
Hierarchical Structures is properly contained
in the class of Permutable Nested Relations.
Therefore, from Propositions 10 and 15, we
conclude that the class of HNTs is a proper



subset of the class of PNTs. The inclusion re-
lationship among the classes of NLNTs,
CNTs, PNTs, and HNTs is shown in Figure
7.

8. Conclusion

A variety of algebraic operations have been
proposed for nested relations. The set of opera-
tions proposed in [6] is one of well known
instances of the shallowly nested algebra, in
which operations are applicable only at the
outermost level in nested relations. Most theo-
retical studies on nested relations have been
based on the shallowly nested algebra because
of its logical simplicity. However, data ma-
nipulation can be expressed more succinctly
when algebraic operations are directly appli-
cable to internal table structures without nest-
ing and flattening. We refer to an nested al-
gebra with this property as a deeply nested al-
gebra. In this paper, we have investigated
classification of nested relations under the
deeply nested algebra, in particular the deeply
nested NEST/FLAT.

Van Gucht and Fischer identified interesting
subclasses of nested relations under the shal-
lowly nested NEST and FLAT. They were the
Normalization Lossless Structures, the Nested
Relations, the Permutable Nested Relations,
and the Hierarchical Structures. We have de-
fined corresponding subclasses of nested rela-
tions based on the deeply nested NEST and
FLAT in the nested table data model and on
the extended hierarchical nest operation
HNEST. They are named Normalization
Lossless Nested Tables (NLNTs), Canonical
Nested Tables (CNTs), Permutable Nested
Tables (PNTs), and Hierarchical Nested
Tables (HNTs). Then, we have proved that
each of these subclasses is equal to its counter-
part defined under the shallowly nested NEST
and FLAT. The interpretation of each sub-
class based on the deeply nested NEST/FLAT
is more intuitively understandable, while that
based on the shallowly nested NEST/FLAT
lends itself better to theoretical analysis. The
above conclusion has been drawn from the
study of reversibility and commutativity of the
deeply nested NEST, FLAT, and HNEST, and
some of their interesting properties have also
been clarified in the paper. The research re-
sults presented here do not only contribute to
taxonomy of nested relations but also to the in-
depth analysis of data manipulation by the
deeply nested algebra.
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