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Abstract

We have proposed a stream-oriented parallel processing scheme and a parallel processing system
SMASH for a wide variety of database applications. The main feature of the scheme and the system
is functional programming concepts applied to define new database operations and data types and
exploit parallelisms inherent in an arbitrary set of database operations. In this system, it is important
to perform query optimizations for arbitrary combination of various database operations. This paper
deals with optimal memory allocation for a query consisting of an arbitrary set of database operations
in a shared memory resource environment. We propose an optimization method for memory resource
allocation in the stream-oriented parallel processing scheme. This method guarantees to obtain the
optimal memory allocation for any query consisting of an arbitrary set of database operations in

stream processing.



1 Introduction

In relational database systems, as a set of
database operations and data structures are fixed,
memory resource allocation can be considered for
the algorithms of those database operations [6]. In
those systems, system architectures have been de-
signed for supporting only a fixed set of database
operations and data types, Vand as a result, several
algorithms, parallel machine architectures, access
methods, query optimization technics have been de-
signed.

On the other hand, in advanced database sys-
tems providing facilities for defining new data types
and database operations, database operations are
not fixed in advance in the design of systems. In
those systems, as specific algorithms or access meth-
ods cannot be applied to those database opera-
tions, system design strategies for supporting arb-
trary database operations are required. We apply
functional programming concepts [5] to define new
database operations and data types and exploit par-
allisms inherent in an arbitrary set of database oper-
ations. We have proposed a stream-oriented parallel
processing scheme and a parallel processing system
SMASH for a wide variety of database applications
[1] [2]. In this system, arbitrary database oper-
ations are defined as functions which manipulate
databases and intermediate data as streams. Those
functions are executed in parallel by demand-driven
evaluation incorporating stream processing,.

As arbitrary database operations are used in a
query, specific memory resource allocation for spe-
cific database operations can not be applied. That
is, it is necesarry to provide a general method for
memeory resource allocation.

In this system, it is important to perform query
optimizations for arbitrary combination of various
database operations [3][4]. In this paper, we present
an optimal memory allocation method for a query

consisting of an arbitrary set of database operations

in a shared memory resource environment. We pro-
pose an optimization method for memory resource
allocation in the stream-oriented parallel process-
ing scheme. This method guarantees to obtain the
optimal memory allocation for any query consisting
of an arbitrary set of database operations in stream

processing.

2 The computation method for

memory resource allocation

In the stream-oriented processing scheme, grain
size(granularity) settings are the most important
factor for the total amount of computation times
and the degree of parallelism. Granularity set-
tings correspond to shared-memory resource allo-
cation for buffers which are used in computations
for database operations. In the stream-oriented
processing scheme, the shared-memory resource al-
location problem is to fix the optimal granularity
settings(buffer size settings) to minimize execution
time of a query. In this section, we present a compu-
tation method for obtaining the optimal allocation

of shared-memory resources in query processing.

2.1 Memory resource allocation

The shared-memory resource allocation problem
is formalized by using the following parameters and

formulas.

m: the number of buffers using the shared-memory

resources

z; (i=1,2,---,m): variables representing each

buffer size

f(z1,22, -

ecution time

**y@m)t function representing query ex-

BS: the total amount of the shared-memory re-

sources

The shared-memory resource allocation problem

is defined as follows:
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Restriction

m
> =< BS
i=1

T1,Tg," Ty : positive number
Object function

Yy f(z19x27“"wm)

The objective is to find the combination
in [z1,%2," , %m] Which gives the min-

imal value of the object function.

In our method, the object function is represented
in a combination of sub-formulas. The following

symbols are used in setting formulas.

n: the number of formulas for representing the ob-

ject function.
yi (1=1,2,---,n): value of the formula-i.

X; (i=1,2,---,n): a set of buffer size variables

included in the formula-i.

pi (i=1,2,---,n): the number of buffer size vari-

ables included in the formula-i.

¢ (=1,2,---,n): the number of sub-formulas
which correspond to the arguments of the

formula-i.

fi(xiayilayt’%'"vyiq() (i=1921""n): the sub-

formula-i.

r: the identifier of the formula which represents
(corresponds to) the value of the object func-

tion.

Ci; (i=12,---,n) (j =1,2,---,n): the variable
which represents relationship between sub-

formulas.

The object function y is described as follows:

Yr

n = fl(xlayll’ylb""qul)

2 = fa(Xz,y21,922, ", Y25)

¥ = fiXi, ¥, Y2, i)

Yn = fﬂ(xna YniyYn2,° "> yﬂqn) (1)

The formula y;; represents one of sub-formulas

which are constructing the object function.

€ {yl’y2,"'ayn}
(G=12,q¢) (i=1,2,---,m) (2)

Yij

In the following, the total amount of every ele-

ment of X; is represented as Y, X;. That is,

X;

{xﬂax&a""xips} (i = 1,21""71) (3)

Yo Xi=za 4zt + T, (4)

Each formula for constructing the object function
has the following restrictions(characteristics).
The following conditions mean that the graph of

formulas is the form of a tree.

n-1

®

The value of the variable Cj; @ =
1,2,--+,n) (j=1,2,--+,n) is fixed as follows:
If the value of y, is used as a parameter in the

formula y,, then Cy, = 1, and otherwise, Cy, = 0.

Vu,v u # v,3ay,0g,- -+, ag

(6)

Cuay X Cogag X+ X Copv =1

Suppose the graph whose node corresponds to a

formula and whose arc corresponds to a relationship

"\/3‘\1



on the reference of a parameter between two formu-
las. The condition (1) represents that the number of
arcs is one less than the number of nodes. The con-
dition (2) represents that every node is connected
to a graph. Therefore, these conditions represent
that the structure of the graph is a tree.

Every buffer size variable must be included in for-
mulas, and if referential relationships between for-
mulas are not existing, an); buffer size variables X;
do not appear both of those formulas. These con-
ditions represent that the formulas correspond to
pure functional operations, that is, referential trans-
parency is guaranteed among functions which cor-

respond to formulas.

(21,52, 7m} )

O -

i=1
Vu,v Cuy =0 XuNX, = 0 (8)

1’:'(3‘7 x:)

min

= fi(xiayl(s'l’xz )9"')Y1‘ (8' i’xi' ))
os L Xt XiL G- X s B we T

The following summerizes the parameters.

‘8;¢ The total amount of memory resources which

are used to compute y;.

ol

it A vector of buffer size variables which are used
in both the formula y; and the other formula

which references the variables.

X!: The set of buffer size variables which are in-

cluded in X!.

If the buffersize variables x;; are used in the for-
mulas y;;, the buffer size variables X ; represent the
variables which are used in both formulas y;; and

yi. That is,

x:’j = XinXy (G=1,2,--+,q) 9

The minimal value Y;(s;, X}) of the formula y; is

represented as follows,

(10)

0<Y X <ay (G=1,2,,q)

2.2 Algorithm

In this section, we present an algorithm to solve
the problem of memory resource allocation. (This
algorithm is based on dynamic programming.) In
this algorithm, computations proceed from leaf
nodes to a root node of a graph. An allocation
candidate table is created as a result of the com-
putation of each node. The table is driven from
leaf nodes to the root node with adding allocation

information.

The allocation candidate table represents the
minimal values on each allocation candidate. the
minimal value of each formula can be represented

as show in the formula (1). This table consists

of the candidate sizes for allocation of memory re-
sources(size), minimal values of formulas(cost), and
values of parameters(list).

As computations for the values of formulas pro-
ceed in bottom-up, the values of upper nodes are
not used in lower formulas.

[Algorithm]

[1] Allocation candidate tables are created for
each leaf-node of a graph. = Values(y; =
fi(X;)) of a formula are computed for each
candidate buffer size, and the pairs of the can-
didate buffer size and its corresponding value
of a formula are registered in the allocation
candidate table.
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[ 2] Allocation candidate tables are created for the ject function is obtained. The obtained buffer

non-leaf formulas by referring to the created allocation is the result of the optimal memory

allocation candidate tables. resource allocation.

[3] The step [ 2 ] is repeatedly performed until
the value of root node(the object function) y,
is computed and the final allocation candidate

table for the y, is created.

The algorithm for creating an allocation candidate
table is shown in Fig.1. This algorithm is used
to create an allocation candidate table table; of

yi by referring to the allocation candidate tables

[ 4] By referring to the final allocation candidate table;; (j = 1,2,---,¢;) which correspond to ar-

table, the candidate buffer allocation which guments y;; (] = 1,2,---,¢;) of y;, as shown in

corresponds to the minimal value of the ob- Fig.2.

BS: the total amount of shared memory resources.

X; (i=1,2,---,n): the set of bufler size variables included in each formulas.

p{ (i=1,2,---,n): the number of buffer size variables which firstly appear in the formula y;.

gi ({=1,2,--+,n); the number of formulas which are referenced in the formula f;.

le

(3 =1,2,---,p!): bufler size variables which firstly appear in the formula y;.

fi (i=1,2,---,n): the formulas constructing the object function.

table;; (j=1,2,-++,qi): the table corresponding to the formula y;;.

lenij (7=1,2,---,9i): the number of entries included in the table table;;.

idz;j: the variable for indicating an entry in the table table;;.

table;: the table for storing the intermediate result.

K;: the set of buffer size variables which appear in both the current and upper formulas in =, (j =1,2,---, r!).

2]

Lit the set of buffer size variables which do not appear in teh upper formulas in r:', (1=1,2,

type Entry = {

size : integer

/* the amount of memory resources appearing in the computation of a formula*/

cost : real /* the minimal value of the formula in using the memory resources size.*/

X' : set of (buffer size variable, its value)

LB

/* the combinations of buffer size variable and its candidata values */

/* which also appear in the upper formula in z; (j=12,---

list : set of (buffer size variable, its value)

1pi)*

/* the combinations of buffer size variables and their candidate values */

/* which appeared in the lower formulas.*/



input : table of Entry table;; (j=1,2,---,q;)
set of int K;, L;
output . table of Entry table;

/* At this point, no entry is included in the table;.*/
FOR ( all combinations of a buffer size candidate value in the range of 0 < zi; < BS (j =1,2,---,p]) and
a table entry in the range of 1 < idz;; < Ien;,- (G=12,---,q),
which are satisfied with the condition 3 5} el + Y% 3L, table;jlidz;j).size < BS
/* Creation of candidate entry in table;.*/
candidate_entry.size = _.1 zl; G+ 23—1 table;j[idzij).size
candidate_entry.cost = fi( 2}y, -+

lp"’
tabie,l[zd:c.I].X', -+, tableig[idzig,]. X',
table; [idzi1].cost, - - - , tableig[idzig,].cost)
candidate_entry. X’ = {(z!}, valueofz}}) | k € K;}
/* Creation of a entry list list of entries in table; */
/* which do not appear in the upper formulas */
/* by referencing entries in lists corresponding to each lower formula.*/
candidate_entry.list = {(z}), valueofz}y) | 1 € Li} UUIL, table;;lidz;j).list
IF( no entry (= old_entry) of table; exists which satisfies the condition
old_entry.size < candidate_entry.size and
old_entry. X' == candidate_entry. X' and
old_entry.cost < candidate_eniry.cost
*/
FOR( all entries (= old.entry) in the entries included in table;, which satisfies the condition
old_entry.size > candidate_entry.size and
old_entry.X' == candidate_entry.X' and
old_entry.cost > candidate_entry.cost
)
Delete old_entry from table;.
END FOR
Add candidate_entry into table;.
END IF

Fig 1: The algorithm for creating an allocation candidate table
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table 1

size X' cost list
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Fig 2: An overview of the algorithm for creating tables.

2.3 Complexity of the algorithm

The complexity of the proposed algorithm is fixed
by the number of buffers (m), the total size of
memory resources (B.S), the number of formulas in-
cluded in the graph(n), and the number of variables
(pei (i=1,2,-
Relationships among those elements are shown as
follows:

,n)) included in those formulas.

for creating an allocation candidate table is fixed
by the number of candidate sizes for a buffer and
the number of the arguments of the formula. The
size of a buffer does not exceed the total size of
memory resources. The number of the arguments
corresponds to the number of allocation candidate

tables which are referred to in the formula.

Each formula includes (p; + ¢;) arguments. Com-

" putations are performed for every combination of

E(Pt Z m,,)

i=1

(11)

n

ZQ;

i=1

n—1

(12)

In the step [ 2 ], the complexity of computations

those arguments. Therefore, the complexity of the
computations for obtaining minimal values of the
formula in each combination is O(BSPi*%), The
total amount of computations for a graph for ob-

taining the optimal memory allocation is the sum
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of computation times of each formula, that is:

0(2": BSPi+a) (13)

i=1

This complexity means that the computation
times decrease with the decrease of the maximal
number of arguments(p; +¢;). If the number of for-
mulas included a graph is increased, the maximal
number of arguments becomes smaller, and as a re-
sult, the computation times can be decreased. That
is, if the object function is constructed with formu-
las as many as possible, the computation times can

be decreased.

3 Formula settings of query execu-

tion time

In this section, we present the method for defin-
ing object functions. In Section 3.1, a guide for con-
structing an object function is discussed. In Section
3.2, the object function which represents the com-
putation times of a query is shown. This object
function is applied to memory resource allocation
which is used for sequential execution of a query.
In Section 3.3, we introduce the method for con-
structing an object function which is used for par-

allel execution of a query.

3.1 Definition of the object function

A query is represented in a tree structure. In the
tree, a node corresponds to a database operation
and the arc corresponds to source or intermediate
data which is represented in a form of a stream.

The object function is formalized by using the

following two steps:

[1] Formulas for estimating execution time of each
database operation are constructed in a unit
of a database operation. A formula has two
kinds of arguments. One of them is a kind of

buffer size arguments. Execution time of an

database operation is influenced by the size of
buffers which are used to store source or inter-
mediate data. The other is identifiers of other
formulas which correspond to lower-sub-tree

of the formula itself.

[2] The object function is constructed by combin-

ing formulas which are constructed in Step [1].

The object function of a query is formalized by
combining formulas each of which corresponds to
a database operation. That is, the structure of the

object function is the same as that of the query.

3.2 Construction of an object function for

sequential execution of a query

In the case of sequential query processing, the
execution time of a query T is equal to the total
computation time of every database operation in-
cluded in the query. Therefore, the objective is to
obtain the resource allocation which minimizes the
total computation time.

In the functional computation model, there are
Those
methods are called call-by-name and call-by-need.

In call-by-name, the formal argument is reevaluated

two evaluation methods for arguments.

whenever the argument is encountered in the func-

tion body. In this evaluation, the actual argument

can be removed after a reference to it is completed.

In evaluating the argument which corresponds to a

stream, functional computations can be performed’
within limited memory resources. However, the
number of computations may increase.

In call-by-need, a formal argument is evaluated
only once when teh first reference to it is encoun-
tered. The evaluated actual argument is then used
in the other references to the argument. The actual
argument must be retained in teh caching directory
until every reference to it is completed. If the ac-

tual argument is a stream, the memory could be
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swamped. However, reexecution of the same func-
tion is unnecessary.

For each of these evaluation methods, we set up
formulas which represent the total amount of com-

putations in a sub-tree.
m; the number of parameters
i1, Tizy** Tim; buffer size

Yi1,Yiz, "+, Yim; computation time(evaluation time)

of an argument

gi(®i1, iz, - -, Tim,) execution time of the database

operation itself

ni(Zi1, iz, Tim,) the number of references of an

argument

Ci1, Ci2, " **, Cim; the number of re-reference times of

an argument in call-by-need
[1 ] In the case of call-by-name

f(.’l:,'],l‘.'z, ©t s Timgy Yils Yi2s o ;yima)
= g(a:ihwﬂ""’zimg)
-+ hl(xilyxi%'"’zl'Ma) X ¥i1
+  he(zi1, iz, Tim,) X Yiz
+ hm(zil,zi27 Y ml‘m;) X Yim (14)
[ 2] In the case of call-by-need

f(zihzﬂ)' . aximnyil’yﬂ" i 9yl'm.~)

g(xih 2 TR 7mim()

B
+ (xily:tiz,' *ty zimi) - 1) X €y
+ iz
+ (zt'l,xﬂa' e 7zim;) - 1) X Ci2
+ Yim

+ (zilywih"':zims) - 1) X Cim (15)

3.8 Construction of an object function for

parallel execution of a query

The number of database operations used in a
query and the number of processors for query pro-
cessing are constant. In this case, the total exe-
cution time Tgp of a query is represented as the
sum of execution time Tpg; and idle time Tpy of a

Pprocessor.

TQE = TPEj+TPI, (]=1,2,’NP)(16)

The total utilization time T of all processors is de-
fined as the product of the execution time ToE of
a query and the number of processors Np. The to-
tal utilization time is equal to the sum of the total
. Tpg; and the total idle time
Ej-v__fl Tpi; of all processors.

execution time )

Ty

Np x TQE

Np
= Y Top

i=1
Np Np

= Z TPEj + z TPIj
j=1 j=1

Furthermore, the total computation time Ef;”l TrE,

(17

of all database operations in a query is equal to the

total execution time Z;v__‘_’l Tpg; of all processors.

Np Np
ETFE‘ = ZTPE! (18)
i=1 j=1

Therefore, the total utilization time Tk of all pro-
cessors is equal to the sum of the total computation

time Efv:l Trg, of database operations and the to-

- tal idle time E;v:l Tpy; of all processors.

‘N Ne
Ts = Y Tre,+ 9 Tr (19)
i=1 ji=1

As mentioned before, the number of processors

does not change during the execution of a query.
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Therefore, the execution time Tgr of a query is

minimal when the total utilization time Ty of all

processors is minimal. That is, the optimal mem-
ory resource allocation for a query corresponds to
the inemory resource allocation in which the total

utilization time Ty of all processors is minimal.

4 Conclusion

This paper has presented an algorithm for mem-
ory resource allocation and a method for defin-
ing formulas which represent execution time of
database operations. By using this algorithm, the
optimal memory resource allocation is obtained for
a query consisting of arbitrary database opera-

tions.
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