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An Experimental Evaluation of PUCT Algorithm with
Convolutional Neural Network Evaluation Functions
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Abstract: One of the most successful Monte-Carlo tree search (MCTS) applications is AlphaGo and its successors
in which neural network evaluation functions are combined with a variant of MCTS called PUCT (Predictor + UCB
applied to trees). However, further investigation on how various factors (e.g., evaluation functions, reinforcement
learning, number of simulations) impact its performance is still required. To answer this question, our previous work
examined the impact of pattern-based (linear) evaluation functions on PUCT outcomes. In this paper, we try to analyze
the PUCT algorithm with evaluation functions based on (non-linear) neural networks. We developed several convo-
lutional neural networks attempting to replicate evaluation values of Zebra (an open-source champion-level player)
with different quality. Through experiments feeding these to the PUCT algorithm, we find that it still consistently per-
forms better than the evaluation function alone. It also appears that its behavior is independent of linear or non-linear
evaluation function usage.
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1. Introduction
Monte-Carlo Tree Search (MCTS) [2], [4] is a game-playing

method used to find an optimal move by performing random sim-
ulations of games called playouts and building a search tree ac-
cording to the results. After the first proposal by Coulom [4],
MCTS has been intensively studied for many games, especially
Go. In theory, the upper confidence bounds applied to trees
(UCT) algorithm [8] is proven to return an optimal move after an
infinite number of playouts. In practice, however, we are required
to select a move using a limited amount of time and resources.

Therefore, many strong MCTS players perform tree traver-
sals and/or playouts with some game-specific heuristic bias.
Such classical approaches include node prior [3], [5], progres-
sive bias [6], and early playout termination (EPT) [7], [10].
EPT was successfully used in several players such as Ama-
zons [7], [9], Breakthrough [11] and Havannah [10]. A more
recent and successful approach is PUCT (Predictor + UCB ap-
plied to trees) [15]. The DeepMind team adopted a variant of
the PUCT algorithm combined with deep neural networks and
reinforcement learning techniques to develop very strong game
players such as AlphaGo [17], AlphaGo Zero [19] and its succes-
sors [18], [23].

Intuitively, the evaluation functions used in these algorithms
are desired to be more accurate in order to obtain stronger MCTS
players. The extreme success of AlphaGo and AlphaGo Zero is
said to come from accurate evaluation functions based on deep
neural networks, but it remains unclear how much the PUCT al-
gorithm contributes to the strength of players, especially with re-
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spect to the accuracy of evaluation functions. The nonlinear prop-
erties of neural networks might also be a key to the success of the
PUCT algorithm in the AlphaGo series.

In our previous studies [12], [13], [16], we analyzed the ef-
fect of evaluation functions on the performance of MCTS algo-
rithms using Othello (Reversi) positions as testing cases. We used
the evaluation function of a champion-level open-source Othello
player, Zebra [1], as the baseline. The evaluation function calcu-
lates an evaluation value by looking up local feature values and
summing them up. We generated variants in a qualitative man-
ner (by removing patterns) [12] and in a quantitative manner (by
adding noise) [16]. The experiment results showed that we can
improve the players’ strength by the AlphaGoZero’s PUCT algo-
rithm independently from the evaluation function being good or
bad. The limitation in our previous studies, however, lies in the
fact that the evaluation functions used were inherently linear.

In this study we will perform a similar analysis using convo-
lutional neural networks as evaluation functions. We design sim-
ple feed-forward convolutional networks with different convolu-
tion kernels, depth and number of parameters. The networks are
trained in a supervised learning manner: they replicate the val-
ues of the evaluation function of Zebra or those after alpha-beta
search using Zebra. We then test these networks in combination
with AlphaGoZero’s PUCT algorithm by changing the number of
simulations.

Important findings in this study are summarized as follows.
• PUCT always improves upon the performance of the evalu-

ation function but stagnates or improves very slowly after a
certain number of simulations.

• For small numbers of simulations, most of the improvement
in performance comes from the tree search being done, in-
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dependently of how good the evaluation function is.
• We do not find significant influence of using linear or non-

linear evaluation functions on the performance of PUCT.
The rest of the paper is organized as follows. In Section 2, we

introduce the PUCT algorithm and present our approach to the
performance evaluation of our players. In Section 3, we detail the
design and training of our neural network evaluation functions. In
Section 4, we present our experimental results and analyze them.
We review related work in section 5 and conclude the paper in
Section 6.

2. Preliminaries
2.1 AlphaGoZero’s PUCT Algorithm

Similar to general Monte-Carlo tree search (MCTS) algo-
rithms, AlphaGoZero’s PUCT algorithm performs a number of
simulations. The main difference with other MCTS algorithms
resides in the use of two evaluation functions, policy and value
functions, in the simulations. Note that the algorithm used in this
study is based on the one used in AlphaGo Zero [19], and it is dif-
ferent from the original PUCT algorithm [15] and from the one
used in AlphaGo [17]. The most important difference is in the
evaluation phase below, where the result of the value function be-
comes an action value directly, without performing any playouts.

Let each edge (s, a) in the search tree store the average action
value Q(s, a), visit count N(s, a), and prior probability P(s, a).
Each simulation of AlphaGoZero’s PUCT algorithm consists of
the following phases.
Selection Traverse the search tree from the root down to a leaf.

Here, a child is selected at each step based on the average
action value and bonus:

at = argmax
a

(
Q(s, a) + c

P(s, a)
1 + N(s, a)

)

Here, c is a constant to adjust the exploration.
Expansion The leaf node may be expanded and children are

added to the search tree. In this study, we expand the leaf if
it was already traversed once.

Evaluation Let the resulting action value of the simulation be
the evaluation value V(s) of the leaf state s.

Backup The average action values and the visit counts on the
path to the root are updated.

After a number of simulations, the algorithm chooses the most
visited move at the root.

The evaluation value V(s) and prior probability P(s, a) are
computed once when a leaf node is expanded. For the evalua-
tion value V(s), we simply used the result of evaluation functions
in Section 3. For the prior probability P(s, a), we used softmax of
the evaluation values after the move a. The evaluation function
of Zebra and thus those of neural networks in Section 3 return
a value between −64 × 128 and 64 × 128, corresponding to the
score at end of the game. Considering these large values from
evaluation functions, we used the exploration constant c = 1000.
Also, evaluation values are scaled by 0.0001 before being fed to
the softmax function.

A B C D E F G H

1 -8.32

2 -11.40 -1.80

3 +9.23 +3.84

4 +7.42 +9.38

5

6 +7.75 +4.46

7 -7.38 +0.02

8 -10.07 -11.06

move score error
G4 +9.38 0
E3 +9.23 0.15
C6 +7.75 1.63
C4 +7.42 1.96
E6 +4.46 4.92
G3 +3.84 5.54
H7 +0.02 9.36
E2 −1.80 11.18
G7 −7.38 16.76
B1 −8.32 17.7
D8 −10.07 19.45
F8 −11.06 20.44
D2 −11.40 20.78

Fig. 1 Example position in T-20 with black as the next to move.

2.2 Test Positions and Evaluation Measures
Often in game programming, players are evaluated in compar-

ison to other players through a series of matches (e.g., by Elo
rating). This evaluation, however, requires a variety of players
as well as long computation time. Another approach to evaluate
players is focusing on the moves for a rather small set of posi-
tions [21].

In this study, we take the second approach and borrow the test
positions and evaluation measures from our previous work [12].
Three sets of positions are used: 100 positions after 20 moves (T-
20), 100 positions after 30 moves (T-30), and 100 positions after
40 moves (T-40). Each of these positions were analyzed using
WZebra with a lookahead of 24 moves (therefore, the analyzed
results are exact for T-40). We associated the score (the difference
in the number of stones) for each legal move (Fig. 1). Note that
very one-sided positions (with score of best move smaller than
−12 or larger than +12) were excluded from the 100 positions.

To analyze the performance of our PUCT player and evaluation
functions we utilize the following two measures.
Error Rate Let error be defined as the difference of scores be-

tween the best move and the selected move. Error rate is the
average of errors of selected moves (the best is zero).

Best-move Ratio The ratio (in percent) that the selected moves
are the best moves (the best is 100). When a move has ties,
we count any with the best score as the best move.

3. Design of Evaluation Functions
In this study, we use the evaluation function of Zebra, an open-

source top-level computer player, as a basis to train new evalu-
ation functions. These functions are made using convolutional
neural networks with varying depths, number of parameters and
convolutional matrix shapes. They are given a valid Othello board
as input and return a single value corresponding to the evaluation
of the given board.

We trained a total of fifteen different Neural networks to repli-
cate the evaluation values of four training data sets, generating 60
different neural network evaluation functions.

3.1 Network Models
Each network model is characterized by a convolution kernel

size, a number of convolutional layers, a number of fully con-
nected layers and a number of outputs. Combining these numbers
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Table 1 Models and parameter sets

epoch used (error rate for T-20) for training data from lookahead d
Model Parameter Set Number of Filters Number of weights d=0 d=2 d=4 d=6

Small 8, 16, 128 131993 50 ( 2.367 ) 50 ( 4.964 ) 43 ( 5.660 ) 43 ( 6.038 )
C22F2 Medium 32, 64, 256 2106977 26 ( 1.780 ) 41 ( 2.079 ) 31 ( 2.576 ) 28 ( 2.673 )

Large 128, 256, 2048 33692033 50 ( 1.345 ) 50 ( 2.011 ) 15 ( 2.336 ) 18 ( 2.632 )
Small 8, 16 (×3), 128, 32 80761 36 ( 2.782 ) 32 ( 4.905 ) 50 ( 8.160 ) 47 ( 3.385 )

C24F3 Medium 32, 64 (×3), 512, 128 1287649 31 ( 1.848 ) 29 ( 2.690 ) 22 ( 3.360 ) 47 ( 2.328 )
Large 128, 256 (×3), 2048, 512 20584321 12 ( 1.456 ) 46 ( 1.920 ) 39 ( 1.584 ) 50 ( 1.605 )
Small 8, 16 (×7), 128, 32 19385 50 ( 4.329 ) 50 ( 4.688 ) 46 ( 3.923 ) 21 ( 4.957 )

C28F3 Medium 32, 64 (×7), 512, 128 304865 36 ( 2.107 ) 46 ( 2.290 ) 23 ( 2.697 ) 49 ( 2.663 )
Large 128, 256 (×7), 2048, 512 4856705 12 ( 2.352 ) 30 ( 1.784 ) 16 ( 1.915 ) 38 ( 1.882 )
Small 8, 16, 128 75449 40 ( 1.936 ) 20 ( 4.674 ) 44 ( 3.816 ) 8 ( 3.570 )

C32F2 Medium 32, 64, 256 1200353 21 ( 2.208 ) 37 ( 4.752 ) 37 ( 2.531 ) 28 ( 2.994 )
Large 128, 256, 2048 19178369 43 ( 2.104 ) 50 ( 2.019 ) 50 ( 2.566 ) 32 ( 1.970 )
Small 8, 16 (×3), 128, 32 18585 50 ( 2.997 ) 50 ( 4.472 ) 42 ( 4.485 ) 26 ( 6.515 )

C34F3 Medium 32, 64 (×3), 512, 128 290913 48 ( 1.771 ) 23 ( 2.668 ) 24 ( 2.780 ) 22 ( 2.588 )
Large 128, 256 (×3), 2048, 512 4628865 12 ( 2.244 ) 28 ( 1.995 ) 46 ( 1.797 ) 39 ( 1.612 )

we get a unique identifier for each network model. For example:
a network using 3x3 kernels with 4 convolution layers, 2 fully
connected layers and one output would have the following char-
acteristic numbers : 3x3,4,2,1.

Given the nature of the task the neural network evaluation func-
tions were designed to fulfill, they are all regressive and thus only
have one output. We can therefore omit the last number as it is
always the same. Moreover only kernels with the same height
and width were used so we can omit the second kernel dimension
as well. With this in mind, the whole structure of our example
model can be expressed as C34F3. C34 describes the convolu-
tional layers and F3 describes the the 2 hidden fully connected
layers as well as the output layer with one neuron.

While we tested many different network models, we selected
the 5 presented in Table 1.

3.2 Network Parameters
For each network model we used 3 different parameter sets

which describe the number of channels on each convolutional
layer or the number of neurons on each fully connected layer.
Continuing the previous example of the C34F3 model, we have
a total of 6 layers before our unique output (4 convolutional and
2 fully connected). This means we need 6 different parameters
to describe the number of channels/neurons of each layer. One
parameter set for example could be 8,16,16,16,128,32.

Each of the parameter sets for a model has numbers of chan-
nels/neurons on each layer scaled by a factor of 4 times the val-
ues of the preceding parameter set. For future references in this
paper all parameter sets of a model type are named Small(S),
Medium(M) and Large(L). All specific parameter numbers are
given in Table 1.

3.3 Training Data
To train our networks we generated a total of 1048576 board

states by having computer players of various strength play against
each other. All board states are then shuffled and evaluated by us-
ing the Zebra evaluation function with different lookaheads. In
our case we used lookaheads of zero, two, four and six moves
to have four different board sets with evaluations of varying
strength.

3.4 Network Epoch Selection
All neural network evaluation functions were trained during a

total of 50 Epochs. After this training period, in order to avoid
overfitting of the networks we plotted the error rate of the single
use of the evaluations functions on the T-20 set. We used these
plots to visualize around which period each network consistently
performed well and selected the best epoch from this period.

4. Experiment and Evaluation
4.1 PUCT Performance to Single-use Evaluation Function

We ran experiments to compare the performance of PUCT us-
ing Zebra’s evaluation function and the neural-network evaluation
functions we created. For each function, we ran the PUCT until it
reached 128000 simulations for each position in T-20, T-30, and
T-40. During these runs we saved the selected move at various
intermediate numbers of simulations.

Tables 2 and 3 show the experiment results with less simula-
tions (1000) and more simulations (128000) as well as the re-
sults of single use of evaluation function. Table 2 shows the cases
when we used the evaluation values after alpha-beta with looka-
head 0 (Zebra’s evaluation function) as the training data. Table 3
shows the cases when we used the evaluation values after alpha-
beta with lookahead 6 as the training data. Table 4 shows the case
when we use Zebra’s evaluation function.

In almost all cases the PUCT is better than the single use of the
evaluation function. This was also true for the evaluation func-
tions generated using the 2 and 4 lookahead. There are only two
cases were this was not true. In both of them, the PUCT fails to
improve upon the result of the single use evaluation function only
for the lesser number of simulations. For one of the cases, it is
interesting to note that, while the error rate does not improve, the
correct move ratio does by 11%.

Figures 2, 3 and 4 illustrate the information contained in Tables
2 and 3. With these figures it becomes clearer how the number
of simulations affects the error rate. Interestingly, even though
the higher playout number generally performs better, the progress
trend seems less obvious for the T-30 and T-40 sets. This sug-
gests that the number of simulations have a bigger impact in early
stages of the game. It is however not supported when comparing
the average improvement of the error rate from 1000 to 128000
simulations. The average improvements are of 0.339, 0.346 and
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Table 2 Experiment results for test data T-20, T-30, and T-40 with the networks trained by training dataset
with lookahead 0. Each column shows the error rate and best-move ration in brackets.

Dataset T-20 Dataset T-30 Dataset T-40
Parameter single 1 × 103 128 × 103 single 1 × 103 128 × 103 single 1 × 103 128 × 103

Model Set use simulations simulations use simulations simulations use simulations simulations
Large 1.345 [56] 1.032 [68] 1.149 [67] 3.049 [40] 1.363 [55] 1.221 [58] 4.08 [48] 1.70 [64] 1.34 [68]

C22F2 Medium 1.780 [48] 1.221 [66] 0.921 [67] 3.721 [41] 1.372 [62] 1.248 [62] 5.32 [36] 3.34 [54] 2.72 [58]
Small 2.367 [47] 1.681 [61] 1.273 [65] 4.672 [34] 1.784 [52] 1.680 [53] 5.44 [32] 3.54 [55] 3.36 [55]
Large 1.456 [55] 1.032 [71] 0.815 [72] 3.717 [42] 1.314 [62] 1.240 [61] 3.88 [42] 1.90 [60] 1.82 [59]

C24F3 Medium 1.848 [54] 1.568 [65] 1.342 [66] 4.528 [38] 1.830 [54] 1.402 [59] 6.06 [35] 2.56 [54] 2.50 [54]
Small 2.782 [47] 2.543 [61] 1.917 [61] 6.593 [33] 3.095 [45] 2.326 [49] 6.30 [35] 3.42 [58] 2.68 [57]
Large 2.352 [42] 0.959 [69] 0.960 [66] 3.358 [33] 1.391 [55] 1.303 [58] 4.60 [43] 1.60 [63] 1.56 [63]

C28F3 Medium 2.107 [53] 1.374 [66] 1.226 [68] 4.413 [38] 1.795 [51] 1.566 [56] 5.16 [37] 2.38 [53] 1.78 [60]
Small 4.329 [41] 2.799 [54] 2.407 [55] 6.088 [35] 2.852 [51] 2.463 [55] 5.78 [38] 3.38 [56] 3.10 [59]
Large 2.104 [52] 0.994 [72] 0.951 [68] 3.818 [35] 1.517 [55] 1.457 [57] 4.62 [40] 2.10 [62] 1.98 [59]

C32F2 Medium 2.208 [49] 1.876 [58] 1.336 [61] 5.865 [30] 1.948 [54] 1.359 [58] 6.38 [37] 3.44 [52] 3.20 [53]
Small 1.936 [53] 1.847 [62] 1.422 [62] 5.959 [31] 2.161 [50] 1.542 [55] 6.26 [34] 3.34 [51] 3.62 [48]
Large 2.244 [50] 1.087 [66] 1.066 [66] 4.642 [37] 1.562 [55] 1.525 [57] 4.88 [39] 2.16 [59] 2.18 [59]

C34F3 Medium 1.771 [48] 2.050 [59] 1.268 [61] 4.255 [38] 1.636 [51] 1.393 [54] 6.40 [34] 1.86 [61] 1.48 [65]
Small 2.997 [47] 2.501 [57] 2.053 [57] 5.579 [35] 3.546 [45] 2.940 [49] 7.56 [30] 4.06 [45] 3.16 [51]

Table 3 Experiment results for test data T-20, T-30, and T-40 with the networks trained by training dataset
with lookahead 6. Each column shows the error rate and best-move ration in brackets.

Dataset T-20 Dataset T-30 Dataset T-40
Parameter single 1 × 103 128 × 103 single 1 × 103 128 × 103 single 1 × 103 128 × 103

Model Set use simulations simulations use simulations simulations use simulations simulations
Large 2.632 [43] 1.920 [56] 1.532 [62] 3.825 [39] 1.606 [51] 1.277 [57] 5.90 [37] 2.68 [51] 2.32 [57]

C22F2 Medium 2.673 [41] 1.686 [60] 1.485 [61] 4.901 [36] 3.018 [44] 2.937 [43] 6.42 [33] 3.82 [48] 3.58 [50]
Small 6.038 [30] 2.643 [52] 1.716 [54] 8.236 [24] 3.334 [40] 3.234 [39] 6.98 [30] 3.56 [54] 2.88 [56]
Large 1.605 [56] 0.781 [67] 0.672 [66] 3.423 [39] 1.604 [51] 1.458 [50] 4.32 [44] 2.96 [50] 1.80 [62]

C24F3 Medium 2.328 [51] 1.963 [57] 1.667 [61] 4.121 [40] 2.030 [51] 1.667 [49] 5.46 [36] 2.46 [61] 1.92 [58]
Small 3.385 [37] 2.198 [55] 2.148 [53] 5.987 [29] 3.288 [41] 2.767 [44] 6.46 [33] 4.84 [39] 3.62 [45]
Large 1.882 [52] 1.275 [66] 1.201 [66] 5.029 [32] 1.886 [52] 1.520 [52] 4.58 [37] 2.48 [53] 2.16 [49]

C28F3 Medium 2.663 [47] 2.056 [62] 1.766 [63] 4.835 [40] 1.883 [53] 1.558 [53] 6.58 [34] 2.88 [51] 3.32 [47]
Small 4.957 [39] 3.204 [50] 2.441 [57] 6.572 [24] 3.506 [44] 2.786 [45] 7.04 [32] 3.28 [54] 3.32 [51]
Large 1.970 [51] 1.710 [61] 1.468 [60] 4.706 [38] 1.601 [54] 1.251 [54] 5.84 [34] 2.16 [57] 1.90 [58]

C32F2 Medium 2.994 [50] 2.048 [54] 1.704 [59] 6.900 [23] 2.456 [44] 2.078 [50] 6.16 [33] 3.42 [52] 2.86 [55]
Small 3.570 [42] 3.644 [41] 3.146 [43] 6.118 [32] 3.497 [36] 3.558 [34] 8.20 [30] 5.12 [42] 4.54 [43]
Large 1.612 [53] 1.459 [65] 0.971 [70] 4.168 [39] 1.653 [57] 1.641 [58] 4.74 [37] 2.46 [53] 2.74 [50]

C34F3 Medium 2.588 [47] 2.165 [56] 1.551 [64] 5.470 [31] 2.317 [45] 1.691 [51] 4.84 [42] 2.70 [56] 1.86 [63]
Small 6.515 [37] 4.378 [46] 3.093 [51] 7.214 [33] 3.722 [40] 2.745 [44] 6.54 [35] 3.58 [45] 3.30 [48]

Table 4 Experiment results for test data T-20, T-30, and T-40 with the evaluation function of Zebra. Each
column shows the error rate and best-move ration in brackets.

Dataset T-20 Dataset T-30 Dataset T-40
single 1 × 103 128 × 103 single 1 × 103 128 × 103 single 1 × 103 128 × 103

use simulations simulations use simulations simulations use simulations simulations
Pure Zebra 2.098 [49] 0.665 [70] 0.645 [69] 3.238 [36] 1.049 [61] 1.058 [61] 4.68 [41] 1.56 [59] 1.42 [62]
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Fig. 6 PUCT performance evolution of large neural-network evaluation
functions trained with lookahead 6

0.47 for T-20, T-30 and T-40, respectively. The standard deviation
of the error rate values being close to 0.35 for all three sets, the
evidence for the visual trend in the graphs is not strong enough.
Arguably the number of simulations might even have a bigger
impact in the end game than the early game. Note that many sim-
ulations went down to the end game with the larger number of
simulations in our experiments.

4.2 Influence of the Number of Simulations
Looking at figures 5 and 6, there are mostly variations in error

rate up to 16000 simulations and a more stable result afterwards.
Moreover, the error rate of the single evaluation function is linked
to the value around which the error rate stabilizes as well as the

number of simulations before it stabilizes. This means that, the
better the single-use error rate is, the faster the PUCT error rate
will stabilize and the lower the stable PUCT error rate will be.

Looking at the values obtained for each individual model, these
trends still apply across different parameter sets and different
training data.

This is something that had already been witnessed in our pre-
vious paper [12] which used variations of Zebra as evaluation
functions. Having no visible difference between these results and
previous ones indicates that the PUCT algorithm probably does
not have major differences in behavior depending on the evalu-
ation function being an n-tuple network or a neural network. In
other words, according to our data, the evaluation function being
linear or non-linear does not seem to have an impact on PUCT.

4.3 Evaluation function performance
We examined the performance of each of our evaluation func-

tions regarding the replication of Zebra’s evaluation values with
the same lookahead as their training set. We then compared this
performance to the error rate they achieved in our T-20 set to see
how the two were related.

To evaluate the replication performance of our evaluation func-
tions, we used sets of 100 positions whose possible moves had not
been included in the training data. We evaluated all the possible
moves with alpha-beta lookahead 0 to 6 using Zebra’s evaluation
function. We compared the values from a neural network and
those from alpha-beta search (with the same lookahead).

We calculated the absolute difference between the neural net-
work evaluation and the Zebra evaluation it was trained to repli-
cate. Taking the Mean Absolute error over all moves of the 100
positions, we obtained one value per neural network evaluation
function representing how well it achieved the task it had been
trained for.

Comparing these values to the single use of the evaluation
function and the PUCT on the T-20 data set, shows Pearson corre-
lation values of 0.639 between mean absolute error and single-use
evaluation function error rate. The correlation between mean ab-
solute error and PUCT error rate is decomposed by number of
simulations and illustrated in Table 5. They range from 0.561 to
0.698. Such positive correlations were expected since the Zebra
function used to create the training data for the neural-network
evaluation functions is also used to evaluate the boards of the T-20
set albeit with a different lookahead making the T-20 evaluations
much more precise.

The correlation values become better with increasing number
of simulations. This is most likely due to the PUCT algorithm
compensating for the neural-network evaluation function being
trained using evaluations with a smaller lookahead than those of
the T-20 set. However, the correlation of mean absolute error and
single use of evaluation function is higher than that of mean ab-
solute error and PUCT until 2000 simulations. We know from
data shown above that this smaller correlation is not reflected in
PUCT performance being worse than the single use of evaluation
function at lower simulations numbers. This might point to ex-
pansion of the PUCT tree having a bigger impact in performance
than the quality of the evaluation function in the early stages of
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Fig. 7 Evolution of PUCT error rate in model C22F2 for all parameter sets
and training data lookahead of 0 and 6
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Fig. 8 Evolution of PUCT error rate in model C24F3 for all parameter sets
and training data lookahead of 0 and 6
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Fig. 9 Evolution of PUCT error rate in model C28F3 for all parameter sets
and training data lookahead of 0 and 6

Table 5 Correlation of all PUCT players error rate with the mean absolute
error

playouts Correlation
125 0.561
250 0.599
500 0.583
1000 0.604
2000 0.639
4000 0.644
8000 0.652
16000 0.649
32000 0.678
64000 0.698
128000 0.678

simulations.
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Fig. 10 Evolution of PUCT error rate in model C32F2 for all parameter sets
and training data lookahead of 0 and 6
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Fig. 11 Evolution of PUCT error rate in model C34F3 for all parameter sets
and training data lookahead of 0 and 6

0

1

2

3

4

5

6

7

8

9

0 500 1000 1500 2000

S
in

g
le

-u
se

 E
rr

o
r 

R
at

e

Mean Absolute Error

C₂2F2

C₂4F3

C₂8F3

C₃2F2

C₃4F3

Fig. 12 Single-use error rate in relation to mean absolute error of neural-
network evaluation function

4.4 AlphaBeta search comparison
For the final part of our experimentation, we wished to com-

pare PUCT to Alpha-Beta move selection. To do so, we ran it
with all neural network evaluation functions on T-20, T-30 and
T-40 using a lookahead of 0 to 6 (0 is equivalent to single-use
evaluation function). The results using the smallest and largest
lookahead are presented in Tables 6 and 7. Comparing these ta-
bles to the previous ones showing results of similar experimen-
tation using PUCT (Tables 2 and 3), we can see that Alpha-Beta
with lookahead 6 outperforms PUCT using 128000 simulations
with regards to error rate and correct move ratio. The average im-
provement in error rate for the T-20 set from Alpha-Beta 0 to 6 is
1.644 while it is only 1.364 from single-use evaluation function
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Table 6 Results of AlphaBeta search using neural network evaluation functions trained with training data
with depth 0. Each column shows the error rate and best-move ratio in brackets.

Parameter Dataset T-20 Dataset T-30 Dataset T-40
Model Set Single use Lookahead 2 Lookahead 6 Single use Lookahead 2 Lookahead 6 Single use Lookahead 2 Lookahead 6

Large 1.345 [56] 1.417 [62] 0.634 [73] 3.048 [40] 2.104 [46] 0.924 [62] 4.08 [48] 2.58 [57] 1.90 [58]
C22F2 Medium 1.780 [48] 1.493 [59] 0.649 [68] 3.721 [41] 1.987 [46] 1.099 [64] 5.32 [36] 3.78 [51] 2.16 [52]

Small 2.367 [47] 1.881 [57] 1.091 [66] 4.672 [34] 2.803 [43] 1.284 [60] 5.44 [32] 4.22 [48] 2.46 [52]
Large 1.456 [55] 1.210 [67] 0.671 [74] 3.716 [42] 1.977 [48] 0.914 [64] 3.88 [42] 3.16 [49] 1.74 [59]

C24F3 Medium 1.847 [54] 1.768 [58] 0.757 [72] 4.528 [38] 2.583 [42] 1.419 [57] 6.06 [35] 4.06 [45] 2.32 [47]
Small 2.782 [47] 2.520 [51] 1.202 [65] 6.592 [33] 4.247 [40] 2.293 [48] 6.30 [35] 4.66 [46] 3.70 [48]
Large 2.351 [42] 1.308 [60] 0.662 [72] 3.358 [33] 1.646 [50] 1.108 [62] 4.60 [43] 2.28 [56] 1.42 [68]

C28F3 Medium 2.107 [53] 2.018 [59] 0.629 [74] 4.412 [38] 2.512 [43] 1.286 [61] 5.16 [37] 3.78 [42] 1.98 [55]
Small 4.328 [41] 2.838 [50] 2.300 [57] 6.088 [35] 4.129 [42] 2.357 [51] 5.78 [38] 5.52 [37] 3.42 [46]
Large 2.103 [52] 1.896 [57] 0.807 [70] 3.818 [35] 2.115 [47] 1.018 [63] 4.62 [40] 3.56 [52] 1.94 [55]

C32F2 Medium 2.208 [49] 2.810 [50] 1.459 [62] 5.865 [30] 2.505 [47] 1.628 [51] 6.38 [37] 4.20 [46] 2.36 [53]
Small 1.935 [53] 2.435 [59] 1.598 [63] 5.959 [31] 3.111 [44] 1.265 [56] 6.26 [34] 4.56 [39] 2.30 [52]
Large 2.243 [50] 1.728 [56] 0.892 [65] 4.641 [37] 1.904 [49] 0.827 [66] 4.88 [39] 2.78 [56] 1.46 [63]

C34F3 Medium 1.770 [48] 1.802 [57] 1.004 [72] 4.255 [38] 2.514 [46] 1.259 [59] 6.40 [34] 3.74 [50] 1.74 [60]
Small 2.997 [47] 2.419 [53] 1.938 [55] 5.579 [35] 4.247 [42] 2.471 [44] 7.56 [30] 4.52 [48] 2.92 [49]

Table 7 Results of AlphaBeta search using neural network evaluation functions trained with training data
with depth 6. Each column shows the error rate and best-move ratio in brackets.

Parameter Dataset T-20 Dataset T-30 Dataset T-40
Model Set Single use Lookahead 2 Lookahead 6 Single use Lookahead 2 Lookahead 6 Single use Lookahead 2 Lookahead 6

Large 2.632 [43] 2.291 [49] 1.343 [58] 3.824 [39] 2.227 [44] 1.529 [57] 5.90 [37] 4.10 [43] 2.36 [53]
C22F2 Medium 2.672 [41] 2.072 [54] 1.082 [63] 4.900 [36] 3.480 [40] 1.578 [52] 6.42 [33] 4.78 [45] 3.70 [45]

Small 6.038 [30] 4.331 [38] 2.663 [49] 8.236 [24] 4.947 [35] 2.269 [50] 6.98 [30] 5.94 [31] 2.56 [47]
Large 1.604 [56] 1.529 [57] 0.819 [68] 3.422 [39] 2.046 [48] 1.004 [62] 4.32 [44] 3.84 [43] 2.06 [56]

C24F3 Medium 2.328 [51] 1.930 [55] 0.945 [70] 4.121 [40] 2.307 [50] 1.123 [60] 5.46 [36] 3.94 [45] 2.32 [53]
Small 3.385 [37] 3.228 [46] 1.213 [63] 5.987 [29] 4.410 [32] 2.589 [45] 6.46 [33] 4.30 [37] 2.18 [54]
Large 1.881 [52] 1.614 [60] 0.961 [68] 5.028 [32] 2.008 [49] 1.064 [61] 4.58 [37] 3.58 [44] 1.72 [59]

C28F3 Medium 2.663 [47] 2.937 [51] 1.162 [66] 4.834 [40] 2.869 [46] 1.444 [57] 6.58 [34] 4.20 [40] 2.12 [54]
Small 4.956 [39] 3.614 [47] 2.248 [55] 6.571 [24] 3.684 [35] 2.223 [48] 7.04 [32] 5.12 [37] 2.08 [61]
Large 1.970 [51] 2.706 [53] 0.921 [72] 4.706 [38] 2.838 [45] 1.359 [58] 5.84 [34] 4.06 [47] 2.10 [58]

C32F2 Medium 2.993 [50] 2.837 [44] 1.343 [58] 6.899 [23] 3.368 [37] 2.259 [52] 6.16 [33] 3.72 [46] 2.18 [58]
Small 3.569 [42] 3.621 [42] 1.916 [47] 6.117 [32] 4.183 [38] 2.404 [43] 8.20 [30] 6.00 [31] 3.54 [45]
Large 1.612 [53] 1.951 [63] 0.900 [66] 4.167 [39] 1.712 [58] 1.009 [64] 4.74 [37] 3.62 [42] 1.70 [63]

C34F3 Medium 2.588 [47] 2.339 [54] 1.513 [61] 5.470 [31] 2.984 [43] 1.905 [54] 4.84 [42] 4.06 [45] 2.48 [56]
Small 6.514 [37] 3.988 [42] 2.216 [57] 7.214 [33] 5.823 [31] 2.646 [48] 6.54 [35] 5.24 [33] 3.08 [53]

to PUCT with 128’000 simulations. Similar trends were seen for
T-30 and T-40.

5. Related Work
The study most related to this work is the analysis of the

AlphaZero algorithm by Nakayashiki and Kaneko [14]. They
used a small (but still nontrivial) game called Dobutsu Shogi,
a small variant of Japanese chess, which was strongly solved
by Takana [22]. In the study, they focused on the quality
of reinforcement learning in the AlphaZero approach. Since
win/draw/lose is known for each game position, they can evaluate
the results quantitatively and accurately. They also discussed the
effects of PUCT algorithm by using a single pair of evaluation
functions and by changing a hyperparameter C for exploration.
The experiment results suggested that the value C = 1 would be
better for a large number of simulations than that used in Alp-
haZero.

Takeuchi [20] studied another aspect of MCTS (and PUCT)
algorithms focusing on the effects of neural-network evaluation
functions. He focused on the changes of selected moves when the
number of playouts were increased. The experiment results sug-
gested that the use of neural-network evaluation function showed
a gap for even fundamental measures such as winning rate and
number of playouts for the best moves. It was also reported that
the MCTS algorithm did not show symmetric effects of evalua-

tion functions that the alpha-beta search did.
This study focused on a different aspect of the PUCT algo-

rithms, i.e., the effects of nonlinear neural-network evaluation
functions with different quality.

6. Conclusion
In this work we have tried to analyze the effects of the evalu-

ation function’s influence on AlphaGo’s PUCT algorithm using
Othello as a testing environment. Our previous work having fo-
cused on the same question using linear evaluation functions, we
decided to examine non-linear functions in this paper by creating
several neural networks with different structures trained to mimic
Zebra evaluations with different lookaheads. We then tested the
player using sets of test positions with very precise scores.

We found that PUCT always improves on the performance of
the single use of evaluation functions no matter how accurate they
were. Moreover, comparing the results in this paper to those pre-
sented in our previous one, we observed very similar trends be-
tween the use of n-tuple network and neural network evaluation
functions. We thus concluded that there is likely no difference
in PUCT behavior resulting from the use of linear or non-linear
evaluations functions.

While we did extend the number of testing board sets from our
previous study, there are still large periods of the games we have
not analyzed and witnessing evolution of error rate through the
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game might bring interesting insights. The same consideration
could be brought to the evolving number of simulations; while we
did check progress at many numbers of simulations, it might be
interesting to plot error rates after each new simulation. Finally,
instead of using many different evaluation functions to analyze,
we could select only 2 or 3 of them (linear and non-linear) and
design them to have extremely similar performances for certain
measures prior to using them in PUCT to have a deeper look at
how similar or different their results become post PUCT.
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