
Electronic Preprint for Journal of Information Processing Vol.28

Regular Paper

Secure Authentication Key Sharing between Personal
Mobile Devices Based on Owner Identity

Hideo Nishimura1 Yoshihiko Omori1,a) Takao Yamashita1,b)

Received: June 5, 2019, Accepted: January 16, 2020

Abstract: Public-key-based Web authentication can be securely implemented using modern mobile devices as secure
storage of private keys with hardware-assisted trusted environments, such as a trusted execution environment (TEE).
Since a private key is strictly kept secret within the TEE and never leaves the device, the user must register the key
separately for each combination of device and Web account, which is burdensome for users who want to switch de-
vices. The aim of this research was to provide a solution for key management with enhanced usability by relaxing
the restriction that keys can never leave the device and allowing private keys to be shared across devices while still
maintaining an acceptable level of security. We propose a secure method for sharing keys across the TEEs of devices.
The method has two functions: 1) trusted third party (TTP)-based device owner identification, which involves a TTP
that is responsible for supervising key sharing across devices in an authentication system, and 2) secure key copy,
which enables the duplication of keys in a device that were originally stored in another device through a direct secure
transport channel between the TEEs of the devices. A TTP identifies the owner of each device to mitigate the risk of
the keys being illegally shared. In this study, we evaluated the secure-key-copy function of our proposed method by
implementing it in the ARM TrustZone-based TEE, showing that this function is feasible for commercially available
smartphones.

Keywords: public key authentication, Fast IDentity Online (FIDO), key management, Trusted Execution Environ-
ment (TEE), Internet of Things (IoT)

1. Introduction

In modern Web applications, user authentication is essential for
preventing unauthorized access, providing customized services,
and other important functions. Many researchers have proposed
various methods of replacing passwords [1], which have many
problems in terms of both security and usability [2], [3]. One al-
ternative to passwords is public key authentication, but the main
obstacle to its successful adoption is the difficulty in protecting
the private key from being stolen or misused [4]. Many personal
mobile devices (e.g., smartphones) now offer a secure comput-
ing environment in which keys can be managed in a strictly se-
cure manner with hardware-assistance such as trusted execution
environments (TEEs) [5]. The Fast Identity Online (FIDO) Al-
liance defines a universal authentication framework (UAF) for
password-less authentication based on public key cryptography
that can be securely implemented on widespread TEE-enabled
mobile devices [6].

FIDO-based authentication enables a simple and secure user
experience by using a mobile device as a secure storage of private
keys for authentication (authentication keys). However, since the
authentication keys are tightly coupled to the device and gener-
ally cannot be migrated from one device to another, when a user
replaces a device with a new one due to device lifecycle events

1 NTT Network Service Systems Laboratories, NTT Corporation,
Musashino, Tokyo 180–8585, Japan

a) yoshihiko.omori.ak@hco.ntt.co.jp
b) takao.yamashita.cz@hco.ntt.co.jp

(e.g., upgrading a phone) or begins using a new device such as a
tablet or Internet-of-Things (IoT) device, the user must re-register
the key on the new device for each Web account. As registration
usually requires a certain manual action (e.g., typing a password,
and/or sending a confirmation code via short message service
(SMS)) by the user, such re-registration for each device and ac-
count is problematic from the perspective of user experience. We
can improve user experience by securely sharing authentication
keys among devices. This is important especially for services that
currently protect users’ accounts using password-based authenti-
cation methods and are frequently used in daily life. Examples
are social networking services (SNSs) and e-commerce.

Considering device-lifecycle events, our goal was to provide
a user with a solution with enhanced usability in key manage-
ment for services described in the previous paragraph (e.g., SNSs
and e-commerce). Our basic approach is to relax the restriction
that authentication keys can never leave a device and allow keys
to be shared across devices while mitigating the risks caused by
key sharing and maintaining a certain level of security. In this
paper, we propose a secure authentication-key-sharing method.
This method has two functions: trusted third party (TTP)-based

device-owner identification and secure key copy. With TTP-based
device-owner identification, the owner of each device is identified
by using a certificate issued by a TTP to prevent the keys from be-

A preliminary version of this paper appears in the proceedings of the
4th International Conference on Mobile And Secure Services (MobiSec-
Serv), 2018, doi: 10.1109/MOBISEC-SERV.2018.8311436.

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

ing illegally shared to another person’s device. Secure key copy
enables the duplication of keys in a device that were originally
stored in another device. This function mitigates the risks of key
theft during the sharing process between legitimate devices by es-
tablishing a secure communication channel between the TEEs of
the devices. We evaluated the secure-key-copy function, show-
ing that it is feasible to implement this function in the TEEs of
commercially available smartphones. The feasibility of our pro-
posed method had to be demonstrated by developing and running
the method on a smartphone, because a TEE has a more limited
development and execution environment than that provided by a
common mobile operating system (OS) such as Android.

The rest of this paper is organized as follows. In Section 2, we
elucidate a key problem with FIDO UAF and give an overview of
the proposed method. In Sections 3 and 4, we describe the TTP-
based device-owner-identification and secure-key-copy functions
of our method, respectively. In Section 5, we discuss the eval-
uation results of the secure-key-copy function. We discuss the
feasibility of this function from the point of view of implement-
ing and running it on a commercially available smartphone. In
Section 6, we compare our method with related methods. Finally,
we conclude the paper in Section 7.

2. Usability Problem with FIDO UAF and
Key-Sharing Solution

2.1 FIDO Universal Authentication Framework
The FIDO UAF [7] offers a password-less user experience in

Web authentication. The FIDO authenticator, which is responsi-
ble for managing authentication keys, has three main functions,
as illustrated in Fig. 1: key management, local-user verification,
and attestation. The key-management function generates an au-
thentication key-pair at registration time for each Web account
and keeps the private key secret within the authenticator while
registering the public key to a server. This function also responds
to a cryptographic challenge from the server by making a sig-
nature with the private key, but the private key never leaves the
authenticator even at this time.

In contrast, the local-user-verification function ensures that the
user who registered the key is definitely using the key. Therefore,
local-user verification is executed when the authentication key is
first created and each time the key is used for making a signature.
Biometric authentication based on certain physical characteristics
(e.g., fingerprint, iris, or face) is widely used as a user-friendly
method for local-user verification.

The attestation function provides a means to prove the capa-
bility of an authenticator. An authenticator is identified on the
device model level by using an authenticator attestation identi-
fier (AAID). The capability of an authenticator with an AAID
is confirmed over a network by using an attestation key, which
consists of an attestation certificate including a public key and
corresponding private key. The private key of an attestation key
is stored in an authenticator when it is manufactured. The ca-
pability information of an authenticator is provided by a server
called a metadata server. We can also retrieve the attestation cer-
tificate of an authenticator from a metadata server by specifying
its AAID. An authenticator proves its capability by sending a

Fig. 1 Secure implementation of authenticator based on FIDO UAF.

message that includes its AAID and a signature generated by us-
ing the private key of its attestation key. When the public key of
an authentication key pair is registered to a server, the AAID of an
authenticator is also sent. At this time, a server determines that
the capability of an authenticator satisfies service requirements.
If it does not satisfy service requirements, the registration of a
public key is rejected. Examples of the capability information
of an authenticator are an authentication algorithm (e.g., ECDSA
based on SECP256r1), key-protection method (e.g., TEE or SE),
and the accuracy of a biometric authentication function [8], [9].

Thanks to support from trusted hardware, modern mobile de-
vices have two execution domains: normal world and secure

world. Most applications and system software including OSs,
such as Android, run in the normal world. Although the execu-
tion environment in the normal world is rich and flexible, it is
also susceptible to viruses and malware attacks. Therefore, appli-
cations that require higher levels of security, such as payments,
digital rights management, and authentication, are implemented
in the secure world, which is resistant to such attacks. The FIDO
UAF was also designed to implement the authenticator in the se-
cure world to enhance security [10].

2.2 Usability Problem due to Device-lifecycle Events
As described in the previous subsection, with the FIDO UAF,

authentication keys are assumed to never leave the local device
to ensure high security. Therefore, when a user starts using a
new mobile device due to device-lifecycle events (e.g., upgrad-
ing to a new phone), authentication keys stored in the old device
cannot be migrated to the new device. Thus, the user must re-
register an authentication key newly generated on the new device
for each Web account. To complete this re-registration, the user
first needs to log-in to an account by using a non-FIDO fallback
authentication method (e.g., password, secret question, or verifi-
cation code sent by SMS/Email), which is usually less secure and
user friendly [11]. Furthermore, the number of re-registrations is
the same as the number of Web accounts on which users are regis-
tered. This is a serious usability issue in the real world because a
survey in 2015 reported that 44% of Americans usually upgrade
their smartphone every two years [12], and another report said
that the average Web user has 27 accounts [13].

On the other hand, FIDO-supported devices and authentication
servers have been widely deployed. In addition, the number of
Web servers that provide commercial services and support FIDO-
based authentication methods is increasing. Therefore, we have
to solve the usability problem just described without changing
the FIDO UAF protocol, which is used by a user device, a FIDO

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

server, and metadata server.

2.3 Proposed Method: Key Sharing across Devices
The motivation behind this research was to provide the user

with a solution with enhanced usability. Our approach is to relax
the restriction that keys can never leave devices and allow them
to be shared across multiple devices to eliminate burdensome re-
registration. We want to emphasize that our proposed method is
not for freely allowing key migration between devices, which can
significantly degrade high security achieved by the FIDO-based
authentication method, but to enable secure key-sharing where an
acceptable level of security for both users and service providers
is maintained by mitigating the following risks potentially caused
by key sharing:
(1) Impersonation: There is a risk that an attacker imperson-

ates a legitimate user and steals keys from the user’s device
(risk 1-A). Furthermore, a user might transfer or share his/her
account restricted for individual use with others (risk 1-B).
This means that inter-user key sharing is forbidden whereas
inter-device key sharing by a single user is permitted.

(2) Keys stolen during delivery: The other risk is that an at-
tacker compromises the key-sharing process between legiti-
mate devices and steals keys while they are being delivered
from one device to another. We consider network attackers
and malware attackers [14] as major security threats in key
sharing. Network attackers try to steal keys by intercepting a
communication channel between legitimate devices (risk 2-

A). Malware attackers try to steal keys by running malicious
software on legitimate devices (risk 2-B).

To mitigate the impersonation risks (risks 1-A and 1-B), we intro-
duce a TTP that is responsible for supervising key sharing across
devices in an authentication system. A TTP identifies the owner
of each device to mitigate the risks of sharing keys between the
devices owned by different individuals. To protect keys from be-
ing stolen by a network attacker (risk 2-A), devices communicate
with each other for sharing keys through a secure channel with
encryption based on certificates issued by the TTP. Furthermore,
we mitigate the risk of malware attacks (risk 2-B) by implement-
ing a key copy function within the secure world. The detailed
design of our proposed method and the procedure for copying
keys securely from the secure world of one device to another are
given in the following sections.

3. TTP-based Device-owner Identification

3.1 Problems with Pairing-based Verification
One important principle in the FIDO ecosystem is to ensure

that only the user who registered the key can use it. This
means that it must be verified with our key-sharing method with
which authentication private keys are only shared between de-
vices owned by the same individual.

Modern personal mobile devices (e.g., smartphones) are de-
signed to verify that the pre-registered owner is definitely oper-
ating the device by means such as a pattern lock, personal iden-
tification number (PIN) lock, or biometrics. However, to restrict
keys to be shared only between devices of the same owner, it is
necessary to ensure that two locally verified owners are the same

Fig. 2 Proposed method and procedure for issuing owner certificate.

individual. A naı̈ve pairing method involves asking the user to
input the same secret authentication code to both devices after
each owner is locally verified. This pairing method is the most
convenient and prevalent for forming a trust relationship between
devices. However, this naı̈ve method works well only when the
user pairs devices carefully, for example, by using a long code
and avoiding pairing in public places [15]. However, there is a
concern that the majority of Web users are careless and can be
led by an expert attacker to unintentionally pair their devices with
unknown devices, resulting in key theft (risk 1-A). Furthermore,
the user can intentionally pair his/her device with another’s, that
is, there is no resistance to risk 1-B.

3.2 Trusted Third Party Verifying Identity of Device Own-
ers

To make the verification of device owners reliable enough for
both users and service providers regardless of user behavior, we
introduce a new entity called the Owner Identification Service
(OIS), which supervises key sharing across devices as a TTP in
an authentication system. As illustrated in Fig. 2, the OIS, acting
as an authority of a public key infrastructure (PKI) system [16],
ensures the identity of the owner of each device and issues a dig-
ital certificate (the owner certificate) to the device. The owner
certificate accords with the common X.509 format, and the OIS
sets two unique identifiers that are associated with the individual
and his/her device in the distinguished name of a subject field de-
fined for an X.509 certificate. An example of how to set these
unique identifiers in a subject field is to set them as a common
name (CN) in an X.509 certificate by concatenating them.

The private key related to the owner certificate (the owner key)
should be protected in the secure world as securely as the authen-
tication keys since the proof of possession of the owner key can
trigger sharing of authentication keys. Therefore, the owner key
is also protected in the secure world, and local-user verification is
required each time the key is used.

After beginning to use a device, a user might upgrade it in a
lifecycle event. In addition, a user device might be transferred to
another user or lost. Therefore, an owner certificate installed in
a user device has to be deactivated in such cases. To deactivate a
PKI certificate, a certificate revocation list (CRL) [16] and/or an
X.509 Internet Public Key Infrastructure Online Certificate Sta-
tus Protocol (OCSP) [17] are used. When we use the OCSP, we
can dynamically verify whether a PKI certificate is revoked at any
time by accessing a server called an OCSP responder. If an owner
certificate has been revoked, the authentication keys in a user de-

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 3 Procedures for disabling authentication keys.

vice have to be disabled and deleted. Figure 3 shows how the
proposed method disables the authentication keys in a user de-
vice without changing the FIDO UAF protocol, which is needed
for easy deployment, as described in Section 2.2. Before start-
ing the FIDO UAF protocol, a TLS session is first established
between a user device and Web server. A public key for user au-
thentication is then registered to a FIDO server according to the
specifications of the FIDO UAF protocol. To avoid the modifi-
cation of the FIDO UAF protocol with the proposed method, a
user device checks whether its owner certificate is revoked before
the registration of a public key for user authentication. When an
owner certificate has been revoked, the registration process of a
public key is never performed until a user device is initialized.
This owner certificate revocation check is also performed prior
to executing the authentication process of the FIDO UAF proto-
col as shown in Fig. 3. We further explain Fig. 3 in Sections 4.2
and 4.3.

The OIS must offer a high level of identity assurance as the
root of trust, which is quite costly due to the necessity of con-
ducting many verification processes [18]. One example of a user
verification process is an in-person verification process, where a
user is verified by checking his/her identity (ID) cards in face-
to-face communication. Another example is a verification pro-
cess using an ID card with a smartcard function, which provides
signature generation and verification using public-key cryptogra-
phy. With the proposed method, we assume that the owner of
a device is securely verified through such a verification process
whenever he/she obtains a new device. Therefore, we believe it
is reasonable for a business that already confirms people’s iden-
tities in their normal business to also play the role of the OIS.
In Japan, for example, mobile network operators are required by
law to confirm the identity of a subscriber before selling him/her
a phone and provide access to the mobile network. Users do not
have to do any additional action for identity proofing if the mo-
bile operator works as the OIS and issues the owner certificate
at the time of contracting with users. The other most economi-
cal OIS candidate is a nationwide PKI system. Governments in
some countries already provide the service of issuing certificates
to mobile devices [19]. Also, businesses that already have contact
points throughout the nation and usually confirm the identities of

their customers (e.g., banks or postal services) are expected to
cost-effectively act as the OIS.

4. Secure Key Copy across Devices

4.1 Peer-to-peer Key Copy between Devices
Key sharing across devices can be implemented using cloud

storage where backup of authentication keys are stored in a cloud
server and distributed to specific devices that have access privi-
leges [20]. However, sharing secret data, such as authentication
keys, using an Internet server increases the risk of scalable cyber-
attacks by network attackers who want to steal keys from the
server.

Our proposed method enables a user to securely copy authenti-
cation keys between devices in peer-to-peer fashion. Note that
this secure-key-copy function should not export authentication
keys in a form that enables any other individual to use them. It
must be highly secure against attacks designed to steal keys by
network attackers. Thus, devices create a direct transport channel
between them using proximity communication technology, such
as near field communication [21] or Bluetooth low energy [22],
to make it difficult to attempt attacks remotely via the Internet.
Furthermore, authentication keys are encrypted using the owner
certificate and delivered from one device to another through the
channel in an encrypted form to prevent eavesdropping attacks on
the network.

4.2 TEE-based Secure Implementation of Key Copy
To make key copy also resistant to malware attacks, we imple-

ment the secure-key-copy function within the secure world of a
device. Figure 4 shows an overview of the secure implementa-
tion of this function. This function has two sub-functions required
for sharing keys implemented as a software program running in
the secure world. The secure world ensures that the internal soft-
ware is isolated from other software and protected from any at-
tack from malware usually running in the normal world. A TEE
is available on many modern mobile devices as a secure world to
which trusted applications can be flexibly added.

One required sub-function is a subscriber function (owner-
verification sub-function in Fig. 4) of the PKI system provided
by the OIS. This sub-function generates and stores the owner key,
requests the OIS to issue the owner certificate, and makes a signa-
ture to prove the possession of the owner key. When a request for
the issuance of an owner certificate is sent by this sub-function, it
is signed with the owner key, as defined in PKCS#10 [23]. This
request is further signed with the private key of an attestation key
stored in an authenticator. The OIS can verify that a request for
the issuance of an owner certificate is created by an authenticator
in the secure world by verifying a signature generated using the
private key of an attestation key. The other required sub-function
is for creating a direct transport channel and copying keys be-
tween devices (copying sub-function in Fig. 4).

As described in Section 2.1, when a user device registers a
public key for user authentication to a FIDO server, this server
determines whether the capability of a user device’s authenticator
can satisfy service requirements. When an authentication key is
copied from the authenticator of one device (sender device) to that

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 4 Secure implementation of secure-key-copy function of our method based on owner-identification
service.

of another (recipient device), the capability of a recipient device’s
authenticator must also satisfy service requirements. Therefore,
with the proposed method, before sending an authentication key,
the copying sub-function of the sender device determines whether
the capability of the recipient device’s authenticator satisfies ser-
vice requirements as follows. After the sender device registers an
authentication key to a FIDO server through a Web server, this
Web server sends capability constrains for key copy back to the
sender device, as shown in Fig. 3. These capability constraints
contain conditions that the capability of the recipient device’s au-
thenticator must satisfy to receive an authentication key from the
sender device. Before an authentication key is copied from the
sender device to the recipient one, the recipient device sends its
AAID to the sender device. The sender device then determines
whether the capability of the recipient device’s authenticator can
satisfy the capability constrains corresponding to an authentica-
tion key. The TEE-based procedure for copying keys securely
from one device to another is described in detail in the next sub-
section.

4.3 Procedure for Copying Keys from One Device to An-
other

Figure 5 illustrates the detailed procedure of copying keys
from the TEE of one device (sender device) to that of another
(recipient device) while confirming the devices have the owner
certificate issued to the same individual (to mitigate risks 1-A and
1-B) as well as encrypting keys during the delivery, as described
in previous sections (to mitigate risks 2-A and 2-B). The follow-
ing steps are for copying keys. Prior to the following steps, the
sender and recipient devices first check whether their owner cer-
tificates have been revoked as shown in Fig. 3.
(1) Requesting copy: The recipient device requests the sender

device to copy keys by sending a message that includes the
owner certificate and AAID of the recipient device. This
message is signed with the private key of the attestation key
of the recipient device. This signature represents that the re-
cipient’s owner certificate and its corresponding private key
are managed in the secure world of the recipient device. The
AAID in the message is used for verifying the signature as-
sociated with the message and determining whether the ca-

Fig. 5 Detailed procedure for copying keys securely between devices.

pability of the recipient device’s authenticator satisfies the
capability constraints associated with authentication keys.
Local-user verification is required to verify that the owner
of the recipient device is definitely requesting this action.

(2) Validating copy between two devices: The sender device
validates before starting the actual copying process. First,
the sender device verifies the recipient’s owner certificate
and the signature generated by using the attestation key of
the recipient device. Through this signature verification, it
can determine that the received message in step 1 is created
by the authenticator of the recipient device. The sender de-
vice then compares the owner certificate of the recipient de-
vice with that of its own to confirm that the unique identifiers
of individuals, which are the owners of user devices, in the
CN fields of both certificates are the same. The sender de-

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

vice also requires local-user verification to ensure that the
owner of the sender device agrees with copying the keys.
The sender device then obtains the capability of the recipi-
ent device’s authenticator from a metadata server using the
AAID received from the recipient device and searches for
authentication keys whose capability constraints are satisfied
by the obtained capability.

(3) Sending keys in encrypted form: The authentication keys
must be encrypted in the secure world of the sender device
by using the pubic key attached to the owner certificate of
the recipient device so that the authentication keys can be
decrypted only in the secure world of the recipient device
where the associated private key (the owner key) is present.
To achieve better performance in the encryption process, the
authentication keys are encrypted with a newly generated
symmetric key (wrap key), which is encrypted with the pub-
lic key attached to the received owner certificate. The sender
device sends the wrapped authentication keys and encrypted
wrap key back to the recipient device at the end of this pro-
cess. The wrapped authentication keys and encrypted wrap
key sent by the sender device can be decrypted only by the
recipient device. This is because the wrap key can be re-
trieved only by the holder of the private key corresponding
to the recipient’s owner certificate, which is only the authen-
ticator of the recipient device.

(4) Decrypting received keys: The recipient device decrypts
the wrap key with its owner key (the private key associ-
ated with the public key attached to the owner certificate),
then unwraps the authentication keys with the wrap key, and
stores the authentication keys locally.

4.4 Key Recovery from Lost Device
When a user has his/her devices in hand, authentication keys

in a device can be copied to another device by using the pro-
posed method. On the other hand, a user might lose his/her de-
vice where authentication keys are stored but never shared to any
other device. If a user lost such a device, he/she has to re-register
new authentication keys using a non-FIDO fallback authentica-
tion method as described in Section 2.2. To reduce this risk, we
assume the proposed method can be used as follows.

A user has one or more devices that are placed in a compara-
tively safe place such as a user’s home and less likely to be moved
from there. We call them key-backup devices. In addition, we
call a place where key-backup devices are placed a home place.
When a user registers a new authentication key using a device
other than a key-backup one, he/she shares the key to his/her key-
backup devices. To achieve this conveniently for a user, a user
device has an application that manages authentication keys not
shared to his/her key-backup devices. We call this application
a key-backup application. When a key-backup application finds
its owner’s key-backup device to which new authentication keys
have not been shared, it notifies a user to share them to a key-
backup device. If a user frequently comes back to his/her home
place, the probability that newly generated authentication keys
will be lost can be reduced because we can recover authentica-
tion keys from a key-backup device.

5. Implementation and Evaluation

We evaluated the proposed method in terms of the feasibility
of the secure-key-copy function, security and user convenience
of device-owner identification, and probability of key loss. We
first describe the implementation of the secure-key-copy function
in a smartphone in Section 5.1 then discuss evaluation results in
Section 5.2.

5.1 Secure-key-copy-function Implementation
Many commercial mobile devices provide the secure world

on the basis of the TEE standardized by the GlobalPlatform [5].
As this TEE provides a more limited development and execu-
tion environment than the normal world, it is essential to deter-
mine whether the secure-key-copy function can be implemented
on the basis of the primitive pre-defined standard APIs [24] to
determine whether this function can be feasibly deployed in a
commercial environment. We implemented the secure-key-copy
function as a trusted application running in the ARM TrustZone-
based TEE [25]. We call this function the key-copy trusted ap-

plication (TA). The key-copy TA works as part of a FIDO au-
thenticator, which enables the authentication keys to be copied
across authenticators in accordance with the procedure described
in the previous section. The key-copy TA has two simple APIs
used for copying keys from one authenticator to another: getKey()

and storeKey(). Calling getKey() at a sender device retrieves one
specified key from the local authenticator and returns it in an en-
crypted form. storeKey() is called at the recipient device with the
encrypted key as an argument, and the key is decrypted and stored
in the local authenticator. In the key-copy TA, the wrap and owner
keys are generated as a 256-bit AES key [26] and 2048-bit RSA
key [27], respectively.

5.2 Evaluation Results
We implemented the key-copy TA on a commercially available

smartphone, the Samsung Galaxy S8 (SM-G950FD), and con-
firmed that it works in the standard TEE on the device. We also
measured the time required for copying keys to evaluate the fea-
sibility of this function from the perspective of user experience.
We measured the time for obtaining the number of (N) keys from
the authenticator by calling getKey() and storing N keys in the
authenticator by calling storeKey(). The N was varied from 1
to 40 by taking into account the survey results of Web site reg-
istration [13]. The time for sending the encrypted keys through
the direct transport channel between the devices was excluded
from the evaluation because we focused on the overhead caused
by moving keys from/to the TEE in an encrypted form, which is
a notable characteristic of our proposed method.

As shown in Figs. 6 and 7, the more authentication keys, the
longer the required time, which is plotted with black circles in
the figures. It took about 0.77 and 3.4 s to obtain and store 40
keys, respectively. Decryption computation with the private key
(the owner key) for storing keys takes about five times longer than
encryption computation with a public key for obtaining keys.

The breakdown of processing time for each API call is shown
in Table 1. As described in the previous subsection, APIs

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 6 Time for obtaining N encrypted keys from TEE.

Fig. 7 Time for storing N encrypted keys after decryption in TEE.

Table 1 Breakdown of Processing Time for APIs.

API Processing steps
Time (*)

(ms)

a. getKey()

Step 1a: Generate wrap key (AES-256) 1.7
Step 2a: Wrap authentication key

9.3
with wrap key
Step 3a: Encrypt wrap key with

8.3
owner key (RSA-2048, public key)

b. storeKey()

Step 1b: Decrypt wrap key with
72.8

owner key (RSA-2048, private key)
Step 2b: Unwrap wrapped key with

13.1
decrypted wrap key

(*) Average time of 60 API calls

getKey() and storeKey() implemented in the key-copy TA obtain
and store one key for each API call, respectively. Therefore, when
N keys are copied, the API is called N times; thus, all steps in Ta-
ble 1 are repeated N times. However, it is possibly more efficient
to provide extended APIs that obtain or store multiple keys with
one API call. In this case, as one wrap key can be shared for
copying N keys, steps 1a, 3a, and 1b in Table 1 need to be per-
formed only once, whereas steps 2a and 2b need to be repeated N

times. By using the extended APIs, 40 keys can be estimated to
take 0.38 s to obtain and 0.56 s to store. These estimated times
are also plotted with black triangles in Figs. 6 and 7. Therefore,
the overhead for copying 40 keys between the TEEs of two de-
vices is expected to be less than 1 s. As the average user has
been reported to have fewer than 40 keys [13], we believe the 1-
s overhead for copying keys is feasible from the perspective of
user experience. Hence, these results indicate the feasibility of
the secure-key-copy function of the proposed method on a com-
mercially available smartphone.

Fig. 8 Probability of key loss for one year.

When a user performs the copying of authentication keys be-
tween two devices, two steps are needed: unlocking a user device
and verifying the equality of owners of two devices through a
user identification process. As described in Section 3, the pro-
posed method uses owner certificates installed in user devices in
order to verify the equality of device owners. On the other hand,
the existing method verifies this by validating two devices to be
controlled by one user. For one example, a user is identified using
a password and/or digits, which are used in iCloud keychain [20]
and a method of pairing two devices with Bluetooth functionality.
These identification methods require a user to input a password
and/or digits to one or more devices although a user identifica-
tion process is automatically performed from the second time in
the case of iCloud keychain. This identification process is per-
formed using the pair of a public key and private key generated
in the first identification process. For another example, a user
is required to place two devices back to back, which is used in
Android Beam [28]. These methods require additional user oper-
ation for verifying the equality of device owners after unlocking
devices. They can also be operated between two devices belong-
ing to different owners. However, the proposed method does not
require any additional operation for verifying the equality of de-
vice owners and cannot be used between two devices of different
owners.

We finally discuss the probability of key loss when the pro-
posed method is used as described in Section 4.4. For simple
evaluation, we assume that authentication keys in a user device
are shared to a key-backup device at a constant period (Tb). We
call this period a backup period. Let Pd and Pr be the proba-
bilities of occurrences of device loss and the registration of one
authentication key for Tb, where we assume that one authentica-
tion key can be registered at most in Tb. We can then calculate
the probability of authentication-key loss for a year Pk as

Pk = {1 − (1 − PdPr)
Ny }, (1)

where Ny is the number of backup periods in a year. In this for-
mula, we adopt Pd representing that 5% of devices are lost every
year [29]. Figure 8 shows the probability of authentication-key
loss Pk, where Tb is 1 day. The horizontal and vertical axes are
Pr and Pk, respectively. The vertical dashed lines indicate Pr

at which the expectations of the number of authentication keys
newly registered in a year range from 1 to 14. For example, the

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

dashed line below “7” in the graph indicates Pr at which the ex-
pectation of the number of authentication keys newly registered
in a year is 7. From this figure, the probability of key loss is
around 0.21% at most. This probability means that a user will
never lose keys for 100 years with the probability of more than
80%. Hence, we can effectively reduce the probability of key
loss, which requires a user to register new keys using non-FIDO
fallback authentication methods.

6. Related Work

Exporting authentication private keys has been traditionally
considered convenient for restoring authentication keys on a dif-
ferent device [30]. However, as public key authentication be-
comes widely used to protect accounts with higher security re-
quirements, such export may degrade security; therefore, a stan-
dard hardware-assisted key management application program in-
terface (API) provided by a modern mobile OS [31] does not al-
low private keys to be exported. With the FIDO UAF, it is also
assumed that authentication private keys never leave the local de-
vice for security reasons [32], causing the usability problem of
re-registration when switching devices. To improve the usabil-
ity of FIDO-based authentication without critically compromis-
ing the high security against theft or misuse of authentication pri-
vate keys, our proposed method allows the sharing of keys across
devices based on the device-owner’s identity instead of allowing
the export of authentication keys in a form that enables any other
individual to use them.

There are methods that can be used for mitigating the burden
of re-registration for each Web account. Identity-management
methods, such as OpenID and a Security Assertion Markup Lan-
guage (SAML) [33], enable a single sign-on across multiple Web
accounts for reducing the number of authentications. The FIDO
UAF is expected to be an initial stronger authentication method at
an identity provider [7]. In such a federated use case, the user has
to register the new device again, not to all Web accounts but only
to the identity provider. However, not all Web accounts will rely
on a single identity provider [34]; thus, the user still has to com-
plete the registration for all identity providers the user is using
and for Web accounts that do not rely on any identity providers.
The Client-to-Authenticator-Protocol (CTAP) [35] enables multi-
ple client devices (PC, phones, etc.) to remotely access the au-
thentication keys located in the external authenticator. In this
use case, the user does not have to register each client device
but still has to re-register for each account after replacing the ex-
ternal authenticator with a new one. Although the methods men-
tioned above may mitigate the burden on users at a certain level,
re-registration is still needed in some situations. Our proposed
method completely eliminates the necessity of re-registration by
enabling secure migration of keys.

There is also a method for mitigating the burden of registration
for each Web account by making it transparent to the user. The
transfer access protocol [36] is an extension of the FIDO UAF for
registering public authentication keys generated in a new device.
It requires the creation of a chain of trust between old and new
devices. The trust chain of an old and new device is created using
the authentication key of an old device. The public key created

by a new device is associated with the already registered public
key of an old device using a signature calculated with the authen-
tication key of the old device. Then, a new device can access a
server using the authentication key newly created in it. Assume
that a user has multiple devices that contain their own authen-
tication keys to use a service and has lost one of the devices at
a particular time. We can delete only a public key, which cor-
responds to an authentication key in the lost device, in a FIDO
server to avoid improper use of a user account because different
authentication keys are used for multiple devices. When using
the Transfer Access Protocol, we can thus control the access of a
user to a server on the side of a FIDO server. On the other hand, it
is difficult for common users to inform a service provider about a
public key included in a lost device. Therefore, we have to further
improve usability when using this protocol. From the viewpoint
of deployment, we have to revise the specifications of the FIDO
UAF protocol to use the Transfer Access Protocol. This means
that all user devices and FIDO-related servers including those al-
ready deployed have to support a new specification including the
function of the Transfer Access Protocol. In contrast, the mul-
tiple devices of a user share the same authentication key to use
a service with our proposed method. It can disable the authenti-
cation keys in a lost device by notifying an OIS about the event
of its loss as described in Sections 3.2 and 4.3. The proposed
method also does not require any revision to the specifications of
the FIDO UAF protocol. Therefore, it is unnecessary to update
the functions of user devices and FIDO-related servers that do not
need the proposed method. This is important for the deployment
of the proposed method.

7. Conclusion

We proposed a method of allowing authentication keys to be
shared across personal mobile devices as a solution to the us-
ability issue of Fast Identity Online (FIDO)-based authentication
caused by device-lifecycle events. This method is also suitable
for Internet of Things (IoT) devices. Our motivation was to pro-
vide the user with a solution that offers enhanced usability while
mitigating the risks caused by key sharing and still maintaining
an acceptable level of security. Our method has a trusted third
party (TTP)-based device-owner authentication function. With
this function, we introduced a TTP that is responsible for super-
vising key sharing across devices in an authentication system.
The TTP identifies the owner of each device to prevent the au-
thentication keys from being shared with a device of a different
individual. Our method also has a secure-key-copy function for
copying the keys securely from one device to another, which mit-
igates the risk of the keys being stolen by attackers during key-
sharing. This function creates a direct transport channel between
devices, and the keys are delivered through the channel in an en-
crypted form. Encryption is based on a user certificate issued to
each device by the TTP and ensures that the keys are securely
copied from the trusted execution environment (TEE) of one de-
vice to that of another. We implemented the secure-key-copy
function running in the standard ARM TrustZone-based TEE on a
widely used smartphone and evaluated it. The evaluation showed
that several keys (the number of accounts an average user is ex-

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

pected to have) are expected to be copied in less than 1 s. This
result indicates the feasibility of this function on commercially
available mobile devices.

To demonstrate the fundamental feasibility of our proposed
method, we have implemented a core part of the proposed method
enabling keys to be securely delivered between two different se-
cure worlds. For real-world deployment, the full key-sharing
method needs to be implemented to evaluate the end-to-end user
experience with the proposed method.

References

[1] Bonneau, J., Herley, C., van Oorschot, P.C. and Stajano, F.: The Quest
to Replace Passwords: A Framework for Comparative Evaluation of
Web Authentication Schemes, Proc. 2012 IEEE Symposium on Secu-
rity and Privacy, pp.553–567 (2012).

[2] Morris, R. and Thompson, K.: Password Security: A Case History,
Comm. ACM, Vol.22, No.11, pp.594–597 (1979).

[3] Adams, A. and Sasse, M.A.: Users Are Not The Enemy, Comm. ACM,
Vol.42, No.12, pp.41–46 (1999).

[4] Kleppmann, M. and Irwin, C.: Strengthening Public Key Authentica-
tion against Key Theft, Proc. 9th Int’l Conf. Passwords, pp.144–150
(2015).

[5] GlobalPlatform: TEE System Architecture Version 1.2,
GPD SPE 009 (2018).

[6] GlobalPlatform: Practical Business Considerations: Realizing FIDO
Authentication Solutions with GlobalPlatform Technologies, White
Paper (2018), available from 〈https://globalplatform.org/resource-
publication/practical-business-considerations-realizing-fido-
authentication-solutions-with-globalplatform-technologies/〉.

[7] Machani, S., Philpott, R., Srinivas, S., Kemp, J. and Hodges, J. (Eds.):
FIDO UAF Architectural Overview, FIDO Alliance Proposed Stan-
dard 08 (2014), available from 〈https://fidoalliance.org/specs/fido-
uaf-v1.0-ps-20141208/fido-uaf-overview-v1.0-ps-20141208.pdf〉.

[8] Lindemann, R. and Kemp, J.: FIDO Metadata Statement, The FIDO
Alliance (2017), available from 〈https://fidoalliance.org/specs/fido-
uaf-v1.1-ps-20170202/fido-metadata-statement-v1.1-ps-
20170202.html〉.

[9] Lindemann, R.: FIDO Registry of Predefined Values, The FIDO Al-
liance (2018), available from 〈https://fidoalliance.org/specs/fido-v2.0-
id-20180227/fido-registry-v2.0-id-20180227.html〉.

[10] Lindemann, R. (Ed.): FIDO Authenticator Security Requirements,
The FIDO Alliance (2018), available from 〈https://fidoalliance.org/
specs/fido-security-requirements-v1.2-2018/fido-authenticator-
security-requirements-v1.0-wd-20180629.html〉.

[11] Javed, A., Bletgen, D., Kohlar, F., Dürmuth, M. and Schwenk, J.: Se-
cure Fallback Authentication and the Trusted Friend Attack, Proc.
IEEE 34th Int’l Conf. Distributed Computing Systems Workshops,
pp.22–28 (2014).

[12] Swift, A.: Americans Split on How Often They Upgrade Their Smart-
phones (2015), Gallup, available from 〈http://www.gallup.com/poll/
184043/americans-split-often-upgradesmartphones.aspx〉.

[13] Stobert, E. and Biddle, R.: The Password Life Cycle: User Behaviour
in Managing Passwords, Proc. 2014 Symposium on Usable Privacy
and Security, pp.243–255 (2014).

[14] Lang, J., Czeskis, A., Balfanz, D., Schilder, M. and Srinivas, S.: Se-
curity Keys: Practical Cryptographic Second Factors for the Modern
Web, Proc. 20th Int’l Conf. Financial Cryptography and Data Secu-
rity, pp.422–440 (2016).

[15] Gehrmann, C.: Bluetooth Security White Paper, Technical Report,
Bluetooth SIG Security Expert Group (2002).

[16] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R. and
Polk, W.: Internet X.509 Public Key Infrastructure Certificate and Cer-
tificate Revocation List (CRL) Profile, RFC5280 (2008).

[17] Santesson, S., Myers, M., Ankney, R., Malpani, A., Galperin, S. and
Adams, C.: X.509 Internet Public Key Infrastructure Online Certifi-
cate Status Protocol - OCSP, RFC 6960 (2013).

[18] Grassi, P.A., Garcia, M.E. and Fenton, J.L.: Digital Identity Guide-
lines, National Institute of Standards and Technology Special Publica-
tion 800-63-3 (2017).

[19] Gemalto: National Mobile ID schemes Volume I, White Paper (2014),
available from 〈http://www.gemalto.com/govt/coesys/mobile-id〉.

[20] Apple, Inc.: iOS Security Guide, White Paper (2018), available from
〈https://www.apple.com/business/site/docs/iOS Security Guide.pdf〉.

[21] International Organization for Standardization: ISO/IEC JTC 1, avail-
able from 〈https://www.iso.org/isoiec-jtc-1.html〉.

[22] Bluetooth Technology, available from 〈https://www.bluetooth.com/

bluetooth-technology/radio-versions〉.
[23] Nystrom, M. and Kaliski, B.: PKCS#10: Certificate Request Syn-

tax Specification Version 1.7, IETF RFC 2986 (2000), available from
〈https://tools.ietf.org/html/rfc2986〉.

[24] GlobalPlatform Technology: TEE Internal Core API Specification
Version 1.2, GPD SPE 010 (2019).

[25] ARM: ARM Security Technology: Building a Secure System using
TrustZone Technology, White Paper, PRD29-GENC-009492C (2009).

[26] National Institute of Standards and Technology: Advanced Encryp-
tion Standard (AES), Federal Information Processing Standards Pub-
lication 197 (2001).

[27] Moriarty, K. (Ed.), Kaliski, B., Jonsson, J. and Rusch, A.: PKCS #1:
RSA Cryptography Specifications Version 2.2, RFC8017 (2016).

[28] Android Developers, available from 〈https://developer.android.com/
guide/topics/connectivity/nfc/nfc〉.

[29] McAfee, LLC: Almost 5% of smartphones Lost Every Year, avail-
able from 〈https://securingtomorrow.mcafee.com/consumer/family-
safety/almost-5-of-smartphones-lost-every-year/〉.

[30] Barker, E.: Recommendation for Key Management, Part 1: General,
National Institute of Standards and Technology Special Publication
800-57 Part 1 Rev. 4 (2016).

[31] Android Open Source Project: Hardware-backed Keystore, available
from 〈https://source.android.com/security/keystore〉.

[32] Lindemann, R. (Ed.): FIDO Security Reference, FIDO Alliance Im-
plementation Draft (2018), available from 〈https://fidoalliance.org/
specs/fido-v2.0-id-20180227/fido-security-ref-v2.0-id-20180227.
html〉.

[33] Chadwick, D.W.: Federated Identity Management, Foundations of Se-
curity Analysis and Design V, Lecture Notes in Computer Science,
Vol.5705, pp.96–120, Springer (2009).

[34] Loutfi, I. and Jøsang, A.: 1, 2, Pause: Let’s Start by Meaningfully
Navigating the Current Online Authentication Solutions Space, Proc.
9th IFIP WG 11.11 International Conference on Trust Management,
pp.165–176 (2015).

[35] Brand, C., Czeskis, A., Ehrensvärd, J., Jones, M.B., Kumar, A.,
Lindemann, R., Powers, A., Verrept, J. (Eds.): Client To Authenticator
Protocol (CTAP), FIDO Alliance Implementation Draft (2018), avail-
able from 〈https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-
client-to-authenticator-protocol-v2.0-id-20180227.html〉.

[36] Takakuwa, A., Kohno, T. and Czeskis, A.: The Transfer Access Proto-
col - Moving to New Authenticators in the FIDO Ecosystem, Techni-
cal Report UW-CSE-17-06-01, The University of Washington (2017).

Hideo Nishimura received his B.E. de-
gree in computer science from the Univer-
sity of Electro-Communications in 2005
and his M.S. degree in mathematical and
computing sciences from Tokyo Institute
of Technology in 2007. In 2007, he joined
NTT, where he has been researching inno-
vative technologies for a telecommunica-

tion core network and modern user authentication. He is a mem-
ber of IEICE.

Yoshihiko Omori received his M.E. de-
gree in electrical communication engi-
neering from Tohoku University in 1993.
Since joining NTT in 1993, he has been
engaged in research on traffic control in
IP-based networks, QoS control, oper-
ation systems for VPNs, authentication
technologies, and packet networks for

mobile communications at NTT Telecommunication Networks
Laboratories and NTT DOCOMO. He is a member of IEICE.

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Takao Yamashita received his B.S. and
M.S. degrees in electrical engineering in
1990 and 1992 from Kyoto University,
where he also received his Ph.D. degree
in informatics in 2006. In 1992, he joined
NTT. His current research interests en-
compass network security, cloud comput-
ing, Internet-of-Things, and distributed al-

gorithms. He is a member of IEICE, IEEE, IPSJ, and APS.

c© 2020 Information Processing Society of Japan

