
Electronic Preprint for Journal of Information Processing Vol.28

Regular Paper

Monitoring of Servers and Server Rooms by IoT System
that Can Configure and Control its Terminal Sensors

Behind a NAT Using a Wiki Page on the Internet

Takashi Yamanoue1,a)

Received: June 17, 2019, Accepted: November 29, 2019

Abstract: This paper describes a method of monitoring servers or server rooms by an Internet of Things (IoT) system
that can configure and control terminal sensors behind a network address translation (NAT) router through a Wiki page
on the Internet. This IoT system consists of Wiki pages and a bot (Wiki Bot) that runs on Raspberry Pi with sensors.
A Wiki Bot can be placed behind the NAT router to resist various online attacks. The IoT system can monitor servers
behind a NAT router over the Internet. A Wiki Bot is controlled by sending commands from the Wiki page. It acquires
data from its sensors and processes the data via a command sequence of commands. The sensors settings and the data
sampling rate can be remotely changed by changing the commands on the Wiki page.

Keywords: monitoring, network management, Wiki, Bot, IoT

1. Introduction

Information and communication technology (ICT) infrastruc-
ture administrators at universities monitor servers and server
rooms on campus [1], [2]. Such monitoring is deceptively dif-
ficult. If the administrators fail to identify a potential problem or
if the staff cannot solve an identified problem, users will not be
able to use the network. Some server room problems can even
lead to fire.

ICT infrastructure administrators thus use various methods to
identify problems with a server or the server room.

In this paper, we describe the monitoring of servers and server
rooms using bots, which are remote-controlled computers or pro-
grams. Bots are often malicious programs that form a botnet [3],
but they can also be used for beneficial tasks [4], [5], [6], [7].

We use a bot to monitor a Web server on our campus. This bot
uses Twitter to periodically update the server status. We also use
bots to monitor a server room on our campus. These bots notify
administrators of changes in room temperature, room brightness
and room air pollution.

The bots are part of an Internet of Things (IoT) system that
connects them over the Internet.

2. Outline of Wiki IoT System and the Wiki
Bot

The bots, called Wiki Bots, are Raspberry Pis that run the bot
software. Some of them are equipped with sensors and some
are equipped with a wireless sensor network (WSN) transmitter.
Wiki Bots are controlled by commands and programs on Wiki

1 Fukuyama University, Fukuyama, Hiroshima 729–0292, Japan
a) yamanoue@fukuyama-u.ac.jp

pages on web servers. Wiki Bots equipped with a WSN trans-
mitter are gateways to the WSN. This IoT system consists of IoT
devices (bots) that communicate with each other and Wiki soft-
ware on the Internet. We call this IoT system the Wiki IoT system

(Fig. 1).
Administrators can control bots in a local area network (LAN)

protected by network address translation (NAT) routers from out-
side the LAN by writing commands and programs on Wiki pages
hosted on web servers located outside the LAN or that can be ac-
cessed from outside the LAN. A WSN is not considered in this
paper. A Wiki IoT system with a WSN is described in other pa-
pers [8], [9].

We adopt PukiWiki software [10] for the Wiki IoT because
PukiWiki is simple to deploy than many other wikis. PukiWiki
needs minimized requirements, even requires no data base en-
gines such like MySQL. Extracting PukiWiki tar-ball to a web
server root directory, it just works [11].

When a server is connected to a campus LAN that cannot be ac-
cessed from the Internet directly, it is impossible to directly moni-
tor the server from outside of campus. However, such monitoring
would be convenient when administrators are not on campus. A
Wiki Bot can help administrators monitor the server in such cases.
A server room is usually physically isolated from the outside;
there are no people in the server room. A Wiki Bot can help the
administrators monitor server rooms. A bot can help administra-
tors monitor servers that are maintained by a third-party company
and onto which monitoring software cannot be installed.

2.1 Behavior of a Wiki Bot
Figure 2 shows the behavior of a Wiki Bot. A Wiki Bot repeats

the following steps:

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 1 Outline of a Wiki IoT system.

Fig. 2 Outline of behavior a Wiki Bot.

1) Wait for a specified time.
2) Read commands from the specific Wiki page assigned to the

bot. The source code of a program and the command for
running the program can be used as commands

3) Execute these commands.
4) Data in the send buffer are written back to the Wiki page that

contains the commands, after the line “result:”.
If the source code of a program is embedded in the series of

commands, then the program is transferred to the language pro-
cessor of the bot. The program is translated into an internal rep-
resentation and run by the interpreter when the run command is
executed.

The program can read other Wiki pages and Web pages. It can
read and send tweets on Twitter. Bots with sensors, can also read
sensor data. Bots with actuators can send data to the actuators.
A bot can write data to the send buffer. If the data are spilt from
the send buffer, old data are deleted. These functions are realized
using the embedded functions of the programming language.

We call the specific Wiki page that contains the commands, the
program, and data which are written back from the Wiki Bot, the
main Wiki page.

Actuators are not considered in this paper. A Wiki IoT system
with actuators is described in another paper [12].

2.2 Commands and the Program of a Wiki Bot
Figure 3 shows an example of a program with a series of com-

mands. In this example, lines that start with “command:” are the

Fig. 3 An example of the program of a Wiki Bot and its output after the
execution of the program.

commands. The first line,

command: set readInterval = 60000

tells the Wiki Bot to read the page at the given URL every minute.
The time interval is given in milliseconds.

The lines that start with “program:” are the program. A pro-
gram is enclosed by commands “command: program <name>”
and “command: end <name>”, where <name> is the name of the
program. In this example, the program is named “ex”. The last
command line, “command: run ex” translates the program into its
internal representation and executes.

A Wiki page for a Wiki Bot can also contain the “set page-

Name” command and the “include” command.
When the “set pageName” command is interpreted in the bot,

the Wiki Bot will use the Wiki page designated by this command
as the main Wiki page. The name of the designated Wiki page can
include the current time or date. For example, when the follow-

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

ing command is interpreted at eight o’clock, the Wiki Bot uses
the page “pir-1-8”, on the same server used for the current Wiki
page, as the main Wiki page.

set pageName = “pir-1-<hour>”

When the “include” command is interpreted in a Wiki Bot, the
bot inserts the Wiki page designated by the include command into
the place of the include command of the original Wiki page. This
command is useful when there are identical commands or pro-
grams on many Wiki pages. It can also be used for object-oriented
programming.

The commands and the program on the main Wiki page can be
modified to change the behavior of the bot without stopping the
bot.

A Wiki Bot can be connected to a LAN protected by a NAT or
network address port translation router. The bot can be controlled
from outside the LAN.

2.3 Embedded functions of a program
The program of a Wiki Bot can use the following embedded

functions.
• ex(<object>, <command>)

This function sends the <command> in a string to <object>.
Currently, objects are a “service” for interacting with the bot’s
functions, a “connector” for interacting with a web page and
a “pi4j” for interacting with sensors and actuators connected
to the Wiki Bot. This function can have a return value. The
following is an example of the statement that reads the page
http://www.page.ex/ and assigns the page to the variable page as
a string value.

page = ex(“connector”, “getpage http://www.page.ex/”)

• getResultPart(<page>)

This function extracts the result part of the string <page>. It
is assumed that the page is in the format of the PukiWiki page of
a Wiki Bot, which includes a sequence of commands, a program,
and the result part.
• parseCsv(<csv>,

<dataTable>, <rowLabel>, <columnLabel)>)

This function transforms the string <csv> into a two-
dimensional array <dataTable>. It is assumed that <csv> is in
the following format.

<col-label-1>=<val-1-1>,...,<col-label-1-1n>=<val-1-1n>.

<col-label-2>=<val-2-1>,...,<col-label-2-2n>=<val-2-2n>.

...

<col-label-m>=<val-1-m>,...,

<col-label-m-mn>=<val-m-mn>.

Each line should not have the same number of values.
The following is an example of <csv>.

device=d, Date=2013/5/5/ 17:6:18, v=0x0c0.

device=a-2, Date=2013/5/5/ 17:6:18, v=155.

device=a-1, Date=2013/5/5/ 17:6:18, v=53.

device=a-0, Date=2013/5/5/ 17:6:45, ave=242,..., dt=100.

device=a-0, Date=2013/5/5/ 17:7:53, ave=242,..., dt=100.

...

<rowLabel> is a hash table with key-value pairs (“rowcol”,
“row”) and (“maxIndex”, maximum row index of the table). This
hash table includes row information such as the maximum in-
dex of the row. <columnLabel> is a hash table with key-value
pairs (“rowcol”,”col”), (“maxIndex”, maximum column index
of the table), (<col-label−1>, column index of the label), . . . ,
(<col-label−max>, column index of the label whose index is the
maximum column value in the table).

There are functions for accessing a table such as sumif and
countif, these functions are equivalent to those in Microsoft Ex-
cel. There is also a function called getindex that finds the mini-
mum index of the table that satisfies the specified condition which
is the argument of the getindex function.

2.4 Class Pages and Object Pages
Wiki IoT is an object-oriented computing system [9]. In our

Wiki IoT system, an object is the combination of a Wiki page and
a Wiki bot.

Some bots in a Wiki IoT system may use the same commands.
To reduce duplication on Wiki pages, the Wiki IoT system might
have a class page for sharing common commands among the Wiki
pages of such objects. We call a main Wiki page of objects an ob-

ject page. An object page uses the “include” command for a class
page when sharing a common class among object pages.

If class pages have common commands, they can share another
page of the same class page using the “include” command, simi-
lar to inheritance in object-oriented programming.

The override function in object-oriented programming is also
realized by the “include” command. If Wiki page B includes Wiki
page A, then the program on Wiki page A becomes the super-
class of the program on Wiki page B, which is the sub-class. The
programming language for our Wiki IoT system is similar to BA-
SIC. A program is translated into an S-expression, which is eval-
uated by a LISP interpreter. If functions with the same name exist
in the super-class program and the sub-class program, the func-

Fig. 4 Example of class hierarchy of Wiki IoT.

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 5 Monitoring of server that can-not be directly accessed from outside the LAN.

tion of the super-class program is overwritten by the function of
the sub-class program.

Figure 4 shows an example of the class hierarchy of Wiki IoT.
Class Page A, Class Page B, Class Page C, Object Page-1, Object
Page-2, Object Page-3, and Object Page-4 are Wiki pages. The
program in Class Page A is the super-class of sub-class programs
in Class Page B and Class Page C. Object Page-1 and Object
Page-2 use the commands and program in Class Page B. Object-3
and Object-4 use the commands and program in Class Page C.

3. Monitoring Servers from Outside the LAN

Video clips of computer ethics are shown to students to en-
hance cyber security on our campus [13], [14]. The video clips
are stored on a Web server on our campus. The license of the
video clips does not allow us to access this Web server from out-
side our campus. There have been instances of this Web server
going down, which prevented the video clips from being shown
in class. Therefore, we have started monitoring this Web server
using our Wiki IoT system.

The Web server monitoring system consists of a Wiki Bot, a
Wiki page, and Twitter (Fig. 5). The Wiki Bot is connected to the
campus LAN to monitor the Web server status (this is not possible
from outside the LAN). The bot repeatedly reads the Wiki page
that contains the program for monitoring the Web server and exe-
cutes the program. The Wiki Bot monitors the Web server status
and reports it to administrators via a tweet on Twitter.

Figure 6 shows the main Wiki page for the Wiki Bot of the
Web server monitoring system. This page includes the program
for the Wiki Bot. The program does the followings:
1) Tries to read the Web page of the Web server.
2) If the Wiki Bot cannot read the page, it tweets the following:

“rinri down <hour:min>”

3) If the Wiki Bot can read the page, it tweets the following:

“rinri up <hour:min>”

We have used the Web server monitoring system for three
years. Figure 7 shows some example tweets from the Wiki Bot of
the Web server monitoring system. These tweets alerted us that
the Web server was down. The Web server went down between
2:55 and 3:56 on March 18, 2017. It was a weekend so we were
at home at that time. After receiving the tweets, we went to the
campus and fixed the problem.

We have confirmed that our use of Twitter complies with the
Twitter’s rules [15].

4. Monitoring of Server Room

There was air conditioner malfunction in a server room on our
campus in 2015. This malfunction occurred on weekend and it
was not noticed until a Monday class that uses a computer labo-
ratory. The servers in the server room also malfunctioned because
of the high temperature in the room. If the problem had gone un-
noticed longer, there could have been a fire in the server room.

As a result of the server malfunctions, we could not use the
computer laboratories at that time because the computers use Ac-
tive Directory servers and file servers in the server room.

A server room usually has no windows and the only time some-
one is in the server room is during server maintenance. Therefore,
sensors must be used to monitor the server room conditions from
the outside.

We called the air conditioner and servers maintenance compa-
nies at the time. They fixed the trouble in a few days.

We decided to start monitoring the server room. There are
commercial services for remotely monitoring servers. These ser-
vices usually require the installation of a monitoring program
on the server. However, it is difficult to install such programs
on a server that is not a property of the university. Therefore,
we decided to monitor the server room using a Wiki IoT system

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 6 Wiki page that controls the Wiki Bot for monitoring a Web server that can not be directly accessed
from outside the LAN.

Fig. 7 Tweets of aliveness of the Web server by the Wiki IoT System.

(Fig. 8).
We developed Sensor Bot, A Sensor Bot comprises a Rasp-

berry Pi, a temperature sensor, a light sensor, a passive infrared
(PIR) motion sensor and a gas sensor. The PIR motion sensor

detects human presence. The gas sensor detects the air pollution
level. Figure 9 shows a Sensor Bot. The temperature sensor and
the light sensor are I2C devices. The output of the gas sensor
is an analog value, which is converted to a digital value by an
I2C analog-to-digital converter. The PIR motion sensor outputs a
digital value, which is sent to the GPIO port of the Raspberry Pi.

The server room monitoring system consists of a Sensor Bot
(Wiki Bot-1), a Wiki Bot without sensors (Wiki Bot-2), 24 Wiki
pages, one for each hour in a day (H-Wikis), the class page for
the bot (sensors-1-h-class), 31 Wiki pages, one for each day in a
month (D-Wikis), and the class page for the bot (Daily-Class-1).

An H-Wiki contains the command for including the sensors-1-
h-class page and acquires sensor data every minute for an hour.
Figure 10 shows an excerpt of the sensors-1-h-1 page, an H-Wiki
page.

A D-Wiki contains the command for including the Daily-
Class-1 and acquires average sensor data for each hour in a day.
Figure 11 shows the daily-1-1 page, a D-Wiki page.

Wiki Bot-1 is placed in the server room for environmental
monitoring. It reads an H-Wiki that corresponds to the current
time, interprets the commands on the page and the program on
the sensors-1-class page, and writes back the current sensor data
to the H-Wiki. The sensors-1-class page contains the program
that issues commands to sensors of Wiki Bot-1 to obtain sensor
values.

Wiki Bot-2 is placed in our research room. It reads the D-Wiki
that corresponds to the current date, interprets the commands on
the page and the program on the Daily-Class-1 page, and writes
back the current sensor data to the D-Wiki. The Daily-Class-1

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 8 Outline of the Wiki IoT system which monitors the server room.

Fig. 9 Sensor Bot, a Wiki Bot with a temperature sensor, a light sensor, a
PIR motion sensor and Gas sensor.

Fig. 10 A part of the sensors-1-h-1 page.

page contains the program which computes the average values of
data for each H-Wiki and writes back the results to the D-Wiki
for the current day (Fig. 11).

H-Wikis and D-Wikis have a link to a page which displays
graphs of their data. Administrators can see trends in the data,
such as the temperature of the room.

Fig. 11 A part of the daily-1-1 page.

Figure 12 shows an excerpt of the sensors-1-h-class page.
command: set readInterval = 60000 tells Wiki Bot to read this
page every minute. command: set execInterval = 0 tells the Wiki
Bot to execute the commands and program on this page immedi-
ately after this page has been read. command: set reportLength =

240 sets the maximum line number for the results part of the ob-
ject page to 240. To display additional lines, an old line is first
deleted.

The line program: ex(“pi4j”, “i2c use 1”) sets the I2C chan-
nel No.1 for I2C communication. The lines program: ex(“pi4j”,

“i2c. . . .”) sends an I2C command to an I2C device of the Sensor
Bot. For example, program: ex(“pi4j”, “i2c write1 0x29, 0x80,

0x03”) writes the one-byte value of 0x03 to the register 0x80 of
the device, the I2C address of which is 0x29. program: delay(t)

sets a delay to t milli seconds.

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 12 A part of sensors-1-h-class page.

Fig. 13 The Daily-Class-1 page.

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 14 Changes of temperature, lux, motion, air pollution values in the
monitored server room of a day, the data of which are collected by
the Wiki IoT system.

The lines program: <variable> = ex(“pi4j”, “i2c read1. . . ”)

sends a command to read one byte to an I2C device and
the returned value is assigned to a variable. For example,
program: v1 = ex(“pi4j”, “i2c read1 0x29,0x8c”) sends a com-
mand to read one from register 0x8c to the I2C device, the ad-
dress of which is 0x29, and the returned value is assigned to
the variable v1. The line program: v1 = ex(“pi4j”, “get-a-0”)

gets the PIR motion value. The line program: date =

ex(“service”, “getCurrentData.”) assigns the current date to the
variable date.

Figure 13 shows the Daily-Class-1 page. This class is read and
executed every hour. For each page of H-Wiki (one per hour), the
data of the corresponding page is read and the csv values of the
page are stored in the dataTable array. The average values for
each sensor are calculated using sumif and countif functions and
written on the object page of the corresponding D-Wiki page.

Figure 14 shows the changes of temperature, brightness, mo-
tion, air pollution values in the monitored server room for a day,
collected by the Wiki IoT system.

5. Related Work

5.1 Configuring Organizational Network Infrastructure
There are many ways to monitor servers. A designated virtual

LAN (VLAN) segment is commonly used for monitoring servers
in the infrastructural switching network of an organization. This
method does not require any additional equipment. However,
configuring the VLAN segment for an infrastructural switching
network requires careful design and careful operation because an
error may take down the whole infrastructural switching network.
The configuration and operation of an infrastructural switching
network are commonly outsourced. With outsourcing, the con-
figuration for monitoring just one server is not easy for request
and is not fast, especially for end users.

The Wiki IoT system may realize easy configuration for end
users.

5.2 Virtual Private Network
For accessing sensor devices behind a NAT router from out-

side the LAN (i.e., tunneling the NAT router), a virtual private
network (VPN), such as SoftEther VPN [16], is commonly used.
A VPN may be deployed by the end-user without changing the
settings of the infrastructural switching network. However, the
deployment of a VPN that is suitable for accessing sensor devices
requires changing the settings of the remote access VPN. A VPN
can be a security hole if used incorrectly or used by a malicious
third party. If the remote access VPN is taken over by a malicious
third party, the whole computer hosting the VPN client software
may be accessed by the malicious third party.

Wiki IoT does not need settings of network devices to be
changed. Wiki IoT is safer than the VPN because it does not
have the ability to access the whole computer hosting the Wiki
Bot.

5.3 Webalizer
Webalizer [17] is a fast, free web server log file analysis pro-

gram. It is a popular tool for visualizing the usage of a Web
server. Because Webalizer is installed on the target Web server,
usage cannot be viewed from outside the network if the server is
not accessible from the outside. In contrast, our monitoring sys-
tem allows administrators to monitor the target server from the
outside.

5.4 New Relic
New Relic [18] is a popular commercial server monitoring ser-

vice. New Relic can monitor almost all servers, both those ac-
cessible and inaccessible from outside the network. The user can
monitor the data stored on the New Relic’s Web server. However,
the monitoring program for New Relic has to be installed on the
target server. In contrast, our monitoring system allows admin-
istrators to monitor the target server without the installation of a
program on the target server.

5.5 Kaseya and UNIFAS
KASEYA [19] is a system for remotely controlling personal

computers. UNIFAS [20] is a system for remotely controlling
WiFi access points. These systems are used for controlling a
large number of devices of PCs or WiFi access points and can
control devices behind a NAT router. Kaseya and UNIFAS re-
quire their own Web servers. In contrast, Wiki IoT uses common
Wiki servers.

5.6 Obniz
The platform device obniz [21] can connect to electrical com-

ponents such as motors and sensors. A device can connect to the
obniz Cloud via a network (the obniz board uses Wi-Fi to con-
nect).

After connection, the user can control the connected motors
and sensors by calling APIs remotely. Obniz receives and con-
trols remote devices behind a NAT router using a WebSocket.

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

It uses the obniz cloud for communication. In contrast, Wiki
IoT uses common Wiki servers for communication.

5.7 NetNuclues Cloud Hub
NetNucleus Cloud Hub [22] can control IoT devices behind

firewalls via an HTTPS/WebSocket connection from Internet
servers. This process is very similar to the connection between
a wiki page and a bot in our IoT system, even though our con-
nection uses HTTP instead of HTTPS/WebSocket. However, al-
though both systems allow administrators to control IoT devices
behind firewalls, NetNucleus Cloud Hub does not have reconfig-
urable IoT devices, whereas our IoT system does.

5.8 Monitoring by Remote-Controlled Mobile Robot
Ogawa and Yoshiura proposed a method of collecting moni-

toring information using a remote-controlled mobile robot [23].
They conducted experiments in which monitoring devices were
attached to media converters at a university, and the mobile
robot collected monitoring information. The experimental results
showed that the proposed method has a communication ability
equivalent to that in previous research and that it can quickly col-
lect monitoring information.

Their method can monitor a network equipment behind a phys-
ical door and does not take up a LAN port of the target network
equipment.

Their method uses a physical mobile robot, whose path must
be secured and maintained.

Although Wiki IoT takes up LAN ports of the target network,
it does not need a path.

5.9 WxBeacon2
WxBeacon2 [24] is a commercial IoT sensor device, that col-

lects environmental information, such as temperature, humidity,
atmospheric pressure, brightness, ultraviolet rays, and noise. A
smart phone application, Weather News Touch, is used to view
the information collected by the WxBeacon2 and upload the data
to a Weather News Inc. server. The smart phone running Weather
News Touch must be physically near the WxBeacon2 device.

It is difficult to transform the data collected by WxBeacon2 into
other formats, such as CSV, without reverse engineering. In con-
trast, our monitoring system can output collected data in any text
format (e.g., CSV format) because the user can write commands
that produce the data. In addition to the monitoring system users,
other people can use the data by reading the URL of the Wiki
page. They can then analyze the data using tools such like R and
Python.

6. Concluding Remarks

Our Wiki IoT systems enhances the reliability of the target
servers and server rooms. It has reduced our work load and men-
tal stress.

There are several opportunities to improve our monitoring
method, such as enhancing the security and enhancing the avail-
ability.

To enhance the security of Wiki IoT, Wiki Bots can be pro-
tected by a NAT router. However, Wiki pages are currently pro-

tected using basic authentication. TLS should be used to enhance
Wiki page security.

In order to enhance the availability of the Wiki IoT, we are
trying to introduce cross-over including and cross-over execu-
tion [25].

Debugging is another challenge for Wiki IoT. Errors that occur
when commands are executed by a bot are not currently shown
on the Wiki page. Such errors must be viewed on the Wiki page.

Acknowledgments A part of this research was supported by
JSPS KAKENHI Grant Number JP16K00197, JP15H03055. We
also thank students who helped us to develop monitoring sys-
tems.

References

[1] Masuya, M., Yamanoue, T. and Kubota, S.: An Experience of
Monitoring University Network Security Using a Commercial Ser-
vice and DIY Monitoring, Proc. 34th Annual ACM SIGUCCS
Conference on User Services, pp.225–230, ACM (online), DOI:
http://doi.acm.org/10.1145/1181216.1181267 (2006).

[2] Mattauch, T., Hatoum, R. and Pettit, H: Building a call center in 2
days: How a world class support center responds to crisis, Proc. 40th
Annual ACM SIGUCCS Conference on User Services, pp.97–100,
ACM (online), DOI: http://doi.acm.org/10.1145/2382456.2382478
(2012).

[3] Puri, R.: Bots & Botnet: An Overview, SANS InfoSec Read-
ing Room (Dec. 2003), available from 〈http://www.sans.org/rr/
whitepapers/malicious/〉.

[4] Yamanoue, T., Oda, K. and Shimozono. K: Capturing Malicious
Bots using a Beneficial Bot and Wiki, Proc. 40th Annual ACM
SIGUCCS Conference on User services, pp.91–96, ACM (online),
DOI: https://doi.org/10.1145/2382456.2382477 (2012).

[5] Yamanoue, T., Oda, K. and Shimozono, K.: A Malicious Bot Captur-
ing System using a Beneficial Bot and Wiki, Journal of Information
Processing (JIP), Vol.21, No.2, pp.237–245 (2013).

[6] Yamanoue, T., Oda, K. and Shimozono. K.: An Inter-Wiki Page
Data Processor for a M2M System, Proc. 4th International Confer-
ence on E-Service and Knowledge Management (ESKM 2013), 2013
IIAI International Conference on Advanced Applied Informatics (IIA-
IAAI), pp.45–50, IEEE (online), DOI: https://doi.org/10.1109/IIAI-
AAI.2013.48 (2013).

[7] Yamanoue, T., Oda, K. and Shimozono. K.: Experimental Implemen-
tation of a M2M System Controlled by a Wiki Network, In Applied
Computing and Information Technology, Studies in Computational In-
telligence, Vol.553, pp.121–136, Springer (2014).

[8] Yamanoue, T. and Muye, L.: Experimental implementation of an IoT
system which controls sensor terminals of a sensor network by a Wiki
page on the Internet, IPSJ SIG Technical Reports, Vol.2017-IOT-36,
No.12, pp.1–8 (2017).

[9] Yamanoue, T., Yokoyama, D., Umeda, R., Morita, S., Ozeki, T. and
Nakamichi, N.: An IoT System with Remote Re-configurable Wire-
less Sensor Network Nodes and Its Application to Measure Activity
of a Class, 7th International Conference on E-Service and Knowledge
Management (ESKM 2018), Yonago, Japan (2018).

[10] PukiWiki: available from 〈https://en.wikipedia.org/wiki/PukiWiki〉
(accessed 2019-06-17).

[11] Yamanoue, T., Oda, K. and Shimozono, K.: A Simple Application
Program Interface for Saving Java Program Data on a Wiki, Ad-
vances in Software Engineering, Vol.2012, Article ID 981783, Hin-
dawi Publishing Corporation (online), DOI: http://doi.org/10.1155/
2012/981783 (2012).

[12] Yamanoue, T. et al.: A Casual Big and Wide Digital Signage Sys-
tem and its Automatic Operation System, IPSJ SIG Technical Reports,
Vol.2019-IOT-47, pp.1–8 (2019).

[13] Yamanoue, T., Fuse, I., Okabe, S., Nakamura, A., Nakanishi, M.,
Fukada, S., Tagawa, T., Tatsumi, T., Murata, I, Uehara, T., Yamada,
T. and Ueda, H.: Computer Ethics Video Clips for University Stu-
dents in Japan from 2003 until 2013, Proc. 38th Annual Inter-
national Computer Software & Applications Conference (COMP-
SAC2013/ADMNET WS), pp.96–101, IEEE (2014).

[14] Yamanoue, T., Nakamichi, N. and Kaneko, K.: Enhancing Cam-
pus Cyber Security through a Class with Combination of Computer
Ethics Videos and Logical Thinking, Proc. ACM on SIGUCCS An-
nual Conference (SIGUCCS’16), pp.117–123, ACM (online), DOI:
http://doi.acm.org/10.1145/2974927.2974939.

[15] About rules and best practices with account behaviors, available

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

from 〈https://help.twitter.com/en/rules-and-policies/twitter-rules-and-
best-practices〉 (accessed 2019-09-21).

[16] SoftEther VPN, available from 〈https://ja.softether.org〉 (accessed
2019-09-12) (in Japanese).

[17] Webalizer, available from 〈http://www.webalizer.org〉 (accessed 2017-
05-04).

[18] New Relic, available from 〈https://newrelic.com/〉 (accessed 2017-05-
04).

[19] Kaseya, available from 〈https://www.kaseya.com〉 (accessed 2019-09-
12).

[20] UNIFAS, available from 〈http://www.furunosystems.co.jp/product/
detail/unifas.html〉 (accessed 2019-09-12) (in Japanese).

[21] obniz, available from 〈https://obniz.io〉 (accessed 2019-09-12).
[22] NetNueCleus Cloud Hub, available from 〈https://www.tjsys.co.jp/

embedded/netnucleus-cloudhub/index j.htm〉 (accessed 2019-09-12)
(in Japanese).

[23] Ogawa, K. and Yoshiura, N.: A Monitoring Method for Network De-
vices Using Mobile Robots and Small Computers, Journal of Infor-
mation Processing, Vol.60, No.2, p.668–679 (2019).

[24] WxBeacon2, available from 〈https://weathernews.jp/smart/
wxbeacon2/〉 (accessed 2019-09-12) (in Japanese).

[25] Yamanoue, T.: Bot Computing using the Power of Wiki Collabora-
tion, Proc. 8th International Congress on Advanced Applied Infor-
matics (IIAI-AAI), pp.17–24 (online), DOI: https://doi.org/10.1109/
IIAI-AAI.2019.00015 (2019).

Takashi Yamanoue received his B.S.
M.S. and Ph.D. in computer science from
Kyushu Institute of Technology, Kita-
kyushu, Japan, in 1982, 1984 and 1993,
respectively. He was a Ph.D. candidate
of the Interdisciplinary Graduate School
of Engineering Sciences, Kyushu Univer-
sity. He is the dean and a professor of the

school of engineering, Fukuyama University. His research inter-
ests include IoT, distributed computing, compiler-compilers, web
mining and computer assisted teaching systems. He is a member
of IEEE, ACM, Information Processing Society of Japan (IPSJ),
The Institute of Electronics, Information and Communication En-
gineers (IEICE), the Robotics Society of Japan (JRSJ). He is also
a member of the ACM SIGUCCS Hall of Fame.

c© 2020 Information Processing Society of Japan

