Fe A _R—AVATF A 92—9
(1993 3 22)

ESa7ZIVEREICKDREI S AEK

va—v Ihxov, HERN
WK
michael@ wiz.sk.tsukuba.ac.jp; hotaka@shako.sk.tsukuba.ac.jp

BE |

IDMF-92 v.1.2 ®7 I AWBLIGHE T — 7 7RO 2L L
THE L7, 778, B/, MROBIODIIHNLZHEOF
ELFHTLOIEIB LTS, LALBBISHET—FETNVELED
W 72D FIHZIZIDME- 920 BB HIZHT Lo T A2k 5 LEND
2. 2075 ARFIEESERE I -EA VY FREIVEIRTEZ W
JERTEETNRTH A0, KL LITHH LML) K- by 255
BYEEINA.

IDMF-92 DAEE SO EBITHH R BMOEELH V20, FIFEIZHN
BMOSELEHEL LW BHO-DIRME Y 5 AME%EA L.

*—J—K:IDMF, F—FEFNV, FERI7SX, 75 AR, 77X
TE YV aTIVEE

Virtual Class-Generation in Visual Languages

Michael Bjorn, Ryosuke Hotaka
University of Tsukuba
michael@ wiz.sk.tsukuba.ac.jp; hotaka@shako.sk.tsukuba.ac.jp

Abstract

The class hierarchy of JDMF-92 v. 1.2 is used as a static base for developing
application data models. It is best implemented in a static type language, since
this would allow speed optimization for data manipulation, storage and retrieval.
However, to create an application data model, the user creates new subclasses
in the JDMF-92 hierarchy. These classes are user-modifiable (e.g. attributes and
methods can be added/deleted) and thus would have to be implemented in a
dynamic type language.

The use of virtual classes is an attempt to bridge the ideas of implementing the
core of JDMF-92 in a static type language and user-classes in a dynamic type
language.

Keywords: JDMF, data model, virtual class, class hierarchy, class modification,
visual language '

Introduction

JDMF-92 is a data modeling facility intended primarily for business use — in the sense

that it is not only a theoretical model but explicitly intended for actual use. The

requirements on software in the business world are quite different than those in the

academic world. Some of these different requirements are:

1 performance: Data must be available in the right time and place

2) avoidance of ambiguity: Misinterpretation of data must be avoided. Unclas-
sifiable data is not allowed in the system — strong typing is required.

(3) ease of use: A data modeling facility is not strictly aimed at programmers — the
need of code writing when designing an application data model should be
minimized.

The requirements of the academic world, would on the other hand emphasize:

(4) theoretical soundness: Rigid definitions make for better understanding and
classification.

5) ease of development and experimentation: Even though any one implemen-
tation of JDMF-92 has a static core class-hierarchy, it should be easily extendible
and modifiable between versions. JDMF-92 is intended to be a standardization
vehicle for data models. As standards develop, the core class-hierarchy will be
extended.

Finally we have one requirement intrinsic to the idea of a data modeling facility:

6) user-definable classes: Users design application data models by adding their own
classes to the core JDMF-92 hierarchy, so user-definable and modifiable classes
must be supported.

Meeting the design requirements

To meet the design requirements, we have decided to develop JDMF-92 in a visual
language called Prograph (see Appendix 1). Prograph uses a model of computing called
data flow (see Appendix 2). This language meets our requirements in the following way:

Performance (1) is fairly high because Prograph is compiling and has an integrated
engine for multi-user access to secondary storage. The data flow model also promises
great speed enhancements as parallel and distributed processing becomes more generally
available, while keeping backward compatibility with conventional serial computers.
Prograph is a strongly typed language (2).

Ease of use (3) can be achieved by building a menu-driven method generator.-This
approach was demonstrated in [Bjormn93] where a totally menu-driven query-language
was implemented for relational algebra in a relational database system. (The full Pro-
graph source code for this RDBMS, called Re(ve)lations, is published in [TGS92].)

Also, Prograph adheres to the data flow and object-oriented models and can be con-
sidered theoretically sound (4). Arguably less so than SmallTalk, but more than C++.

In [Bjdm93] the ease of development (5) in Prograph was also demonstrated. More
specifically, it was argued that the development process was simplified because of visual
code advantages in: coding speed, debugging, readability of code and reusability of
objects.

Requirement (6), user-definable classes, can however not be met as easily. The reason for
this is that (6) implies a dynamic type language and is orthogonal to (1), implying a static
type language. These terms are precisely defined below, but the essence of the problem is
that run time modification can only be done in an interpreted language whereas

performance is best optimized in a compiled language. This paper presents a prototype
implementation of JDMF-92 in which this problem was solved by extending the
compiled language with virtual classes.

What are virtual classes good for?

Before giving a more rigorous description of virtual classes, we give an intuitive ex-
planation of what we want to achieve.

Let us look at SmallTalk/V, which supports user-definable classes (but does not support
some other requirements, notably (1) and (2)). SmallTalk/V consists of three parts: a very
small compiled application defining the core of SmallTalk, a source file containing the
code for the SmallTalk language, and an image which contains the SmallTalk objects that
make up the environment ([DgT1k88]).

The compiled SmallTalk/V application itself has been programmed in another language —
let us call this language (which could be for instance C, C++, Pascal — or Prograph) the
implementation language. The classes which are defined in the image do not correspond
to classes (or data types — classes are treated as data types in this paper) in the
implementation language. In this sense they are virtual to the implementation language.
To meet our other requirements, what we would like to do is to extend the part which is
directly defined in the implementation language, and minimize the part which is virtual to
the implementation language, as in the following figure:

virtual to the language
implementing the core
of SmaliTalk/V

{ virtual
classes

SmallTalk/V
application 86 KB 2
. . JDMF-92
Fig. 1: SmallTalk/V & Virtual Classes application 621 KB

Also notice that in this way we get an elegant separation of JDMF-92 classes and user-
defined classes.

A prototype implementation
A prototype implementation of JDMF-92 in Prograph has been successfully completed,
showing that it is indeed possible to implement virtual classes without any disadvantages.

Now, let us look at a more formal description of virtual classes used in the implementa-
tion. All definitions that are given should be seen as extensions to the definitions of
JDMF-92 given in [JDMF-92]. A notable limitation is that although the JDMF-92 allows
unlimited levels of meta classes, for practical purposes the meta class implementation has
been limited so that every class is an instance of an ObjectClass. In particular, any
ObjectClass is an instance of itself. This self-describing instance is called a metameta
instance in this paper. (See [Nogu93] for a more complete treatment of the ObjectClass.)

Static type and dynamic type languages

A static type language is a language where type-checking is done at compile time. Static
typing absolves the system of the necessity to carry out run time type checks, thereby
reducing execution time, and removes the need to store type information with data, which
economizes on storage. However, any subsequent change in the class-hierarchy requires
recompilation of the class-hierarchy ([Hugh91]). Prograph is a static type language.

A dynamic type language is similarly a language where type-checking is done at run
time. A dynamic type language allows changes to the class-hierarchy at run time. A
typical example would be SmallTalk ([Hugh91}). In SmallTalk everything can be
changed at run time, to the point where the environment is destroyed ([DgT1k88]).

Definition of virtual classes

We use the term static_types to refer to all classes enumerated in [JDMF-92]. That is;
static_types = {Object, PrimitiveObject, DeclaredObject, AtomicObject, Structured-
Object, SetObject, ListObject, AttributedObject, NamedObject, MetaObject, Attribute,
SuperSubRelation, ObjectClass, PrimitiveObjectClass, DeclaredObjectClass,
AtomicObjectClass, StructuredObjectClass, SetObjectClass, ListObjectClass, At-
tributedObjectClass, NamedObjectClass}

A class X is a virtual class iff:

X < Object A X N ObjectClass = 3 A X € ObjectClass A X ¢ static_types

Or, using words, a class is a virtual class if and only if:

the class is a subclass of Object, and the class and ObjectClass are mutually disjoint, and

the class is an instance of an ObjectClass which is not enumerated in the definition of
JDMF-92.

Ob jeat

Primitive0s jeet

< — —ichad
P s AP Student

| Y NI
3 ’“‘i%ﬂ@ G ED

AltributedObjeet
ListObject
mugrbjuc
sml‘- i ~ \
\\ Legend
1208 jeat
aciviiate sepersibatien \) : Class enumerated
e \\ in JOMF-92
Ohjeetciass | ") : Virtual class which
- e PrimHirn s jeatClass / is user-definable
b k@m e—__ / X ——® Y:Xis an instance
' SetOh jeetClas:)) M\’r&-\ﬁ?ﬁ-mm / Of Y
@ ; Prid : Instance of a
0 virtual class
ListOb jeotClass NomedOb jestClass

Fig. 2: JDMF-92 core classes & virtual classes

Virtual classes have explicit references to the ObjectClass of which they are instances
(i.e. any virtual class X € ObjectClass), they are totally described in the JDMF-92 model

and can for this reason be manipulated, stored and retrieved without the usual restrictions
imposed by static type checking.

A similar design is found in [Card88], where a dynamic object is defined as a pair
consisting of a type and an object of that type. Such an object is dynamically type-
checked in the context of an otherwise statically typed language. The main differences are
that dynamic object definitions in [Card88] are not necessarily seen as class definitions,
and that the concept 'pair' is used instead of the 'instance of concept.

Similar to the description in [Card88], a virtual class can be coerced back to the type (i.e.
a JDMF-92 core class) it is based on.

According to [Card88], advantages of the above design are:
» suitability for export to persistent storage, and
« preservation of strong typing when static typing is impossible

Definition of an instance of a virtual class

An instance of a virtual class is an instance which has an explicit reference to that virtual
class of which it is an instance.

An instance of a virtual class can be coerced to an instance of the type (i.e. a JDMF-92
core class) which the virtual class is based on.

Creation of a virtual class
The prototype implementation uses a polymorphic instance creation method called
"new". Since creating a virtual class is equal to creating an instance of an ObjectClass, a

virtual class is created by sending a "new" message to the metameta instance of an object
class.

ISR 0B Hierarch Object
- Object g Neus RpplicationManagedObjectiiass |
: ;:3:::;;?32::‘ Show ApplicationManagedob jectClass
- AtomicObject Delete RpplicationManagedObjeciCiass
: Sbr‘sxcgéégStjcct
+ 1] eC . -
- Actributadobjoct Sending "new" to an ObjectClass...
- ApplicationllanagedObject
- NetaObject
- SuperSubRelation
- ObjectClass
- DeclaredObjsctClass
- StructuredObjectClass
- AttributedObjectClass
- NamedObjectClass . " " .
= TS ... means sending "new" to its
: privoaicObiectClasy metameta instance. The result is an
: e thute | instance of the ObjectClass — in this
5 case a virtual class definition
& ‘Student'.
[N Clossinstances: ationd gedobjectCloss Mg
The "new" B
message is sent to B2 -
this instance WL)[Classhame v lasses Attrs Jietheds HOKey
\$ 1 [AppTioationtanagedOb jectClass_K_ € *13516700@NamedObjectClass ")) v Butel]
2 | AppTioation-anagedOb ject “13516744@NamedOb jeot”)) 13318684@ Attr butel g
This is the SOzl =
resulting ; -
instance Classinstances g jectcmssﬁ
X o]
| s
M+{J[ClassKame 1 [SuperClasses Attrs Methods MOKey
" . Appication™fanagedOb Jeo tClas: ~1351 6700@Namwed0b jeotClass”)) oute
Flg. 3: Creation ; ApptioationtianagedOt ot . B ﬁl—ﬂmﬁt')” 0 :;;_ecueuwuu M
. tudent BT oa jet” o
of a virtual class 3 : T5189409 Appicationtfanageddbject”) Y usastzwuw»;no%

Deletion of a virtual class is performed by sending a "delete" message to the class of
which the virtual class is an instance. Checks are performed to ensure that no instance of
the class to be deleted exist. The "delete" method is polymorphic and behaves differently
in different classes.

Creation of instances of a virtual class

Creating an instance of a virtual class is the same as inputting real data. To do this a
"new" message is sent to the ObjectClass instance defining the virtual class of which we
want an instance.

An instance of the virtual class 'Student’ is created... ... by sending "new" to the ObjectClass
new instance 'Student' (which was created in Fig. 3)
o Object object Tiassinet - T 0D JeciCiass MAN)
- 5:32?383?325‘ New Student Qseins - JectCiass —0
. T .
Z 5“‘;"{3{,5“{”“ Delete Student 5
M M oc 1 Tass Airs Methods
: A aneiongess” N W T I
- 1icationManagedObisct AppicationtanagedOb ot “13518744@NamedObject™)) 3
3 [Student 135 ApplicetionManagedOb ject”))
: e b arSubRelat ion co=) B
- ObjectClass . . B
. Pt ructuredobjectclass We then input our data concerning this
: A maionsostcinss”” instance of Student, in nested spreadsheets.
. sﬂﬂj:ggég:::hﬂmoed%jectCleaa RpplicationManagedOb ject
: st Ry erereomeLce =
z Attrivute o m o]
10} Wl 1as shame etiu [attrs Hethods JHoxey
1 {Student)) 13527866 Attrbute] O
Attrs:Attribute
NOT EDITABLE! 1G]
x© ® e
A 51
WelClasshame [C1a inaAttribut PrimaryClass |AttributeName [Domain otNullA DerivedAttr
1 [Atirbute | 35265648 AomioD 135226960 Appt1 35205848 Aarnf 35274600 MolTRUE ALSE
NameExpr) g L StringObject
NOT EDITABLE! Johi O
- re d @ = s
. . s ‘ KA 51 5
Flg. 4: Creation of a) WAL Clas sWame atak) fesnstraimt L4 TassName TDatakxpr
. ’ 1 Pamat 33 St m 1 [StringObject JiheName
virtual class instance I _— 2 R 0= Ol

By repeating the process described in fig. 4, we can create many instances of the virtual
class ‘Student'. These instances can be viewed in a spreadsheet:

::npnllcaﬂnnMunagedubJQCE

1O
X =
|94] 5]
WLJiCtassKame [Nothuliatir[attrs ethods OKey
1 Emm 3 ~1 3530244 @ Attrbute”)E 35302448 At bt 4——-—.@@)
Student y 133299960 Atirbute”) 35299968 Atirbutel g
3 [Student) 133228000 Attrbute”)| 35220000 Attr but
& tudent 3 T13527560@ At bute”) 135275600 Att tart
<ol _{®

Fig. 5 Viewing virtual class instances

Deletion an instance of a virtual class is performed by sending a "delete" message to that
virtual class which the instance belongs to.

Schema and database
A schema in the JDMF-92 prototype implementation is a set of virtual class definitions.
A database is a set of instances belonging to classes which fulfill the condition that if X is

a class then X < Object A X N ObjectClass = @ A X € ObjectClass (i.e. classes which are
not in the ObjectClass hierarchy). The schema and the database are stored separately on
secondary storage. - :
Further, since a database may contain instances of classes which are stored in the schema,
the schema must be loaded before the database is queried.

Using standard terminology, defined in [ISO10032], the schema and the database
constitue a level pair, where if the database is at level N the schema at level N+1.

Definition of attributes

User-defined attributes in JDMF are all instances of the class Attribute. Virtual classes
can have attributes which are instances of the class Attribute.

Attributes of a virtual class are inherited by all subclasses of that class.

Definition of methods

In the prototype implementation discussed in this paper, methods are implemented as
instances of an immediate subclass "Method" to the class MetaObject, since no exact
specification of methods yet exists for JDMF-92. This approach is influenced by the pro-
gramming language Eiffel, where attributes and methods are abstracted into a single
concept called "feature” [Mey88].

Assuming that there is a subclass "Method" to the class MetaObject, the inheritance of
methods will be exactly the same as the inheritance of attributes. Thus remains the
specification of a language (i.e. a specification of syntax) for assembling methods.

The goal is to design a language which is optimized for data manipulation and supports
set-oriented database queries (JDMF-92 currently only supports navigational queries).

As already mentioned, the implementation will be an extension of the menu-driven
method generator developed in [Bjém93], requiring little or no coding by the user. We
are currently working on defining a set of basic primitive methods (which will be
selectable through menus), basic logical connectives and a syntax for combining the
primitive methods with the logical connectives into user-defined methods.

Summary

We have defined several business-world as well as academic design requirements which
an implementation of a data model must fulfill: high performance, avoidance of
ambiguity (strong typing), ease of use, theoretical soundness, ease of development and
experimentation, and support for user-definable classes. However, the requirement of
high performance implies implementation in a static type language whereas user-
definable classes imply implementation in a dynamic type language.

By using the concept of virtual classes we can preserve the strong typing requirement and
at the same time have dynamically type-checked class definitons in an otherwise
statically typed environment. Virtual class definitions are stored separately on secondary
storage and are not part of the enumeration of classes in the definition of JDMF-92,

A prototype implementation of JDMF-92 using virtual class definitions has been
completed, showing that this approach is indeed feasible.

Further, using a visual development environment helps us attain the requirements of high
performance, avoidance of ambiguity, and ease of development and experimentation.

References
{Bj6rn93]

[Card88]

[DgT1k88]
[Gur87}
[Hugh91]
[1IS010032]
[JDMF-92]

[Mey88]
[Nogu93]

[Rum77]
[Rum91]

[TGS90]
[TGS92]

Bjom M., Designing Database Management Systems in Prograph, Master's
Thesis, University of Tsukuba, 1993

Cardelli M., MacQueen D., Persistence and Type Abstraction, pp 31 - 41,
Data Types and Persistence, Atkinson M.P., Buneman P., Morrison R.
(Eds.), Springer-Verlag, 1988 '
Digitalk, SmallTalk/V Mac, Tutorial and Programming Handbook,
Digitalk, Inc, 1988

Gurd J.R., Dataflow Architectures, pp 51-68, Major Advances in Parallel
Processing, Technical Press, 1987

Hughes J.G., Object-Oriented Databases, Prentice-Hall, 1991

ISO/IEC 10032: Reference Model of Data Management

Information resource schema research and standardization committee, A
Data Modeling Facility: JDMF-92

Meyer B., Object-oriented Software Construction, Prentice-Hall, 1988

On the implementation of class methods and class variables in JDMF-92
(In Japanese), 1993

Rumbaugh J., A data flow multiprocessor, IEEE Trans. on Computers, pp
138-146, C-26, 1977

Rumbaugh J., Blaha M., Premerlani W., Eddy F., Lorensen W., Object-
Oriented Modeling and Design, Prentice-Hall,, 1991

TGS Systems, Prograph Reference, TGS Systems Ltd, 1990

TGS Systems, Prograph Essentials, TGS Systems Ltd, 1992

Appendix 1 - Introduction to Data Flow

According to [Gur87], data flow is a technique for specifying parallel computations at a
fine-grain level, in the form of two-dimensional graphs in which operations that are
available for concurrent execution are written alongside one another, whilst those that
must be executed in sequence are written one under the other. Data dependencies between
individual operations are indicated by directed arcs linking the operations together.
The resulting data dependence graph shows how instructions are dependent on data — an
operation is executed (or 'fired") first when all required data is available, and is said to be
data-driven. This can be illustrated by depicting data-carriers (or 'tokens') which carry
data values on the arcs of the graph. Once all required tokens have arrived at the input
nodes of a specific operation, it can be executed independent of other operations, and
several independent operations can thus be executed in parallel.

! w notation
The basic, generic node in Rumbaugh's notation as described in [Rum77] is an operation
requiring certain input(s) and giving certain output(s). Consider for example the addition
operation, which consists of a "+"-node with two input arcs on which the data tokens
arrive and one output arc on which the result is passed out:

input
arcs
2 3 data tokens the "+"
: arriving on the operation fires
operation (add) 1nput arcs and the resulting
data token is
output arc 5 passed out on
the output arc
Rumbaugh's control nodes.

Three simple control nodes called switch, merge and branch (see [Rum77]), are needed
for construction of more elaborate logical operations corresponding to IF-THEN
statements and LOOP structures found in most programming languages. (The above
described "+" operation is a merge node.)

switch merge branch
The input token is placed The input arrives either on The input is placed on
on the output arc selected the left or on the right, and both outputs.

by the control input. is placed on the output.
P P
Input
Qutput
Ot_lpu idention] Outpue iderticsl
10 input toinpas

Appendix 2 — Introduction to Visual Languages

There is no general consensus as to what a visual language is, other than that such
languages use graphical information such as diagrams, icons or tables in the actual
process of programming. The program meaning should be as bound to its visual rep-
resentation as a text-based language is tied to its syntax. In this paper, a visual language is

taken to be a language which uses a special form of graphic notation developed for data
flow (see Appendix 1).

Prograph, the implementation language used for the JDMF-92 implementation discussed
in this paper, is one of the few currently available visual data flow languages. In Prograph
the data flow model is extended with object-orientation a data token (described in
Appendix 1) can be any kind of object.

An example of code (an instance method) written in Prograph (for EBNF specification,

see [TGS90]):
Object/show super-sub 1 BENGEAD)
I 2 #4- Input Bar

Terminal

Operations

Data dependecy arc

Root

Output Bar

Reasons why visual code can not be modified dynamically:

1. Difficulties of generating visual code as the result of an operation, since visual
coding by definition involves visual coordination in the specification of syntax.
2. The graphical information makes code very big and cumbersome to process at run

time. Thus, visual languages tend to be static type languages.

