F—E_N—RYATFT A 9H—38
(1993. 9. 9)

M7 v Y vzra (MSDS)

BRI, R
HRARE TERER TR
T 113 SORBCARASB T TH3E 15

WHEDF 4L 7 VY AT LE, UNIX 25 OSF/DCE ¥C. 1R & A EH—DOKEE
EXFANT, 77AATERINILVI WA EBBOMBCET ZERERFT 5. U
nNEB, BEDI VY Ea—F v A7 0P KEEN A ORFEIFRNICHIML T
Do B KBEESEUE Y 27 LOBERV-EZ5HM L Ad. T LR >T, B
—DARBEDTF 4 L7 P RETETRKESC D, HHECD RS, CORDIC2—FA
vE7z—2¢ L TOERBEREDLDNLEIBNBHTL 3, 2TTR. ThiexLTbh
bt “GZEF 4127 1V (MSD) t wIFH L WEIRE KT 5, MSD BEHOZEH
oA, TRENOEMRE2—FObIHELGICHLTHEDS LLREAAT 7 4
NERBYTFALI V) OEEL LA D, FRET 4V 7 + Y ¥ X7 4 (MSDS) &
CDTAF4 TRESAT, 2—FREHHCH AT L CREA/NRELBET 5
TERTELRELRMT 2, COBELTACAARECE TR, 2—¥FRREOHE
KELTEZDT, HEEED S L LB TE Do 2—FOLBCEROD Y, LAE
WEELMEtL AVvOT, ReHEEREDLICLdTE S,

Multi-Space Directory System (MSDS)

J ing-Hua Min, Hidehiko Tanaka
Department of Electrical Engineering.
Faculty of Engineering

, University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan
Email: {min, tanaka}@mtl.t.u-tokyo.ac.jp

Existing directory systems such as those in UNIX and OSF/DCE take the structure
of a single.tree to keep track of all kinds of resources in form of files. Along with the
information explosion in computer systems, especially in the case of largely scaled
distributed computing systems, such single tree-structured directory ‘becomes‘sovlarge
and complicated that as user interface it_is no longer as friendly as before. In this
paper, we introduce a new concept “multi-space directory” (MSD) which consists of
multiple spaces, each space is a set of the files and subdirectories that are necessary
_ or useful for a user’s one kind of work. Multi-space directory system (MSDS), based
on this idea, provides the mechanisms for a user to define his own special environment
that is most suitable to one kind of his work which may be independent or cooperative,
and also centralized or distributed. So he can concentrate his efforts to do what he
really want and achieve high efficiency. Just providing users related high-level resources
according to their work can also raises the reliability of system.

1 Introduction

In computer systems, the interfaces of many
resources to users are expressed in the form
of files, for example; text files, graphic files,
command files, utility files, program files, in-

clude files, library files, application files, help: ,

files, device files and etc. Directory systems
are used to keep track of all these kinds of
files. They are often organized in hierarchical
ways by using tree structures. In any exist-
ing operating system whether it is traditional
0S, or network OS, or distributed OS, its di-
rectory system provides users a single tree on -
which all files are hung.

For a centralized system or local area dis-
tributed computing system, this single tree
interface to users is thought to be accept-

able and popularly used. But for a wide area

distributed computing system, the problems
such as the difficulties of use, cooperation,
protection and management which are caused
by information explosion become more and.
more serious. These problems form a gap be-
tween users and computer systems. To fill
this gap, we introduce a new concept “multi-
space directory” (MSD), and try to build multi-
space directory system (MSDS) on the top of
the single tree-structured directory system.

MSD consists of multiple spaces, where a
space is a set of the files or subdirectories
which are necessary or useful for user’s one
kind of work.

MSDS allow a user to built his own specml
environment that is most suitable to one kind
of his work which may be independent or co-
operative, and also centralized or distributed.
In this way, the user can simplify the sys-
tem operations, concentrate his efforts to the
essential work and achieve a high efficiency.
Hiding unrelated or low-level resources from
users can raises the reliability of system.

In section 2 we discuss the strength and
weakness of single tree-structured directory.
In section 3 we introduce sever al concepts in
multi-space directory such as permanent space
vs. transient space, superspace vs. subspace,

puter systems.

and real space vs. virtual space. In section
4 we present a prototype of MSDS. In sec-
tion 5 we summarize the merits that can be
obtained from MSD. Finally. in section 6, we
give a concluding remark.

2 Strength and Weakness
~ of Single Tree-Structured
Directory

Single tree-structured directory has been proved
to be effective in centralized file systems and

-also adaptable to distributed file systems. From

UNIX to OSF/DCE, this kind of directory
systems.are well designed and implemiented.
From the view of constructing an integrated
computing environment, single tree-structured
directory plays an important role in organiz-
ing large, heterogeneous collections of data.

It was directly used as user interface and was

- thought to be friendly inthe past. .

But now with the advent of networking,
the scale of computer systems grows rapidly,
information explosion has appeared in com-
Although a large single tree
can do well in keeping track of all informa-
tion, as user interface it becomes difficult for
the following reasons:

(1) Tracking a tree mostly depends on hu-
man memory. The larger and more compli-
cated the tree is, the more difficult to remem-
ber and easier to forget. This brings a low
ratio of using information.

(2) Pouring all kinds of information ev-
erywhere to users all at once malkes users lost,
which discourages users to make further tries.

“(3) For a user or a group of users who
do distributed computings, it is inconvenient
to find information of his own or his fellows
somewhere else in this too big single tree.
This results in the difficulty of cooperation.

(4) The fact that at any time a user can
access ‘all' the accessible files whether related
to his current work or not may lead to & high
probability of destroying some files by misop-

erations.

(5) In the background of a very large sin-
gle tree-structured directory, resource man-
agements are very difficult.

" For example, given the OSF/DCE envi-
ronment, three writers (wtrl, wtr2, wtr3) in

different cells cooperate to write a book. Each

has his own this project directory (pjl) under
the cell directory he belongs. They all face
the same global directory which follows the
X.500 standard, as shown in figure 1. The
writers may be not as skillful at using com-
puters as programmers. They just want to
edit their book cooperately. They only pay
attention to the editing, formatting, printing
and management of their text files. Giving
all possible resourcés to the writers is not
only useless but also boring and dangerous.
Even the programmers who are skillful at us-
ing computers are often disturbed by the re-
sources unrelated or not directly related to
their current work. o

global directory OSF/DCE
. -
C=a C=b
O=m O=n
OU=p OU=q OUsr
—— p—
1t 1 k 1
s s s
usr usr usr
wtri wtr2 wird
pit pit pit
chpt chp? chp2 chp3 chp4 chp5 chpé
celi directory cell directory

cell directory

Figure 1: OSF/DCE directory system as .an
example

To overcome these difficulties, a new ap-
proach, rather than the single tree-structured
directory, is needed.

3 Muti-Space Directory
3.1 Concept

Multi-space directory (MSD) consists of mul-
tiple spaces, where a space is a set-of the files
or subdirectories which are necessary or use-
ful for user’s one kind of work. Multi-space
directory system (MSDS) is built on the top
of a single-space directory system (SSDS), i.e.
the single tree-structured directory system, to
implement the idea of MSD (see figure 2).
MSD user interface enhances the old one and
is more friendly. We don’t intend to aban-
don the old directory user interface. What we
want to do is to filter it by MSDS according to
the user’s requests and provide the optimum
working environment.

new MSD user interface
old directory
user interface

|

Muliti-Space Directory System (MSDS)

" Single Tree-Structured Directory Sy
{Single Space Directory System)

Figure 2: Position of MSDS

The idea of MSD originates from the con-
sideration that a good directory interface to a
user is one that just provides the necessary or
useful resources according to the sort of the
user’s work. Let’s look at the example shown
in figure 1 again. The three writers are in
a general environment so that they can ac-
cess the global resources if having the rights.
However, they only need a very small set of
resources for their project. Seeing other unre-
lated or low-level resources may disturb their
attention and searching required ones in the
global set of resources may cut down their
working efficiency. So it is desired to have
a relative small environment special for their
this project. MSDS makes this possible. Us-
ing MSDS, a space can be created into which
the three pjls (the directories containing text
files) and the local cmd (the directory con-

taining common command files) and the lo-
cal edit (the directory containing editor and
formator files) are mapped (see figure 3).

global directory OSF/DCE

; Pt
T~
hp2 chp3 chy

Py AN
chp1 chp7 chp2chplchp4 chpschps

wirt:/pji space

Figure 3: Mapping in MSD

The pjl space-for the wtrl (wtrl:/pjl) is
created by using the following command:

wiri> create_space pj1 \

-t /emd=/.:/fs/emd /.:/editis/edit \ '
Iwtr1=/.../C=a/O=m/OU=p/ts/usr/wiri/pj1 \
Iwtr2=/.../C=a/O=m/OU=g/fs/usriwtr2/pj1 \
Iwtr3=/.../C=b/O=n/OU=r/ts/usr/wtr3/pj1 ’

or

wtri> create-space pj1 -f pjt.map

where, create_space is command name; pjl
i1s space name;. -t and -f are option names
meaning “table” and “file”; The part after -t
are the mapping table in which an item takes
the form of X=Y where X is the destination
name and Y is the original name of the file
or subdirectory mapped. into the space; The

part after -f are the file pjl.map that contains
the mapping table.

When the wtrl entered the wtrl:/pjl space,
he just faces the mapped resources. The mapped
commands and utilities function as the same
as before. But their effective scopes are lim-
ited in the wtrl:/pjl space. For example, in
the wtrl:/pjl space, the command “Is /” lists
the contents under its root, and the command
“Is /wtr?” lists the contents of the three direc-
tories (/wtrl, /wtr2, and /wtr3), as shown in
figure 4. The position of the root “/” changes
from space to space. The other two writers
(wtr2 and wtr3) can also create their own pjl
spaces (wtr2:/pjl and wtr3:/pjl) that are the
same as the wtr:/pjl space. In this way, they
can easily share each other and work cooper-
ately.

wm Ip]1>|s/
edit wtr1/ - wtr2/ wtrd/

wirt:/pj1> Is fwtr?
witr1:
chpt chp?

chpé chp3 chps |

witrd;
chp5 chpb
wirt:/pj1>

Figure 4: User interface of a space in MSD

SSDS gives users resources at most. MSDS
gives users resources at-optimum. This is the
most difference between them.

3.2 Permanent space and tran-
sient space

The spaces created by create_space command
remain existing until deleted by deletespace
command. They are called permanent spaces.
In contrast, some existing commands ar utili-
ties, say editor, also can create spaces. In ed-
itor spaces, being edited files and editor com-
mands are only in¢luded. When exiting from

an editor, the space disappears. This kind of
spaces are called transient space.

There are some differences between per-
manent spaces and transient spaces as listed
below:

{1) Permanent spaces keep their resources
until they are deleted explicitly by delete_space
command, while transient spaces do until their
creating commands or utilities finish.

(2) At the beginning of login, all existing
permanent spaces can be resumed and there
is no transient space.

(3) At the time of logout, all permanent
spaces can be preserved and all transient spaces
must be removed.

3.3

The multiple spaces in MSD are structured
in hierarchy as shown in figure 5. A space
can create other spaces. The creating space is
called superspace and the created spaces are
called subspaces. The resources in the sub-.
spaces are subset of those in the superspace.
A ‘subspace can also be a superspace from
which subsubspaces are created. The highest
superspace for a user is called the root space
of the user. In figure 5, the two users have
different root spaces, i.e. usrl:/ and usr2:/.
The definition of space names follows the
hierarchy of MSD for each user. It is very
similar to the definition of file names. A full
space name is a pathname to the space. But
the uniquely naming scopes are under each
user. So-the same space names under dif-
ferent users refer to different spaces belong-
ing to each user respectively. For the exam-
ple in figure 5, the root space names are /
and the full names of the first-level subspaces
are /spcl for both the usrl and usr2. The
full names of the second-level subspaces are
/spcl/spel.l and /spcl/spcl.2 for the usrl.
The usr2 has not the second-level subspaces.
The usrl can just use spcl.1 to point the space
/spcl/spcl.l when his current space is /spcl.
This hierarchy of spaces can be browsed by
using the command browse_space which will

Superspace and subspace ’

usri:/

N\ AN
usri:ispet\

WK

7
usrii/spci/spei.1

FANNVILY
E real space

virtual space

Pieca
&

\ \/
usr2:/spci

75

AN

s\r1 :Ispc‘1_lspc1 2

AN

superspace
mapping

Figure 5: Hiéra,rchy of spaces in MSD
be introduced in section 4.

3.4 Real space and virtual space

In MSD, there is a special space that holds
the whole resources. We call it as real space.
As shown in figure 5, the real space stores the
entities of all resources that can be seen in
the other spaces. Any spaces created directly
or indirectly form the real space are virtual
spaces which just keep the mappings of re-
sources. And the entities of these mappings
are also stored in the real space.

- The real space is the base of MSD. Any ex-
isting single tree-structured directory such as
the one in UNIX or OSF/DCE can be used as
the real space. MSDS is designed and imple-
mented on top of it. The mappings from the
real space to virtual spaces are maintained
and realized by MSDS.

Because the virtual spaces are defined to
suit one kind of user’s work at optimum, the
user interface with virtual spaces is more friendly
and efficient than that with the only real space.

4 Prototype of MSDS

We are trying to build a protctype of MSDS
which provide a set of commands to manage
and use MSD. Most commands are used for
permanent spaces.

The main commands are listed and ex-
plained briefly in the following:

(1) create_space: create a permanent space
by giving the space name, and the tables of
the destination names and original names of
the files or subdirectories to be mapped into
it. The tables can be directly given in the
command line, and can also be indirectly given
through files that store the tables. A user can
create spaces for himself under his root space,
and can not create spaces for others, except
superusers. N

(2) delete_space: delete a permanent space
by giving the space name or not. If no space
name is given, the current space is deleted
when it was create by the user himself. A

user can only delete the spaces create by him- .

self. When a permanent space is deleted, not
. only the mappings of the mapped resources
~are deleted but also the local resources cre-
ated in the space are removed. ,

(3) switch_space: switch from the current
space to another by giving the destination
space name. A user can only switch among
his spaces, and can not switch to other users’
spaces, except superusers.

(4) browse_space: browse spaces under a
superspace of a user by giving the user name,
and the superspace name. If no user name is
given, the current user browse his own spaces.

(5) add._resource: add files or subdirecto-
ries into a permanent space by giving the space
name, and the tables of the destination names
and original names of the files or subdirecto-
ries to be added.

(6) cut_resource: cut files or subdirectories
from a permanent space by giving the space
name, and the names of the files or subdirec-
tories to be cut.

The rich existing command and utility files
in the real space can be mapped into any vir-

tual spaces with the same functions except
the effective scopes that are limited in the
spaces where they are called. Therefore, they
are still usable and can be used more efli-
ciently in the environment of MSD. ‘
MSDS provides users a familiar but more
convenient and more powerful environment,
not a-complete new and unfamiliar one. -
The prototype of MSDS is not completed.
Some other mechanisms are needed shuch as
to implement different semantics of file shar-
ing, to maintain the consistency of files among
spaces, and to support different kinds of syn-
chronization and cooperation among users.

5 Merits from MSD

We introduce MSD to try to achieve merits in
the following four aspects: use, cooperation,
protection and management.

5.1 Easy use

MSD allows users to have their own virtual
spaces contributed to some kinds of their work.
Just related high-level resources are included
so that in these virtual spaces searching can
become easier and operating can be simpli-
fied. , ‘ ‘

Because virtual spaces are mapped from
an existing real directory space, the interface
of MSD can be very familiar to users and the
rich powerful existing software tools can still
be applied as before in different virtual spaces
but with smaller scopes.

5.2 Easy cooperation

Sharing resources and exchanging information
are the preconditions of cooperation. In MSD,

shared resources in the real space can be mapped

to the virtual spaces of the sharing users. In
this way, a user can easily find the shared re-
sources of his cooperators in his own virtual
space without remembering the real location
of the shared resources in the real space, and
vice versa, his shared resources can also be

easily seen and accessed by his cooperators in

the same way. Information required for coop-
eration can be exchanged through the shared
resources.

5.3 Easy protection

In a virtual space, a user just faces the re-
lated high-level resources for his working in
this virtual space. He cannot see and also
cannot access the unrelated or low-level re-
sources although he may have the rights to
access them in his root space. This greatly
lowers the possibility of destroying resources
by misoperations, especially for the resources
outside the virtual space.

MSD provides the way that system man-
agers can assign a user’s root space to a vir-
tual space, not allow him to enter the real
space. When the user enters system by login,
he just possesses the resources in his virtual
root spaces. In this sense, MSD can be seen as

a more flexible, explicit and high-level mecha- .

nism for resource assignment and protection.

5.4 Easy management

System managements have become more and
more complicated and difficult along with the
growth of system scales. Distributed manage-
ments are applied in many distributed com-
puting systems. MSD gives supports to dis-
tributed managements. By mapping the re-
sources to be managed in the real space to dif-
ferent management virtual spaces according
to the management scales and the relation-
ship between managers, we can build a set of
well-structured management virtual spaces.
Each manager has his own management vir-
tual spaces and do management work in them.
He also cooperates with other related man-
agers through them as stated in section 5.2.

6 Concluding Remarks

In this paper, we have introduced a new con-
cept “Multi-Space Directory” (MSD) which

enhances the traditional single tree-structured
directory to provide users more friendly and
efficient resource-accessing environment, es-
pecially in the case of largely scaled distributed
computing systems which is full of all kinds
of global resources.

References

[1] S. Mullender, ed., Distributed Systems,
ACM Press, 1989

[2] A. S. Tanenbaum, Modern Operating
Systems, Prentice-Hall, 1992

[3] A. L. Ananda and B. Srinivasan, ed.,
Distributed Computing Systems: Con-
cepts & Structures, IEEE Computer So-
ciety Press, 1991

[4] OSF, In-
troduction to OSF DCE, Prentice-Hall,
1992

[5] OSF, OSF DCE User’s Guide and Ref-
erence, Prentice-Hall, 1993

[6] OSF, OSF DCE Application Develop-
ment Guide, Prentice-Hall, 1993

[7] CCITT, The Directory-Overview
of Concepts, Models and Services, Rec-
ommendation X.500 edition, 1988

