Asia Pacific Conference on Robot [oT System Development and Platform 2019 (APRIS2019)

IoT Educational System on Mixed Reality Environments
with Context-Oriented Programming

HArRUMI WATANABE?

TaKESHI OHKAWAZ

Ikuta TANIGAWA!-®

NoBUHIRO OHE?
KenNit Hisazumr

3

Mikiko Saro? NoBuniko OGURA

I Akmra Fukupa!

Abstract: This article contributes to a step by step education for learning Internet of Things (IoT) developments.
These steps are as follows: (1) Learning real-world problems, (2) Learning environmental adaptation for IoT, (3) cre-
ating service. To realize those steps, we introduce a mixed reality IoT educational system. Firstly, the system hides the
complexity of the software and allows programming beginners to concentrate on the implementation of robot behavior.
Secondly, the system supports Context-Oriented Programming (COP) for environmental adaptation of IoT. Finally, the
system provides a projection mapping environment. To evaluate the system, we apply it to a class of programming.

Keywords: Context-Oriented Programming, Internet of Things, Mixed Reality

1. Introduction

In recent years, the importance of IoT education is increasing.
The IoT isn’t easy to learn for students because its knowledge is
wide: from the mechanism of the things and the internet to ser-
vice creation. Thus, we consider the step by step education is
important. These steps are as follows: (1) Learning real-world
problems, (2) Learning environmental adaptation for IoT, (3) cre-
ating service. This article introduces the IoT education system on
mixed reality environments for the step by step education.

For the first step, the system hides the complexity of the soft-
ware and allows programming beginners to concentrate on the
implementation of robot behavior. For the second step, the sys-
tem supports the extend Context-Oriented Programming (COP)
[11, [21, [3], [4], [5] to C#. COP treats context explicitly and pro-
vides mechanisms to dynamically adapt behavior in reaction to
changes in context at runtime. COP provides layers for modu-
larizing related context-dependent behaviors. COP applications
activate and deactivate these layers for adapting to various con-
text. These functions facilitate the implementation of environ-
mental adaptation for IoT. For the third step, the system provides
a projection mapping environment. This environment is useful
for creating IoT services and experimenting with them.

To evaluate the system, we applied it in a class of program-
ming. Thirty-seven students participated in this class, and they
divided with six groups. Students developed games with the robot
and projection mapping, e.g., an action game, quiz game.

The remainder of this article describes step (2)(3). The article
skips step (1) because it doesn’t include technical issues. Section
3 describes the implementation of the educational system.

' Kyushu Uniersity, 744, Motooka, Nishi-ku, Fukuoka, Japan

Tokai University, 2-3-23, Takanawa, Minato-ku, Tokyo, Japan

3 Tokyo City University, 3-3-1 Ushikubo-nishi, Tsuzuki-ku, Yokohama,
Japan

¥ tanigawa@f.ait.kyushu-u.ac.jp

(© 2020 Information Processing Society of Japan

2. IoT Educational System

In this section, we introduce our IoT educational system. Sec-
tion 2.1 shows the COP program. Section 2.2 describes a mixed-
reality system.

2.1 Step (2): COP Program

Figure 1 shows the COP program of controlling the robot on
the projection mapping environment. The program of Figure 1 is
based on ContextCS [6] that is extended C#. The behavior of the
robot depends on floor colors. On the blue floor, the robot goes
straight. On the green floor, the robot moves back and forth.

This program consists of two layers: BaseLayer and LayerA.
The program changes the behavior of BaseLayer classes at the
activation of LayerA. The first half in MainLoop activates and
deactivates LayerA for changing the behavior of method M1 of
class CI according to floor colors. The rest of MainLoop calls
the method MI. This method is changed behavior by activated
layers.

2.2 Step (3): Outline of Mixed-Reality

Figure 2 shows the outline of the system. The system consists
of two screens and projectors. Each screen is controlled by indi-
vidual PCs. In this figure, the wall screen shows an image of the
user interface of the tool. Students describe and run the program
on the development tool displayed on the wall screen. We provide
the library for controlling the actual robot and support COP.

Floor screen displays two-colored floor for the practice of IoT
service. The vacuum cleaner robot reads floor colors by the color
sensor on top. To solve the issue (3), students develop an appli-
cation on projection mapping environment with the robot library
and COP.

34

Asia Pacific Conference on Robot [oT System Development and Platform 2019 (APRIS2019)

// initialization
LayerManager.RegisterBaseLayer(new Baselayer());
LayerManager.RegisterLayers(new LayerA());

public class LayerA : Metalayer{
public class C1{
private RobotController Robot;
Clcl= private int speed = 200;
(C1)LayerdObjectCreater.Create(typeof(C1), Robot); public C1(RobotController robot){
bool activatedFlag = false; Robot = robot;
}
public virtual void M1(){
Robot.GoForward(100 + speed);
LA speed = -speed;

// MainLoop

If (lactivatedFlag && ColorSensor.Color == "green") {
LayerActivator.Activate("LayerA");
activatedFlag = true;

}

if (activatedFlag && ColorSensor.Colgr== "blue"){ '

LayerActivator.Deactivate(" rA");
activatedFlag = false;

public class BaseLayer : Metalayer{
public class C1{
private RobotController Robot;
public C1(RobotController robot){
Robot = robot;

On Green Floor

}
// behavior

On Blue Floor

~—— }

ST BT
-

-~
-
~—o
-

Projector reflects PC

images to screens of

the floor and the wall
St

Tad

| publiclass BoseLayer- etaLayer(
public s C1(

)
itacivatedFlag 1 ColorensorColo
LayericivatorDeactvate(Layer')

estimates the self location by
the color sensor on the top

Fig.2 Outline of Mixed-Reality

Robot Communication
RobotGontroller BaseCommunication —
~PosX, PosY 1 1 [N 1| CommunicationServer |
+ GoForw it + Connect() e
+ TurnLeft(angularVelocity) [Send Gommand + Disconnect() + Listen()
+ TurnRight(angular Velocity) |Rece|vg Sensor Data |+ Read() + Close()
+ Stop() + Write(data)
Robot Plug |
SerialC. ication TCPCommunication [TCPCommunicationServer|
CleanerRobotController ~PortName ~IPAddress =
- Robot Specific Sensors ... - BaudRate - Port + Listen()
+ GoForward(velocity) o - + Close()
+ TurnLeft{angularVelocity) + Connect() + Connect()
+ Velocity) + Di + Disconnect()
+5top() + Read() +Read()
+ Robot Specific Commands ... + Write(data) + Writ

Fig. 3 Class Diagram of Robot API

3. Implementation

In this section, we describe the implementation of our [oT ed-
ucational system. Figure 3 shows the class diagram of the robot
API for its communication. In this design, users can choose sev-
eral communication systems such as TCP/IP and serial communi-
cation. Figure 4 shows the relation between the user application
and the robot framework. In this design, users can easily con-
struct a robot system according to their purposes.

(© 2020 Information Processing Society of Japan

C Fi N
O Library |
| BaseGommunication | Application |
+ Connect() 1 1 : S:ZpA :s(()) m

+ Disconnect() Communicate to

+ Read() Server

+ Write(data,
*

+ InitializeApp() Use Library

+ FinalizeApp()
+ MainLoop|

Communication " Etc. |

Robot

RobotController
- PosX, PosY
+ GoForward|velocity)

i

1

CommunicationServer 1 1 ServerApplication RobotApplication

+Listen() +InitializeApp(+ InitializeApp(Robot] + TurnLeft(angularVelocity)
+ Close() + FinalizeApp(+ FinalizeApp() Contrgl | [+ Z Velocity,
omnjunicate /\ +Stop()
to Qlignts

Robot Plug ‘ ‘

CleanerRobotController
- Robot Specific Sensors ..
1 1% GoForward(velocity)

""" 3+ TurnL Velocity)

+ TurnRight(angularVelocity)
+Stop()

+ Robot Specific Commands ...

CleanerRobotApplication

+ InitializeApp()
+ FinalizeApp()

User Application

UserApplication1 UserApplication2 | | UserApplication3

+ MainLoop() + MainLoop() + MainLoop()

Fig. 4 Relation between user application and robot framework

4. Conclusion

This article introduced the mixed reality IoT educational sys-
tem. The system aims to realize three steps for the education of
Internet of Things (IoT) developments. These steps are as fol-
lows: (1) Learning real-world problems, (2) Learning environ-
mental adaptation for IoT, (3) creating service. Firstly, the system
hides the complexity of the software and allows programming be-
ginners to concentrate on the implementation of robot behavior.
Secondly, the system supports Context-Oriented Programming
(COP) for environmental adaptation of IoT. Finally, the system
provides a projection mapping environment. To evaluate the sys-
tem, we applied it to a class of programming. Students developed
games that were bigger than we imagined.

For future work, we plan to support the collaboration to cloud
services for learning more practical [oT system development.

References

[11 R. Hirschfeld, P. Costanza and O. Nierstrasz. 2008. Context-oriented
Programming. Journal of Object Technology, Vol. 7, No. 3, 125-151.

[2] G. Salvaneschi, C. Ghezzib and M. Pradella. 2012. Context-oriented
Programming: A Software Engineering Perspective. Journal of Sys-
tems and Software, Volume 85, Issue 8, 1801-1817.

[3]1 M. Appeltauer, R. Hirschfeld and J. Lincke. 2013. Declarative Layer
Composition with the JCop Programming Language. Journal of Ob-
ject Technology, Vol. 12, No. 4, 4:1-37.

[4] M. Appeltauer, R. Hirschfeld, M. Haupt and H. Masuhara: Con-
text]: Context-oriented Programming with Java, In proceedings of the
JSSST Annual Conference 2009, pp. 1-15, (2009).

[S] P Costanza and R. Hirschfeld. 2005. Language Constructs for
Context-oriented Programming: An Overview of ContextL. In DLS
’05: Proceedings of the 2005 symposium on Dynamic languages, 1-
10.

[6] I. Tanigawa, N. Ogura, M. Sugaya, H. Watanabe, K. Hisazumi: A
Structure of a C# Framework ContextCS based on Context-Oriented
Programming, Proceedings of the 14th International Conference on
Modularity, pp.21-22, 2015.

35

