
Electronic Preprint for Journal of Information Processing Vol.28

Regular Paper

Finding Errors in Registrations of Local Variables
Using Coccinelle for Accurate Garbage Collection

Tomoharu Ugawa1,a) Taiki Fujimoto1,†1

Received: June 26, 2019, Accepted: September 24, 2019

Abstract: For accurate garbage collection (GC), all pointers belonging to the root set must be found. In a virtual
machine (VM) implemented in C language, local variables of C language may contain pointers. Thus, some VMs
add the values or addresses of local variables to a table that is visible to GC. However, this approach is error-prone
because it requires adding local variables and removing them correctly though the entire source code of the VM. In
this research, we checked if local variables are added and removed correctly by pattern matching against control flow
graphs of the source code of the VM. We applied this check to the VM of a subset of JavaScript we are developing and
found that it could identify many cases of missed adding and redundant adding.

Keywords: garbage collection, bug finding, program analysis

1. Introduction

In moving garbage collection (GC), such as compaction and
copying GC, pointers are fixed up when objects are moved so
that all the pointers point to new locations. Thus, it is crucial that
moving GC knows the addresses of all the GC roots accurately. In
the case of interpreters and virtual machines (VMs) implemented
in C, the root set includes local variables that point to managed
data in the heap.

However, it is not easy to accurately enumerate all local vari-
ables that have pointers to the heap because GC does not know
the locations of these variables, which are placed on the execution
stack together with other data, or if the value of a local variable
is a pointer or not. Thus, VM developers usually either develop
a supporting mechanism in the compiler, such as stack maps, or
add local variables to the root set and remove them explicitly.

We are currently developing eJSVM [1], [2], a JavaScript VM
for embedded systems. Although mark-sweep GC, which does
not move objects, is used in the current version of eJSVM, we
plan to implement a moving GC in a future version. To the end,
we add the addresses of local variables holding pointers to the
root set and remove them explicitly. An example is shown in
Fig. 1, which depicts the source code of eJSVM, modified for ex-
planation. GC PUSH is a macro to add the given variable to the
root set, and GC POP is a macro to remove. The variables of the
JSValue type contain pointers to the heap. This code adds all the
JSValue type local variables, including formal parameters, at the
entry of the function, and removes them before leaving the func-
tion. Note that it removes before the return statement in the
middle of the function, as well.

Maintaining the root set with GC PUSHes and GC POPs intro-

1 Kochi University of Technology, Kami, Kochi 782–8502, Japan
†1 Presently with TOSCO Corporation
a) ugawa.tomoharu@kochi-tech.ac.jp

Fig. 1 Source code of eJSVM, where GC PUSHes and GC POPs are inserted
straightforwardly.

duces unusual discipline to the programming, and thus it is error-
prone. The risk of error can increase for three reasons:
• Programmers tend to omit code that they feel is unneces-

sary. Moreover, in our development of eJSVM, we are moti-
vated to reduce the VM footprint. For example, we inserted
GC PUSHes and GC POPs only to the lines shown in Fig. 2 in
reality (see Section 2.3 for detail).

• Programmers have to maintain GC PUSHes and GC POPs even
when they modify programs.

• In eJSVM, VM users, as well as VM developers, may de-
velop built-in functions in C to access their hardware.

Furthermore, the bug of missing GC PUSHes and GC POPs is dif-
ficult to find and fix by testing because errors due to this kind of
bug are rarely reproduced.

We explored various methods that check if GC PUSHes and
GC POPs are inserted correctly and found that Coccinelle [3], [4],
a tool for pattern matching against control flow graphs, could de-
tect missing GC PUSHes with high accuracy. Coccinelle receives
the pattern of a control flow graph written in a domain specific
language (DSL) and then uses it to performs pattern matching.

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 2 Source code of eJSVM.

It is currently used for refactoring and bug finding in the Linux
kernel project.

To evaluate the accuracy of this pattern matching approach, we
removed GC PUSHes and GC POPs from the source code of eJSVM

and then tried to see if Coccinelle could detect them. Results
showed that Coccinelle with our pattern was able to detect all of
them, excluding those that were redundant. Coccinelle also re-
ported that more GC PUSHes were missing, and we confirmed that
all of them were necessary except for a single case.

This paper reports our experience with debugging, where we
used Coccinelle to find the bugs of missing GC PUSHes and
GC POPs of local variables. This paper also reports the case study
where we applied the same method to the source code of another
project.

2. Maintaining Root Set in eJSVM

2.1 Overview
eJSVM uses a stack (GC root stack) as the root set that stores

the addresses of local variables. Figure 3 shows the control stack
and GC root stack, where a function f called g. Local variables
are allocated in function frames, which are located on the control
stack. Thus, it is reasonable to use a stack to implement the root
set as well.

When an object A is moved to A′ by GC, GC updates the point-
ers to A (x in the figure) with A’s new location A′. To enable GC
to do this, the addresses of local variables, rather than their val-
ues, are pushed to the GC root stack.

GC dereferences the pointers stored in the local variables
whose addresses are stored in the GC root stack. Thus, unini-
tialized variables should not be pushed to the GC root stack. For
example, even if we know that variable y will eventually have a
pointer, if we push the address of y before y is initialized, GC
would dereference the value that happened to be stored in y when
GC is invoked. GC does not, however, dereference the values of
the variables if they are initialized with NULL, as variable z is.

The program of eJSVM pushes and pops the addresses of lo-
cal variables using the GC PUSH and GC POP macros. eJSVM has
a build option to enable an extra check to ensure GC POPs cor-
respond to GC PUSHes. For this built option, GC POPs requires a
variable name, which is only used in a debug build.

2.2 Variables Containing Pointers to the Heap
In eJSVM, the types of variables determine if their values

are pointers to the heap or not. More specifically, only vari-

Fig. 3 GC root stack.

ables of the JSValue type, which is for values of JavaScript, and
pointer types to some VM internal data structures, such as hidden
classes [5], have pointers to the heap. Although a JSValue type
variable may have a value other than a pointer, such as an integer,
it always has a tag in its least significant bits to distinguish if it is a
pointer or not. As for VM internal data structures, their types de-
termine if they are allocated in the heap or elsewhere – allocated
statically for example. In our investigation using Coccinelle, we
deal with the JSValue type and pointer types to the data structures
in the heap in exactly the same way. In the rest of this paper, we
refer to both of them as JSValue types.

2.3 Removing Redundant GC PUSH and GC POP Insertion
The program shown in Fig. 1 GC PUSHes all of the three JS-

Value type variables at the entry of the function and GC POPs all
of them at both exits. In addition, ret, which is declared in the
function, is initialized with NULL before it is GC PUSHed. Al-
though this works correctly, some GC PUSHes and GC POPs are
redundant. This redundancy not only applies overhead to the ex-
ecution time but also increases the VM footprint. Since eJSVM

is used for embedded systems, we want to avoid this redundancy.
Because JavaScript programs are single-threaded, GC is not in-

voked asynchronously by other threads, unlike in multi-threaded
programs. Furthermore, in eJSVM, the VM context is required
to invoke GC. Thus, the positions of code where GC may be
invoked are limited to function calling sites, where a pointer to
a Context type structure is passed as an argument. Since GC
cares about the accuracy of the root set only when GC is invoked,
we can remove GC PUSHes and GC POPs on the basis of the live
ranges of variables so that all the addresses of live variables are
stored in the GC root stack whenever GC is invoked.

For example, in Fig. 1, the only position of code that may cause
GC is the call of to string on line 6, and the only variable that
has a live range covering this position is o. As for ret, GC PUSH
is not necessary because a value is stored in ret for the first time
on line 8. Note that, on line 8, a value is stored in ret through its
address passed to get prop.

With p, matters are more complicated. A value is passed as an
argument to p, and p is used on line 8. However, because line 6
writes the return value of to string to p, it splits p’s live range.
Even if line 6 causes GC, and if GC moves the object passed as
an argument to p, p will be overwritten with the return value of
to string. Thus, no GC PUSH is required for p.

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 4 Example of program needed to consider the execution path.

Furthermore, o does not necessarily have to be GC PUSHed as
early as at the function entry. line 6, calling to string, is exe-
cuted only when p does not have a string value. If we GC PUSH
and GC POP in the then-clause of this if statement, we can dedu-
plicate GC POPs. This is also likely to improve the performance
because the condition of the if statement is unlikely to be satis-
fied. This is because the get object prop function defined in
Fig. 1 is to obtain the property of an object, and the property name
passed to p is likely to be a string value.

A program without redundant insertion of GC PUSHes and
GC POPs is shown in Fig. 2.

2.4 Inserting GC PUSHWhile Considering Execution Path
We have to consider execution paths to judge if GC PUSH is

necessary or not. Figure 4 shows the implementation of built-in
function Array.prototype.concat. In this implementation, e,
a JSValue type variable, has to be GC PUSHed before the function
call on line 8, which may invoke GC, because it is used on line 6.
Although it is used above the call site in the program text, e may
be used after the function call because they are both in a while
statement.

3. Coccinelle

We used Coccinelle [3], [4] for pattern matching against the
execution paths of programs. Coccinelle receives rules written in
a DSL, SmPL, and matches them against the control flow graph
of a program. As the rules for Coccinelle are called semantic
patches, Coccinelle can also rewrite the matched piece of code.
This is used for refactoring and bug finding in the Linux kernel
project.

In SmPL, we can use fragments of C program and wildcards
such as “...” as patterns to describe rules. Coccinelle con-
verts these patterns into computational tree logic expressions ex-
tended with meta-variables (CTL-V expressions), and then per-
forms model checking against the Kripke structure of the con-
trol flow graph. A control flow graph is regarded as a Kripke
structure, where states are statements of the program, and atomic
properties are whether or not each statement satisfies the condi-
tions written in the rule. As a condition of statements, we can
specify a statement that may contain meta-variables, or expres-
sions that the statement should have. Because Coccinelle utilizes
CLT, we can quantify a wildcard with exists or forall.

A single SmPL file may contain multiple rules. Rules can use

Fig. 5 Rule to find missing GC PUSH.

Fig. 6 Program that causes GC on one path but not the other.

meta-variables to which match results are bound in their preced-
ing rules. This allows us to add conditions to a rule and remove
false positives.

Here, we briefly explain the grammar of SmPL using the rule
shown in Fig. 5 as an example. This rule finds missing GC PUSHes
(we explain how this rule works in Section 4). The first line con-
tains the name of this rule, MissingPush, and the names of de-
pending rules, use, falseuse, and immass. With this depen-
dency description, this pattern is used for the combinations of
meta-variables that match use but do not match falseuse or
immass.

The following lines up to @@ define meta-variables. Descrip-
tions such as decl.v allow rules to use the meta-variables of pre-
ceding rules. Not only the syntactic element type meta-variables
but also the meta-variables of the position type, which are
bound to the positions of a program where the statements occur,
are available.

The lines below @@ define the body of the pattern. The pat-
tern element “(|)” describes a choice, and “...” describes
that there is an arbitrary number of statements *1. A wildcard
“...” may come with conditions, e.g., “when != push(&v)”
describes that there are no statements having push(&v), and
“when exists” describes that there exists some execution path
that satisfies the following pattern *2. Note that exists does not
describe the existence of statements corresponding to “...” but
rather the existence of execution paths to an exits of the function
that the following pattern matches. For example, the rule shown
in Fig. 5 matches the program shown in Fig. 6, which has two ex-
ecution paths, and gc fun@gc p matches one of them, because
exists describes that gc fun@gc p matches at least one of the
execution paths. If there were no exists, this rule would not
match the program shown in Fig. 6.

A syntactic element may be attached with a meta-variable de-
scribing the position of an occurrence, such as @decl p. For

*1 The following statement is connected with the X (next) modal operator if
there is no “...”, and it is connected with the U (until) modal operator
if there is.

*2 Translated into the EU modal operator.

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

example, if we take the meta-variable declaration into account,
gc fun@gc p represents statements that call some function bound
to gc fun that was found in the gc rule, and the call site is at some
position that is found in the gc rule. Note that an expression fol-
lowed by a semi-colon represents a statement while an expression
without a semi-colon represents statements containing the expres-
sion.

Coccinelle allows us to describe a part of a rule using OCaml
and Python. In this research, we describe conditions on meta-
variables in Python. We also use Python in the body of some rules
to print messages to the terminal when Coccinelle finds bugs.

4. Rule to Find Bugs

We developed rules for Coccinelle to find the following bugs:
• missing GC PUSH
• storing address of JSValue type variable to variables
• double GC PUSH
• missing GC POP
• GC POP before GC PUSH
• premature GC POP
• double GC POP
• GC PUSHing wrong type of variable

Storing an address of a JSValue type variable x to a variable p is
not itself a bug. However, the stored address may be used after
x is GC POPed. We consider this case to be a bug. We conserva-
tively forbid stores of addresses of JSValue type variables because
the current version of eJSVM does not do so, and it is unlikely to
cause problems in the future. “Premature GC POP” is a bug that
GC POPs a variable that may be used after GC following to the
GC POP.

In the rest of this section, we focus on the rule to find the miss-
ing GC PUSH bug, which is the most complicated. We developed
the other rules in the same way. Furthermore, we focus on the
case where the variable to be GC PUSHed is a local variable. The
rules to handle the cases where the variable is a local variable and
a parameter are essentially the same, but developed as separate
rules.

4.1 Structure of Missing GC PUSH Bug
The program shown in Fig. 4 and the program obtained from

the one shown in Fig. 2 by removing GC PUSHes are examples
that the rule to find the missing GC PUSH bug should find. We
first enumerate the conditions under which GC PUSH is required.
• gc: A function that may cause GC is called. We refer to the

function as gc fun and the position of the call site as gc p.
• decl: A JSValue type variable is declared. We refer to the

variable as v and the position of the declaration as decl p.
• use: Variable v is used after gc p. We refer to the position of

such use of v as use p.
If all of these three conditions are satisfied, a GC PUSH of v may
be required between decl p and gc p. For example, in the pro-
gram shown in Fig. 4, lines 8 and 10 satisfy the gc condition, and
line 1 satisfies the decl condition. Whichever line 8 or 10 gc p is,
line 6 satisfies the use condition. Thus, the program satisfies all
conditions, where decl p is line 1 and gc p is line 8 or 10. In fact,
this program requires GC PUSH before line 8 is executed.

Fig. 7 Program that has assignment to JSValue-type variable.

Fig. 8 Dependency of rules.

In contrast, while the program shown in Fig. 7 satisfies all the
conditions of gc, decl, and use, a GC PUSH is not necessary. There
are two reasons for this:
• variable x is assigned on line 3, which is between GC on

line 2 and the use of x on line 4, and
• assignment to y on line 2 is performed after the function call,

which is the same situation as variable p in Fig. 2.
To exclude these cases, we do not detect them as bugs if one of
the following conditions is satisfied. In the rest of this paper, we
add a minus sign superscript to the names of negative conditions.
• assign−: v is assigned between gc p and use p.
• immass−: v is assigned in the same statement as gc p but

after gc p.
The program of eJSVM sometimes passes the address of a vari-

able to a function to take an extra return value, as the address of
ret is passed on line 10 in Fig. 2. This works as an assignment.
However, because we cannot guarantee that the callee function
assigns to the variable, we do not consider such “out parameters”
as assignments.

4.2 Design of Rule for Missing GC PUSH Bug
We construct the rule to find the missing GC PUSH bugs by com-

bining small pieces of rules, as shown in Fig. 8.
We develop rules, each of which checks a condition gc, decl,

use, or immass− that we enumerated in Section 4.1. Then, we de-
velop a rule MissingPush that depends on decl p and gc p, which
are bound in the preceding rules. MissingPush detects the case
where a GC PUSH is missing between the position of the variable
declaration, decl p, and the position of the call of a function that
may cause GC, gc p. We implement the assign− condition as a
path condition of the wildcard of the use rule.

Because the rule for the use condition locates any occurrence
of v, it also detects assignments to v and occurrences of v as argu-
ments of GC PUSHes and GC POPs. To ignore these false positives,
we add the following rule.
• falseuse−: Ignore assignment to v and occurrences as argu-

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 9 Rules to find missing GC PUSH.

ments of GC PUSHes and GC POPs.

4.3 Implementation of Rule for Missing GC PUSH Bug
In this section, we explain how our rules work. We first explain

the rules preceding the MissingPush rule shown in Fig. 9. Then,
we show in Fig. 10 the MissingPush rule again, which appeared
in Fig. 5, and explain it.

The gc rule matches function calls that take context arguments.
In the meta-variable declaration

Fig. 10 Rule to find missing GC PUSH (same as Fig. 5).

type pre.Context;

Context ctx;

we declare to use type Context, which is defined in the pre
rule so that it matches type Context*. Then, we declare meta-
variable ctx of that Context type. The gc rule matches func-
tion calls that take this ctx as their argument. We use the
expression type, which matches expressions, for gc fun rather
than the identifier type, which matches identifiers, so that
gc fun can match function pointers as well.

The decl rule matches declarations of variables of the JSValue
type. The following declaration of a meta-variable T describes
that T should match only the types that make the Python program
is pointer(T) true, where is pointer(T) is defined so that T
is of the JSValue type.
type T:script:python(){is_pointer(T)};

The decl rule matches the declaration of variables when T
matches their types. Note that the rule contains two patterns, one
of which has an initializer and the other does not.

The use rule matches programs that use v after a function call
gc p, where v and gc p are bound in the gc and decl rules. The
wildcard “...” between gc p and the use of v is modified with
“when != v = e” so that the rule does not match if the program
satisfies the assign− condition. Note that the wildcard “...” is
quantified with “when exists” so that this rule can find all the
variables that are used on any execution path, even if there are
branches after the function call gc p.

The falseuse− rule matches the occurrences of a variable v that
the use rule detected if they are the assignments to v or arguments
of GC PUSH or GC POP.

The immass− rule matches assignments to v performed in the
same statement as the function call at gc p, but after it. The left-
hand side of the pattern
v = <+... gc_fun@gc_p ...+>

matches expressions that have gc fun@gc p.
The MissingPush rule shown in Fig. 10 combines the rules

mentioned above by the following dependency description.
depends on use && !falseuse && !immass

Because the use depends on the gc and decl rules, they are not
listed explicitly, but the MissingPush rule depends on them in-
directly. The MissingPush rule matches programs that have an
execution path that does not contain GC PUSH between a declara-

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

tion of a JSValue type variable and a function call that may cause
GC. To represent this condition, the wildcard “...” is decorated
with “when != push(&v)” and exists.

5. Experiment and Case Study

We checked the source code of eJSVM using the rules we de-
veloped in Section 4. The code was checked after preprocessing
to remove the macros used in eJSVM. GC PUSHes and GC POPs
were left in as function calls.

5.1 Accuracy
First, we examined how many bugs were missed by Coccinelle

with our rules. It is difficult to examine the number of misses be-
cause we would need to know all the positions of bugs, so instead,
we assumed that the source code of eJSVM contains GC PUSHes
and GC POPs correctly. We removed all GC PUSHes and GC POPs
from the source code and then tested if Coccinelle could detect
the positions where they had been.

The source code of eJSVM used 33 GC PUSHes. Coccinelle
detected 27 out of these as missing. The remaining six were re-
dundant, and they were not bugs in reality. An example of the
positions where GC PUSHes were redundant is shown in Fig. 11.
In this program, nexth and oh are GC PUSHed on the first line,
but it is not possible for GC to take place until the corresponding
GC POPs are performed.

As we have shown, all of the necessary GC PUSHes and
GC POPs can be found. Thus, we conclude that Coccinelle can
find bugs at high accuracy.

Note that bugs other than the missing GC PUSH bug appear
only when there is a GC PUSH or a GC POP. Thus, only missing
GC PUSH bugs were found in this examination.

5.2 Finding Bugs from eJSVM
Next, we applied our rules to the source code of eJSVM to

find its bugs. Table 1 lists the result and Fig. 12 visualizes
its summary. The solid lines of “manual” and “Coccinelle” in
Fig. 12 represent the number of GC PUSHes that the developer in-
serted and GC PUSHes reported by Coccinelle when we removed
GC PUSHes, respectively. The columns “correctly inserted”,
“bugs”, and “FP” in Table 1 show the number of GC PUSHes that
developers correctly inserted, the missing GC PUSHes found using
Coccinelle, and GC PUSHes reported by Coccinelle but that were
not necessary, respectively. The segment “redundant” in Fig. 12
represents these six redundant GC PUSHes that were inserted by
the developer. Note that we did not find any bugs other than the
missing GC PUSHes.

Coccinelle reported quite a few missing GC PUSHes. We exam-
ined all reported positions and found that all of them, including
the code shown in Fig. 4, were necessary, apart from a single false
positive.

The false positive occurred in a case where the possible com-
binations of branches to be taken in the two if statements were
limited by control variables. Figure 13 shows the relevant piece
of code, where lowerValue and upperValue are of the JSValue
type. Coccinelle reported that GC PUSHes for both of them were
missing, but in fact, upperValue did not need to be GC PUSHed.

Fig. 11 Redundant GC PUSH.

Table 1 Number of missing GC PUSHes with lines of code (LoC), number
of correctly inserted GC PUSHes by hand, and number of false pos-
itives (FP).

correctly
file name LoC inserted bug FP
allocate.c 228 3 0 0
builtin-array.c 797 3 23 1
builtin-boolean.c 73 0 3 0
builtin-global.c 277 0 2 0
builtin-math.c 257 0 1 0
builtin-number.c 175 0 3 0
builtin-object.c 110 0 2 0
builtin-regexp.c 273 0 0 0
builtin-string.c 692 6 6 0
call.c 251 0 0 0
codeloader.c 761 0 0 0
context.c 168 1 0 0
conversion.c 669 0 6 0
gc.c 1066 0 0 0
hash.c 474 0 0 0
init.c 114 0 0 0
main.c 429 0 0 0
object.c 1030 14 18 0
string.c 189 0 0 0
vmloop.c 1426 0 0 0
Total 9459 27 64 1

Fig. 12 Visualized summary of Table 1.

upperValue was reported because
• the call of set array prop on line 3, which may cause GC,

satisfied the gc condition,
• the use of upperValue on line 9 satisfied the use condition,

and
• between them, there existed an execution path that did not

have any assignment to upperValue, which were taken if
the condition of the if statement on line 5 did not hold.

However, it was only when upperExists was false that the con-
dition of the if statement on line 5 did not hold. In this case,
branches that used upperValue, such as line 9, was not taken
in the following execution. Coccinelle performs a pattern match
against control flow graphs, so control flows depending on data
are handled conservatively. Hence, it causes false positives. How-
ever, this kind of code is likely to be hard to read for program-
mers, so we assume is is not written frequently.

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 13 Program causing a false positive.

Table 2 Number of missing GC PUSHes in AVL-tree program.

correctly
file name LoC inserted bug FP
avltree.c 638 28 7 0

Fig. 14 Visualization of Table 2.

5.3 Checking Program Other Than eJSVM
We also tried to find missing GC PUSH bugs in another program.

We developed rules for the program in the same way as shown in
Section 4. The program is a test program for a GC library devel-
oped by another research group and implements an AVL-tree in
C whose nodes are allocated in the GC heap. It uses macros sim-
ilar to the GC PUSH of eJSVM to push the addresses of pointers
to nodes on the GC root stack. In this program, any function can
cause GC, excluding the debug functions.

Table 2 shows the result and Fig. 14 visualizes its sum-
mary. The numbers in Table 2 do not include the ten redun-
dant GC PUSHes inserted by the developer. In this program,
many GC PUSHes were inserted conservatively. Nevertheless,
Coccinelle found seven missing GC PUSHes. We reported these
bugs to the developer and confirmed that all of them were in fact
missing GC PUSHes.

6. Discussion

6.1 Limitations of Pattern Matching Approach against Con-
trol Flow Graph

Coccinelle performs pattern matching against control flow
graphs. Thus, it may cause false positives if the execution paths
are limited on the basis of the values of expressions. In our in-
vestigation, Coccinelle showed only a single false positive for
eJSVM (Fig. 13), where combinations of the branches to be taken
by two if statements were limited. In a program where whether

or not a JSValue type variable is used depends on the value of a
loop condition, a similar problem may occur.

In eJSVM, GC POP receives the variable expected to be on the
top of the GC root stack for debugging. In a debug build, the run-
time system verifies that GC POPs correspond to GC PUSHes. This
is difficult to check using Coccinelle. For example, if variables a
and b are GC PUSHed in this order and GC POPed in the same or-
der, it should be reported as a bug. However, we cannot develop
a general rule to detect this kind of bug.

6.2 Automated Insertion of GC PUSH
A rule for Coccinelle can rewrite the pieces of programs that

a pattern matches. Thus, with this feature, a rule could insert
GC PUSHes after variable declarations automatically. However,
this may produce a suboptimal program.

Inserting GC PUSHes in optimal positions is difficult because
they depend on how the program is used. If a GC PUSH is inserted
before the furthest node from the entry of the function among the
nodes that dominate all the nodes that may cause GC, the result-
ing program would be close to the optimal. However, writing
such complicated rules in SmPL increases the risk of bugs in the
rule.

We could use a compiler infrastructure to find the missing
GC PUSH bugs and insert GC PUSHes on its intermediate represen-
tation. However, this would require more effort than using an
existing tool, such as Coccinelle.

6.3 Using Coccinelle in Development of eJSVM
As we have shown in Section 5.1, if we check a program from

which all GC PUSHes and GC POPs are removed, Coccinelle can
identify all the positions where GC PUSHes are required. Af-
ter this investigation, we removed all GC PUSHes and GC POPs
from the source code of eJSVM and inserted only the necessary
ones. In this task, the developers chose optimal positions to in-
sert GC PUSHes. This task was performed by a team consisting
of an academic staff who is not an author of this paper and three
students including one of the authors, and took about three hours.

We also added a production rule in Makefile of eJSVM so that
our rules could be applied to check bugs whenever we modified

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

source code. Owing to this, we could find some bugs before they
occurred. This check takes about one minute on a normal desk-
top computer, which is shorter than our regression test. Thus, the
time to check is not an obstacle to our development.

7. Related Work

7.1 Management of Root Set
There are various techniques to find GC roots from local vari-

ables, including explicit pushing and popping, which eJSVM uti-
lizes. Provided we can modify the compiler, it is a commonly
used technique to generate stack maps when compiling the VM.
A stack map is a data structure that tells the locations of pointers
in function frames.

Henderson [6] proposed creating a structure for each function
to hold all pointers to the heap. These structures are allocated on
the stack and linked together so that GC can find all such struc-
tures by traversing the list. Henderson introduced these structures
by program transformation. It is not realistic for programmers to
introduce these structures manually because they have to be de-
fined for each function.

A shadow stack is another well-known technique. A shadow
stack is a separate stack from the control stack. Pointers to the
heap are duplicated and placed on the shadow stack as well as
on the control stack. The Java Native Interface (JNI) and the V8
JavaScript engine convert pointers to the heap into handles when
they are stored in local variables. This technique has the risk of
a bug that misses the release of handles. In C++, we can rely on
destructors to release handles when the control exits a scope. In
fact, V8 uses this technique.

Finally, conservative GC [7] is also a well-known technique.
Conservative GC considers a pointer-like value, which has the
same bit pattern as a pointer to an object, to be a pointer. Conser-
vative GC, however, cannot move objects.

7.2 Finding Bugs in C Program
Coccinelle was developed for the Linux kernel project and is

used for finding bugs and refactoring the Linux kernel [8], [9].
It is also used for open source software other than OS. For ex-
ample, one study found bugs in OpenSSL [10]. The Coccinelle
project provides many examples of rules, such as finding the
NULL pointer dereference bug *3. However, our study is the first
research to apply Coccinelle to GC, to the best of our knowledge.

Nishiwaki et al. [11] developed SEAN, a pattern matching tool
against C programs to find bugs relating to misuse of JNI refer-
ences. SEAN matches a certain pattern of an abstract syntax tree
(AST). Nakamura et al. [12] generalized SEAN and developed
ASTGrep, which searches for the pattern of AST that the user
specified. Quinlan et al. [13] also developed a pattern matching
tool to find bugs that is built on top of the Rose compiler infras-
tructure.

8. Summary

In this work, we found bugs related to the addition and removal
of heap pointing pointers to the root set. We used Coccinelle,

*3 http://coccinelle.lip6.fr/rules/

a pattern matching tool against control flow graphs. We exam-
ined the accuracy of this method by applying it to eJSVM source
code from which we removed pieces of code to maintain the root
set. The results showed that Coccinelle found all the removed
pieces that were actually necessary. Furthermore, it found many
bugs, which helped to debug the eJSVM. We also applied the
same approach to a source code developed by another research
project and were able to identify bugs. Only one false positive
was found, in a program where execution paths are limited by the
values of expressions, which caused a false positive because Coc-
cinelle performs pattern matching against control flow graphs.

Acknowledgments The authors would like to thank all
members involved in the eJS project. They would also like to
thank the reviewer for valuable comments.

This work was supported by the JSPS KAKENHI Grant Num-
ber 16K00103.

References

[1] Ugawa, T., Iwasaki, H. and Kataoka, T.: eJSTK: Building JavaScript
virtual machines with customized datatypes for embedded systems,
Journal of Computer Languages, Vol.51, pp.261–279 (2019).

[2] Kataoka, T., Ugawa, T. and Iwasaki, H.: A Framework for Construct-
ing JavasSript Virtual Machines with Customized Datatype Represen-
tations, Proc. SAC 2018, pp.1238–1247, ACM (2018).

[3] Brunel, J., Doligez, D., Hansen, R.R., Lawall, J.L. and Muller, G.: A
Foundation for Flow-based Program Matching: Using Temporal Logic
and Model Checking, Proc. 36th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’09),
pp.114–126, ACM (2009).

[4] Padioleau, Y., Lawall, J., Hansen, R.R. and Muller, G.: Document-
ing and Automating Collateral Evolutions in Linux Device Drivers,
Proc. 3rd ACM SIGOPS/EuroSys European Conference on Computer
Systems 2008 (Eurosys ’08), pp.247–260, ACM (2008).

[5] Chambers, C., Ungar, D. and Lee, E.: An Efficient Implementation of
SELF a Dynamically-typed Object-oriented Language Based on Pro-
totypes, Proc. Object-oriented Programming Systems, Languages and
Applications (OOPSLA ’89), pp.49–70, ACM (1989).

[6] Henderson, F.: Accurate Garbage Collection in an Uncooperative En-
vironment, Proc. 3rd international symposium on Memory manage-
ment (ISMM ’02), pp.150–156, ACM (2002).

[7] Boehm, H.-J. and Weiser, M.: Garbage Collection in an Uncoopera-
tive Environment, Software – Practice and Experience, Vol.18, No.9,
pp.807–820 (1988).

[8] Lawall, J.L., Muller, G. and Palix, N.: Enforcing the Use of API Func-
tions in Linux Code, Proc. 8th Workshop on Aspects, Components, and
Patterns for Infrastructure Software, pp.7–12, ACM (2009).

[9] Palix, N., Thomas, G., Saha, S., Calvès, C., Muller, G. and Lawall,
J.: Faults in Linux 2.6, ACM Trans. Computer Systems, Vol.32, No.2,
pp.4:1–4:40 (2014).

[10] Lawall, J., Laurie, B., Hansen, R.R., Palix, N. and Muller, G.: Finding
Error Handling Bugs in OpenSSL Using Coccinelle, 2010 European
Dependable Computing Conference, pp.191–196 (2010).

[11] Nishiwaki, H., Ugawa, T., Umatani, S., Yasugi, M. and Yuasa, T.:
SEAN: Support Tool for Detecting Rule Violations in JNI Coding,
IPSJ Trans. Programming, Vol.5, No.3, pp.23–28 (2012).

[12] Nakamura, S., Ugawa, T. and Umatani, S.: A Code Checker That Uses
Tree Patterns Reflecting the Structures of Rule Violation Code, IPSJ
Trans. Programming (PRO), Vol.9, No.4, pp.1–15 (2016).

[13] Quinlan, D.J., Vuduc, R.W. and Misherghi, G.: Techniques for Spec-
ifying Bug Patterns, Proc. 2007 ACM Workshop on Parallel and Dis-
tributed Systems: Testing and Debugging, pp.27–35, ACM (2007).

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Tomoharu Ugawa received his B.Eng.
degree in 2000, M.Inf. degree in 2002,
and Dr.Inf. degree in 2005, all from Kyoto
University. He worked for a research
project on real-time Java at Kyoto Univer-
sity from 2005 to 2008. In 2008–2014,
he was an assistant professor at the Uni-
versity of Electro-Communications. He is

currently an associate professor at Kochi University of Technol-
ogy. His work is in the area of implementation of programming
languages with a specific focus on memory management. He re-
ceived the IPSJ Yamashita SIG Research Award in 2012.

Taiki Fujimoto was born in 1996. He re-
ceived his B.E. degree from Kochi Uni-
versity of Technology in 2019. He re-
ceived the Best Presentation Award from
2018 Shikoku-section Joint Convention of
the Institutes of Electrical and related En-
gineers.

c© 2020 Information Processing Society of Japan

